|
[1] Chen, H., Cong, T. N., Yang, W., Tan, C., Li, Y., & Ding, Y. (2009). Progress in electrical energy storage system: A critical review. Progress in Natural Science, 19(3), 291-312. [2] Grantham, A., Pudney, P., Ward, L. A., Whaley, D., & Boland, J. (2017). The viability of electrical energy storage for low-energy households. Solar Energy, 155(Supplement C), 1216-1224. [3] Olabi, A. G. (2017). Renewable energy and energy storage systems. Energy, 136(Supplement C), 1-6. [4] Rohit, A. K., & Rangnekar, S. (2017). An overview of energy storage and its importance in Indian renewable energy sector: Part II – energy storage applications, benefits and market potential. Journal of Energy Storage, 13(Supplement C), 447-456. [5] Smallbone, A., Jülch, V., Wardle, R., & Roskilly, A. P. (2017). Levelised Cost of Storage for Pumped Heat Energy Storage in comparison with other energy storage technologies. Energy Conversion and Management, 152(Supplement C), 221-228. [6] Shukur, M. F., & Kadir, M. (2015). Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices (Vol. 158). [7] Bai, N., Xu, Z., Tian, Y., Gai, L., Jiang, H., Marcus, K., & Liang, K. (2017). Tailorable polypyrrole nanofilms with exceptional electrochemical performance for all-solid-state flexible supercapacitors. Electrochimica Acta, 249, 360-368. [8] Christinelli, W. A., Gonçalves, R., & Pereira, E. C. (2016). A new generation of electrochemical supercapacitors based on layer-by-layer polymer films. Journal of Power Sources, 303, 73-80. [9] Ma, C., Wang, X., Ma, Y., Sheng, J., Li, Y., Li, S., & Shi, J. (2015). Carbon nanofiber/graphene composite paper for flexible supercapacitors with high volumetric capacitance. Materials Letters, 145, 197-200. [10] Meng, Y., Zhao, Y., Hu, C., Cheng, H., Hu, Y., Zhang, Z., . . . Qu, L. (2013). All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater, 25(16), 2326-2331. [11] Ramadoss, A., Saravanakumar, B., & Kim, S. J. (2015). Thermally reduced graphene oxide-coated fabrics for flexible supercapacitors and self-powered systems. Nano Energy, 15, 587-597. [12] Ren, J., Bai, W., Guan, G., Zhang, Y., & Peng, H. (2013). Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv Mater, 25(41), 5965-5970. [13] Tang, Q., Chen, M., Wang, L., & Wang, G. (2015). A novel asymmetric supercapacitors based on binder-free carbon fiber paper@ nickel cobaltite nanowires and graphene foam electrodes. Journal of Power Sources, 273, 654-662. [14] Xu, J., Wang, D., Fan, L., Yuan, Y., Wei, W., Liu, R., . . . Xu, W. (2015). Fabric electrodes coated with polypyrrole nanorods for flexible supercapacitor application prepared via a reactive self-degraded template. Organic Electronics, 26, 292-299. [15] Chae, J. S., Kwon, H.-N., Yoon, W.-S., & Roh, K. C. (2017). Non-aqueous quasi-solid electrolyte for use in supercapacitors. Journal of Industrial and Engineering Chemistry. [16] Devaux, D., Villaluenga, I., Bhatt, M., Shah, D., Chen, X. C., Thelen, J. L., . . . Balsara, N. P. (2017). Crosslinked perfluoropolyether solid electrolytes for lithium ion transport. Solid State Ionics, 310(Supplement C), 71-80. [17] Jiang, C., Li, H., & Wang, C. (2017). Recent progress in solid-state electrolytes for alkali-ion batteries. Science Bulletin, 62(21), 1473-1490. [18] Noh, S., Nichols, W. T., Park, C., & Shin, D. (2017). Enhanced energy density and electrochemical performance of all-solid-state lithium batteries through microstructural distribution of solid electrolyte. Ceramics International, 43(17), 15952-15958. [19] Felix B. Dias, Lambertus Plomp, & Veldhuis, J. B. J. (2000). Trends in polymer electrolytes for secondary lithium batteries. Journal of Power Sources, 88, 169-191. [20] G. Feuillade, & Perche, P. (1975). Ion-conductive macromolecular gels and membranes for solid lithium cells Journal of Applied Electrochemistry, 5, 63-69. [21] 胡啟章. (2011). 電化學原理與方法(二版): 五南圖書出版股份有限公司. [22] Chemistry LibreTexts. (2015). from https://chem.libretexts.org/Under_Construction/Core_Construction/Chemistry_30/Electrochemistry/2.2_Electrochemical_Cells [23] Faulkner, A. J. B. a. L. R. (2001). Electochemical Methods Fundamentals and Applications. in John Wiley & Sonic, Inc. [24] 陳奕勳. (2003). 陽極沈積錳系水合氧化物於電化學超級電容器之應用: 撰者. [25] Bard, A. J., & Faulkner, L. R. (2001). ELECTROCHEMICAL METHODS Fundamentals and Applications: JOHN WILEY & SONS, INC. [26] An, K. H., Kim, W. S., Park, Y. S., Moon, J.-M., Bae, D. J., Lim, S. C., . . . Lee, Y. H. (2001). Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Advanced functional materials, 11(5), 387-392. [27] Burke, A. (2000). Ultracapacitors: why, how, and where is the technology. Journal of Power Sources, 91(1), 37-50. [28] Simon, P., & Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nature materials, 7(11), 845. [29] Winter, M., & Brodd, R. J. (2004). What are batteries, fuel cells, and supercapacitors? : ACS Publications. [30] Knox, J. H., Kaur, B., & Millward, G. (1986). Structure and performance of porous graphitic carbon in liquid chromatography. Journal of Chromatography A, 352, 3-25. [31] Lee, J., Kim, J., & Hyeon, T. (2006). Recent progress in the synthesis of porous carbon materials. Advanced Materials, 18(16), 2073-2094. [32] Liu, Y., Li, G., Guo, Y., Ying, Y., & Peng, X. (2017). Flexible and Binder-Free Hierarchical Porous Carbon Film for Supercapacitor Electrodes Derived from MOFs/CNT. [33] Shen, J., Li, X., Wan, L., Liang, K., Tay, B. K., Kong, L., & Yan, X. (2016). An Asymmetric Supercapacitor with Both Ultra-High Gravimetric and Volumetric Energy Density Based on 3D Ni (OH) 2/MnO2@ Carbon Nanotube and Activated Polyaniline-Derived Carbon. ACS applied materials & interfaces, 9(1), 668-676. [34] Shi, P., Li, L., Hua, L., Qian, Q., Wang, P., Zhou, J., . . . Huang, W. (2016). Design of Amorphous Manganese Oxide@ Multiwalled Carbon Nanotube Fiber for Robust Solid-State Supercapacitor. ACS nano, 11(1), 444-452. [35] Yu, J., Lu, W., Pei, S., Gong, K., Wang, L., Meng, L., . . . Li, Q. (2016). Omnidirectionally stretchable high-performance supercapacitor based on isotropic buckled carbon nanotube films. ACS nano, 10(5), 5204-5211. [36] Zhao, W., Li, Y., Wu, S., Wang, D., Zhao, X., Xu, F., . . . Cao, A. (2016). Highly Stable Carbon Nanotube/Polyaniline Porous Network for Multifunctional Applications. ACS applied materials & interfaces, 8(49), 34027-34033. [37] Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., . . . Zhang, L. (2009). Progress of electrochemical capacitor electrode materials: A review. International journal of hydrogen energy, 34(11), 4889-4899. [38] Bae, J., Song, M. K., Park, Y. J., Kim, J. M., Liu, M., & Wang, Z. L. (2011). Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew Chem Int Ed Engl, 50(7), 1683-1687. [39] Bai, H., Li, C., & Shi, G. (2011). Functional composite materials based on chemically converted graphene. Advanced Materials, 23(9), 1089-1115. [40] Brezesinski, T., Wang, J., Tolbert, S. H., & Dunn, B. (2010). Ordered mesoporous [alpha]-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nature materials, 9(2), 146-151. [41] Huang, L., Chen, D., Ding, Y., Feng, S., Wang, Z. L., & Liu, M. (2013). Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano letters, 13(7), 3135-3139. [42] Jiang, J., Li, Y., Liu, J., Huang, X., Yuan, C., & Lou, X. W. D. (2012). Recent advances in metal oxide‐based electrode architecture design for electrochemical energy storage. Advanced Materials, 24(38), 5166-5180. [43] Wang, H., Casalongue, H. S., Liang, Y., & Dai, H. (2010). Ni (OH) 2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. Journal of the American Chemical Society, 132(21), 7472-7477. [44] Xia, X., Tu, J., Zhang, Y., Wang, X., Gu, C., Zhao, X.-b., & Fan, H. J. (2012). High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS nano, 6(6), 5531-5538. [45] Dong, L., Xu, C., Li, Y., Huang, Z.-H., Kang, F., Yang, Q.-H., & Zhao, X. (2016). Flexible electrodes and supercapacitors for wearable energy storage: a review by category. J. Mater. Chem. A, 4(13), 4659-4685. [46] Areir, M., Xu, Y., Harrison, D., & Fyson, J. (2017). 3D printing of highly flexible supercapacitor designed for wearable energy storage. Materials Science and Engineering: B, 226(Supplement C), 29-38. [47] Han, Y., Ge, Y., Chao, Y., Wang, C., & Wallace, G. G. (2017). Recent progress in 2D materials for flexible supercapacitors. Journal of Energy Chemistry. [48] Herou, S., Schlee, P., Jorge, A. B., & Titirici, M. (2017). Biomass-derived electrodes for flexible supercapacitors. Current Opinion in Green and Sustainable Chemistry. [49] Song, X.-l., Guo, J.-x., Guo, M.-x., Jia, D.-z., Sun, Z.-p., & Wang, L.-x. (2016). Freestanding needle-like polyaniline–coal based carbon nanofibers composites for flexible supercapacitor. Electrochimica Acta, 206(Supplement C), 337-345. [50] Xi, S., Kang, Y., Qu, S., & Han, S. (2016). Flexible supercapacitors on chips with interdigital carbon nanotube fiber electrodes. Materials Letters, 175(Supplement C), 126-130. [51] Gupta, V., & Miura, N. (2006). Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. Electrochimica Acta, 52(4), 1721-1726. [52] Jost, K., Dion, G., & Gogotsi, Y. (2014). Textile energy storage in perspective. Journal of Materials Chemistry A, 2(28), 10776. [53] Jost, K., Perez, C. R., McDonough, J. K., Presser, V., Heon, M., Dion, G., & Gogotsi, Y. (2011). Carbon coated textiles for flexible energy storage. Energy & Environmental Science, 4(12), 5060. [54] Lee, S.-Y., Choi, K.-H., Choi, W.-S., Kwon, Y. H., Jung, H.-R., Shin, H.-C., & Kim, J. Y. (2013). Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries. Energy & Environmental Science, 6(8), 2414. [55] Lu, X., Yu, M., Wang, G., Tong, Y., & Li, Y. (2014). Flexible solid-state supercapacitors: design, fabrication and applications. Energy & Environmental Science, 7(7), 2160. [56] Zhang, Y. Z., Wang, Y., Cheng, T., Lai, W. Y., Pang, H., & Huang, W. (2015). Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chem Soc Rev, 44(15), 5181-5199. [57] Niu, Z., Zhou, W., Chen, J., Feng, G., Li, H., Ma, W., . . . Xie, S. (2011). Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy & Environmental Science, 4(4), 1440. [58] Yan, X., Tai, Z., Chen, J., & Xue, Q. (2011). Fabrication of carbon nanofiber-polyaniline composite flexible paper for supercapacitor. Nanoscale, 3(1), 212-216. [59] Meng, C., Liu, C., & Fan, S. (2009). Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties. Electrochemistry Communications, 11(1), 186-189. [60] Zhang, L. L., Zhao, X., Stoller, M. D., Zhu, Y., Ji, H., Murali, S., . . . Ruoff, R. S. (2012). Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors. Nano letters, 12(4), 1806-1812. [61] Fan, Z., Yan, J., Wei, T., Zhi, L., Ning, G., Li, T., & Wei, F. (2011). Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density. Advanced functional materials, 21(12), 2366-2375. [62] Qunting Qu, Peng Zhang, Bin Wang, Yuhui Chen, Shu Tian, Yuping Wu, & Holze, R. (2009). Electrochemical Performance of MnO2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors. J. Phys. Chem. C, 113, 14020-14027. [63] Sheng Chen, Junwu Zhu, Xiaodong Wu, Qiaofeng Han, & Xin Wang. (2010). Graphene Oxide MnO2 Nanocomposites for Supercapacitors. ACS nano, 4, 2822-2830. [64] Liu, J., Jiang, J., Cheng, C., Li, H., Zhang, J., Gong, H., & Fan, H. J. (2011). Co3O4 Nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv Mater, 23(18), 2076-2081. [65] Stoller, M. D., & Ruoff, R. S. (2010). Best practice methods for determining an electrode material's performance for ultracapacitors. Energy & Environmental Science, 3(9), 1294. [66] Chmiola, J., Largeot, C., Taberna, P.-L., Simon, P., & Gogotsi, Y. (2010). Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors. Science, 328(5977), 480. [67] Yan Huang, Hong Hu, Yang Huang, Minshen Zhu, Wenjun Meng, Chang Liu, . . . Chunyi Zhi. (2015). From Industrially Weavable and Knittable Highly Conductive Yarns to Large Wearable Energy Storage Textiles. ACS nano, 9, 4766-4775. [68] Cheng, H., Dong, Z., Hu, C., Zhao, Y., Hu, Y., Qu, L., . . . Dai, L. (2013). Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale, 5(8), 3428-3434. doi: 10.1039/c3nr00320e [69] Hu, L., Choi, J. W., Yang, Y., Jeong, S., La Mantia, F., Cui, L.-F., & Cui, Y. (2009). Highly conductive paper for energy-storage devices. Proceedings of the National Academy of Sciences, 106(51), 21490-21494. [70] Du Pasquier, A., Plitz, I., Menocal, S., & Amatucci, G. (2003). A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. Journal of Power Sources, 115(1), 171-178. [71] Park, B.-O., Lokhande, C. D., Park, H.-S., Jung, K.-D., & Joo, O.-S. (2004). Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes—effect of film thickness. Journal of Power Sources, 134(1), 148-152. [72] Tao, J., Liu, N., Li, L., Su, J., & Gao, Y. (2014). Hierarchical nanostructures of polypyrrole@MnO2 composite electrodes for high performance solid-state asymmetric supercapacitors. Nanoscale, 6(5), 2922-2928. [73] Hu, L., Pasta, M., La Mantia, F., Cui, L., Jeong, S., Deshazer, H. D., . . . Cui, Y. (2010). Stretchable, Porous, and Conductive Energy Textiles. Nano letters, 10(2), 708-714. [74] Fischer, N., Fischer, D., Klapotke, T. M., Piercey, D. G., & Stierstorfer, J. (2012). Pushing the limits of energetic materials - the synthesis and characterization of dihydroxylammonium 5,5[prime or minute]-bistetrazole-1,1[prime or minute]-diolate. Journal of Materials Chemistry, 22(38), 20418-20422. [75] Liu, W.-w., Yan, X.-b., Lang, J.-w., Peng, C., & Xue, Q.-j. (2012). Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. Journal of Materials Chemistry, 22(33), 17245-17253. [76] González, A., Goikolea, E., Barrena, J. A., & Mysyk, R. (2016). Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 58, 1189-1206. [77] Pell, W. G., & Conway, B. E. (2001). Voltammetry at a de Levie brush electrode as a model for electrochemical supercapacitor behaviour. Journal of Electroanalytical Chemistry, 500(1), 121-133. [78] Kötz, R., & Carlen, M. (2000). Principles and applications of electrochemical capacitors. Electrochimica Acta, 45(15), 2483-2498. [79] Wang, G., Zhang, L., & Zhang, J. (2012). A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev, 41(2), 797-828. [80] Pandolfo, A. G., & Hollenkamp, A. F. (2006). Carbon properties and their role in supercapacitors. Journal of Power Sources, 157(1), 11-27. [81] Halper, M. S., & Ellenbogen, J. C. (2006). Supercapacitors: A brief overview. The MITRE Corporation, McLean, Virginia, USA, 1-34. [82] Zoski, C. G. (2006). Handbook of electrochemistry: Elsevier. [83] Galiński, M., Lewandowski, A., & Stępniak, I. (2006). Ionic liquids as electrolytes. Electrochimica Acta, 51(26), 5567-5580. [84] Largeot, C., Portet, C., Chmiola, J., Taberna, P.-L., Gogotsi, Y., & Simon, P. (2008). Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. Journal of the American Chemical Society, 130(9), 2730-2731. [85] Liu, H., Liu, Y., & Li, J. (2010). Ionic liquids in surface electrochemistry. Physical Chemistry Chemical Physics, 12(8), 1685-1697. [86] Warner, I. M., El-Zahab, B., & Siraj, N. (2014). Perspectives on moving ionic liquid chemistry into the solid phase. Analytical chemistry, 86(15), 7184-7191. [87] Watanabe, M., & Ogata, N. (1988). Ionic conductivity of polymer electrolytes and future applications. Polymer International, 20(3), 181-192. [88] Shriver, D. F., Papke, B. L., Ratner, M. A., Dupon, R., Wong, T., & Brodwin, M. (1981). Structure and ion transport in polymer-salt complexes. Solid State Ionics, 5(Supplement C), 83-88. [89] Wright, P. V. (1975). Electrical conductivity in ionic complexes of poly (ethylene oxide). Polymer International, 7(5), 319-327. [90] Armand, M., Chabagno, J., & Duclot, M. Second international meeting on solid electrolytes, St Andrews, Scotland; September 20–22, 1978. Paper presented at the Extended Abstract. [91] Meyer, W. H. (1998). Polymer electrolytes for lithium‐ion batteries. Advanced materials, 10(6), 439-448. [92] Killis, A., LeNest, J.-F., Gandini, A., Cheradame, H., & Cohen-Addad, J.-P. (1982). Correlation between ionic conductivity and 7 Li-NMR of polyether-polyurethane networks containing lithium perchlorate. Polymer Bulletin, 6(7), 351-358. [93] Hall, P. (1986). GR davies, JE Mcintyre, IM Ward, DJ Bannister, LMF Le Brocq. Polymer Communications, 27, 98. [94] Vallée, A., Besner, S., & Prud'Homme, J. (1992). Comparative study of poly (ethylene oxide) electrolytes made with LiN(CF3SO2)2, LiCF3SO3 and LiClO4: Thermal properties and conductivity behaviour. Electrochimica Acta, 37(9), 1579-1583. [95] Dias, F. B., Plomp, L., & Veldhuis, J. B. (2000). Trends in polymer electrolytes for secondary lithium batteries. Journal of Power Sources, 88(2), 169-191. [96] Weston, J., & Steele, B. (1982). Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes. Solid State Ionics, 7(1), 75-79. [97] Appetecchi, G., Hassoun, J., Scrosati, B., Croce, F., Cassel, F., & Salomon, M. (2003). Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes: II. Quasi solid-state Li/LiFePO4 polymer batteries. Journal of Power Sources, 124(1), 246-253. [98] Bronstein, L. M., Karlinsey, R. L., Ritter, K., Joo, C. G., Stein, B., & Zwanziger, J. W. (2004). Design of organic–inorganic solid polymer electrolytes: synthesis, structure, and properties. Journal of Materials Chemistry, 14(12), 1812-1820. [99] Croce, F., Curini, R., Martinelli, A., Persi, L., Ronci, F., Scrosati, B., & Caminiti, R. (1999). Physical and chemical properties of nanocomposite polymer electrolytes. The Journal of Physical Chemistry B, 103(48), 10632-10638. [100] Krawiec, W., Scanlon, L., Fellner, J., Vaia, R., Vasudevan, S., & Giannelis, E. (1995). Polymer nanocomposites: a new strategy for synthesizing solid electrolytes for rechargeable lithium batteries. Journal of Power Sources, 54(2), 310-315. [101] Feuillade, G., & Perche, P. (1975). Ion-conductive macromolecular gels and membranes for solid lithium cells. Journal of Applied Electrochemistry, 5(1), 63-69. [102] Stephan, A. M. (2006). Review on gel polymer electrolytes for lithium batteries. European polymer journal, 42(1), 21-42. [103] Abraham, K., & Alamgir, M. (1994). Room temperature polymer electrolytes and batteries based on them. Solid State Ionics, 70, 20-26. [104] Vassal, N., Salmon, E., & Fauvarque, J.-F. (2000). Electrochemical properties of an alkaline solid polymer electrolyte based on P (ECH-co-EO). Electrochimica Acta, 45(8), 1527-1532. [105] Lewandowski, A., Zajder, M., Frąckowiak, E., & Beguin, F. (2001). Supercapacitor based on activated carbon and polyethylene oxide–KOH–H2O polymer electrolyte. Electrochimica Acta, 46(18), 2777-2780. [106] Wada, H., Yoshikawa, K., Nohara, S., Furukawa, N., Inoue, H., Sugoh, N., . . . Iwakura, C. (2006). Electrochemical characteristics of new electric double layer capacitor with acidic polymer hydrogel electrolyte. Journal of Power Sources, 159(2), 1464-1467. [107] Choudhury, N., Sampath, S., & Shukla, A. (2009). Hydrogel-polymer electrolytes for electrochemical capacitors: an overview. Energy & Environmental Science, 2(1), 55-67. [108] Kamath, K. R., & Park, K. (1993). Biodegradable hydrogels in drug delivery. Advanced Drug Delivery Reviews, 11(1-2), 59-84. [109] Iwakura, C., Furukawa, N., Ohnishi, T., Sakamoto, K., Nohara, S., & Inoue, H. (2001). Nickel/metal hydride cells using an alkaline polymer gel electrolyte based on potassium salt of crosslinked poly (acrylic acid). Electrochemistry, 69(9), 659-663. [110] Iwakura, C., Nohara, S., Furukawa, N., & Inoue, H. (2002). The possible use of polymer gel electrolytes in nickel/metal hydride battery. Solid State Ionics, 148(3), 487-492. [111] Iwakura, C., Wada, H., Nohara, S., Furukawa, N., Inoue, H., & Morita, M. (2003). New electric double layer capacitor with polymer hydrogel electrolyte. Electrochemical and solid-state letters, 6(2), A37-A39. [112] Nohara, S., Wada, H., Furukawa, N., Inoue, H., Morita, M., & Iwakura, C. (2003). Electrochemical characterization of new electric double layer capacitor with polymer hydrogel electrolyte. Electrochimica Acta, 48(6), 749-753. [113] Wada, H., Nohara, S., Furukawa, N., Inoue, H., Sugoh, N., Iwasaki, H., . . . Iwakura, C. (2004). Electrochemical characteristics of electric double layer capacitor using sulfonated polypropylene separator impregnated with polymer hydrogel electrolyte. Electrochimica Acta, 49(27), 4871-4875. [114] Liu, X., Xu, K., Liu, H., Cai, H., Su, J., Fu, Z., . . . Chen, M. (2011). Preparation and properties of waterborne polyurethanes with natural dimer fatty acids based polyester polyol as soft segment. Progress in Organic Coatings, 72(4), 612-620. [115] Hepburn, C. (1992). Polyurethane elastomer chemistry Polyurethane Elastomers (pp. 29-50): Springer. [116] Dieterich, D. (1981). Aqueous emulsions, dispersions and solutions of polyurethanes; synthesis and properties. Progress in Organic Coatings, 9(3), 281-340. [117] Wen, T.-C., Wang, Y.-J., Cheng, T.-T., & Yang, C.-H. (1999). The effect of DMPA units on ionic conductivity of PEG–DMPA–IPDI waterborne polyurethane as single-ion electrolytes. Polymer, 40(14), 3979-3988. [118] Tang, Q., Chen, M., Wang, G., Bao, H., & Sáha, P. (2015). A facile prestrain-stick-release assembly of stretchable supercapacitors based on highly stretchable and sticky hydrogel electrolyte. Journal of Power Sources, 284, 400-408. [119] Levi, N., Czerw, R., Xing, S., Iyer, P., & Carroll, D. L. (2004). Properties of polyvinylidene difluoride− carbon nanotube blends. Nano letters, 4(7), 1267-1271. [120] Maranchi, J., Hepp, A., & Kumta, P. (2003). High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochemical and solid-state letters, 6(9), A198-A201. [121] Mochizuki, T., Aoki, S., Horiba, T., Schulz-Dobrick, M., Han, Z.-J., Fukuyama, S., . . . Komaba, S. (2017). “Natto” Binder of Poly-γ-glutamate Enabling to Enhance Silicon/Graphite Composite Electrode Performance for Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering, 5(7), 6343-6355. [122] Wang, S., Wang, C., & Ji, X. (2017). Towards understanding the salt-intercalation exfoliation of graphite into graphene. RSC Advances, 7(82), 52252-52260. [123] Fang, C.-H., Liu, P.-I., Chung, L.-C., Shao, H., Ho, C.-H., Chen, R.-S., . . . Horng, R.-Y. (2016). A flexible and hydrophobic polyurethane elastomer used as binder for the activated carbon electrode in capacitive deionization. Desalination, 399, 34-39. [124] Li, J., Lewis, R., & Dahn, J. (2007). Sodium carboxymethyl cellulose a potential binder for Si negative electrodes for Li-ion batteries. Electrochemical and solid-state letters, 10(2), A17-A20. [125] Komaba, S., Ozeki, T., & Okushi, K. (2009). Functional interface of polymer modified graphite anode. Journal of Power Sources, 189(1), 197-203. [126] Han, Z.-J., Yabuuchi, N., Shimomura, K., Murase, M., Yui, H., & Komaba, S. (2012). High-capacity Si–graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries. Energy & Environmental Science, 5(10), 9014-9020. [127] Toupin, M., Brousse, T., & Bélanger, D. (2004). Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chemistry of Materials, 16(16), 3184-3190. [128] Débart, A., Paterson, A. J., Bao, J., & Bruce, P. G. (2008). α‐MnO2 Nanowires: A Catalyst for the O2 Electrode in Rechargeable Lithium Batteries. Angewandte Chemie, 120(24), 4597-4600. [129] Li, S.-M., Wang, Y.-S., Yang, S.-Y., Liu, C.-H., Chang, K.-H., Tien, H.-W., . . . Hu, C.-C. (2013). Electrochemical deposition of nanostructured manganese oxide on hierarchically porous graphene–carbon nanotube structure for ultrahigh-performance electrochemical capacitors. Journal of Power Sources, 225, 347-355. [130] Zhang, X., Peng, X., Li, W., Li, L., Gao, B., Wu, G., . . . Chu, P. K. (2015). Robust Electrodes Based on Coaxial TiC/C–MnO2 Core/Shell Nanofiber Arrays with Excellent Cycling Stability for High‐Performance Supercapacitors. Small, 11(15), 1847-1856. [131] Lee, K.-T., & Wu, N.-L. (2008). Manganese oxide electrochemical capacitor with potassium poly(acrylate) hydrogel electrolyte. Journal of Power Sources, 179(1), 430-434. [132] Kuo, S.-L., & Wu, N.-L. (2006). Investigation of pseudocapacitive charge-storage reaction of MnO2∙ nH2O supercapacitors in aqueous electrolytes. Journal of The Electrochemical Society, 153(7), A1317-A1324. [133] Lee, K.-T., Lee, J.-F., & Wu, N.-L. (2009). Electrochemical characterizations on MnO2 supercapacitors with potassium polyacrylate and potassium polyacrylate-co-polyacrylamide gel polymer electrolytes. Electrochimica Acta, 54(26), 6148-6153. [134] Devaraj, S., & Munichandraiah, N. (2008). Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. The Journal of Physical Chemistry C, 112(11), 4406-4417. [135] Nagarajan, N., Cheong, M., & Zhitomirsky, I. (2007). Electrochemical capacitance of MnOx films. Materials Chemistry and Physics, 103(1), 47-53. [136] Zhi, M., Manivannan, A., Meng, F., & Wu, N. (2012). Highly conductive electrospun carbon nanofiber/MnO2 coaxial nano-cables for high energy and power density supercapacitors. Journal of Power Sources, 208, 345-353. [137] Bao, L., Zang, J., & Li, X. (2011). Flexible Zn2SnO4/MnO2 core/shell nanocable− carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano letters, 11(3), 1215-1220. [138] Lee, S. W., Kim, J., Chen, S., Hammond, P. T., & Shao-Horn, Y. (2010). Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS nano, 4(7), 3889-3896. [139] Baur, W. H. (1976). Rutile-type compounds. V. Refinement of MnO2 and MgF2. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 32(7), 2200-2204. [140] Brock, S. L., Duan, N., Tian, Z. R., Giraldo, O., Zhou, H., & Suib, S. L. (1998). A review of porous manganese oxide materials. Chemistry of Materials, 10(10), 2619-2628. [141] Ma, R., Bando, Y., Zhang, L., & Sasaki, T. (2004). Layered MnO2 nanobelts: hydrothermal synthesis and electrochemical measurements. Advanced Materials, 16(11), 918-922. [142] Reddy, R. N., & Reddy, R. G. (2003). Sol–gel MnO2 as an electrode material for electrochemical capacitors. Journal of Power Sources, 124(1), 330-337. [143] Ou, T. M., Hsu, C. T., & Hu, C. C. (2015). Synthesis and Characterization of Sodium-Doped MnO2 for the Aqueous Asymmetric Supercapacitor Application. Journal of the Electrochemical Society, 162(5), A5124-A5132. [144] Radhiyah, A. A., Izan Izwan, M., Baiju, V., Kwok Feng, C., Jamil, I., & Jose, R. (2015). Doubling of electrochemical parameters via the pre-intercalation of Na+in layered MnO2nanoflakes compared to α-MnO2nanorods. RSC Adv., 5(13), 9667-9673. [145] Zhang, Y., Sun, C., Lu, P., Li, K., Song, S., & Xue, D. (2012). Crystallization design of MnO2 towards better supercapacitance. CrystEngComm, 14(18), 5892-5897. [146] Ghodbane, O., Pascal, J.-L., & Favier, F. (2009). Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS applied materials & interfaces, 1(5), 1130-1139. [147] Adomkevicius, A., Cabo-Fernandez, L., Wu, T.-H., Ou, T.-M., Chen, M.-G., Andreev, Y., . . . Hardwick, L. J. (2017). Na0.35MnO2 as an ionic conductor with randomly distributed nano-sized layers. Journal of Materials Chemistry A, 5(20), 10021-10026. [148] Karikalan, N., Karuppiah, C., Chen, S. M., Velmurugan, M., & Gnanaprakasam, P. (2017). Three‐Dimensional Fibrous Network of Na0.21MnO2 for Aqueous Sodium‐Ion Hybrid Supercapacitors. Chemistry-A European Journal, 23(10), 2379-2386. [149] Chen, J., Xu, J., Zhou, S., Zhao, N., & Wong, C.-P. (2016). Nitrogen-doped hierarchically porous carbon foam: A free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy, 25, 193-202. [150] Hou, Y., Tang, H., Li, B., Chang, K., Chang, Z., Yuan, X.-Z., & Wang, H. (2016). Hexagonal-layered Na0.7MnO2.05 via solvothermal synthesis as an electrode material for aqueous Na-ion supercapacitors. Materials Chemistry and Physics, 171, 137-144. [151] Lu, X.-F., Huang, Z.-X., Tong, Y.-X., & Li, G.-R. (2016). Asymmetric supercapacitors with high energy density based on helical hierarchical porous NaxMnO2 and MoO2. Chemical science, 7(1), 510-517. [152] Parant, J.-P., Olazcuaga, R., Devalette, M., Fouassier, C., & Hagenmuller, P. (1971). Sur quelques nouvelles phases de formule NaxMnO2 (x⩽ 1). Journal of Solid State Chemistry, 3(1), 1-11. [153] Mendiboure, A., Delmas, C., & Hagenmuller, P. (1985). Electrochemical intercalation and deintercalation of NaxMnO2 bronzes. Journal of Solid State Chemistry, 57(3), 323-331. [154] Mai, L., Li, H., Zhao, Y., Xu, L., Xu, X., Luo, Y., . . . Zhang, Q. (2013). Fast ionic diffusion-enabled nanoflake electrode by spontaneous electrochemical pre-intercalation for high-performance supercapacitor. Scientific reports, 3. [155] Radhiyah, A., Izwan, M. I., Baiju, V., Feng, C. K., Jamil, I., & Jose, R. (2015). Doubling of electrochemical parameters via the pre-intercalation of Na+ in layered MnO2 nanoflakes compared to α-MnO2 nanorods. RSC Advances, 5(13), 9667-9673. [156] Byrom, B., Watson, C., Doll, H., Coons, S. J., Eremenco, S., Ballinger, R., . . . Howry, C. (2017). Selection of and Evidentiary Considerations for Wearable Devices and Their Measurements for Use in Regulatory Decision Making: Recommendations from the ePRO Consortium. Value in Health. [157] Kekade, S., Hseieh, C.-H., Islam, M. M., Atique, S., Mohammed Khalfan, A., Li, Y.-C., & Abdul, S. S. (2018). The usefulness and actual use of wearable devices among the elderly population. Computer Methods and Programs in Biomedicine, 153(Supplement C), 137-159. [158] Kim, H., & Ahn, J.-H. (2017). Graphene for flexible and wearable device applications. Carbon, 120(Supplement C), 244-257. [159] Wu, S., Liu, P., Zhang, Y., Zhang, H., & Qin, X. (2017). Flexible and conductive nanofiber-structured single yarn sensor for smart wearable devices. Sensors and Actuators B: Chemical, 252(Supplement C), 697-705. [160] NEWSROOM, S. (2017). [Infographic] Galaxy Note7: What We Discovered. from https://news.samsung.com/global/infographic-galaxy-note7-what-we-discovered [161] Xie, Y., Liu, Y., Zhao, Y., Tsang, Y. H., Lau, S. P., Huang, H., & Chai, Y. (2014). Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode. J. Mater. Chem. A, 2(24), 9142-9149. [162] Li, X., Zhao, T., Chen, Q., Li, P., Wang, K., Zhong, M., . . . Zhu, H. (2013). Flexible quasi solid-state supercapacitors based on chemical vapor deposition derived graphene fibers. Phys Chem Chem Phys, 15(41), 17752-17757. [163] Zhi, J., Yang, C., Lin, T., Cui, H., Wang, Z., Zhang, H., & Huang, F. (2016). Flexible quasi solid state supercapacitor with high energy density employing black titania nanoparticles as a conductive agent. Nanoscale, 8(7), 4054-4062. [164] Vijayakumar, V., Anothumakkool, B., Torris A. T, A., Nair, S. B., Badiger, M. V., & Kurungot, S. (2017). An all-solid-state-supercapacitor possessing a non-aqueous gel polymer electrolyte prepared using a UV-assisted in situ polymerization strategy. J. Mater. Chem. A, 5(18), 8461-8476. [165] Palaniappan, R., & Botte, G. G. (2013). Efficacy of potassium poly(acrylate) gel electrolyte as a substitute to aqueous electrolytes for alkaline ammonia electrolysis. Electrochimica Acta, 88, 772-781. [166] Ten-Chin Wena, Y.-J. W., Tsung-Tien Chenga, Chien-Hsin Yangb. (1999). The effect of DMPA units on ionic conductivity of PEG–DMPA–IPDI waterborne polyurethane as single-ion electrolytes. polymer, 40, 3979-3988. [167] Xing, Y., Wu, Y., Wang, H., Yang, G., Li, W., Xu, L., & Jiang, X. (2014). Preparation of hybrid polymer based on polyurethane lithium salt and polyvinylidene fluoride as electrolyte for lithium-ion batteries. Electrochimica Acta, 136, 513-520. [168] Yu, R., Bao, J.-J., Chen, T.-T., Zou, B.-K., Wen, Z.-Y., Guo, X.-X., & Chen, C.-H. (2017). Solid polymer electrolyte based on thermoplastic polyurethane and its application in all-solid-state lithium ion batteries. Solid State Ionics, 309, 15-21. [169] Cui, S., Liu, Z., & Li, Y. (2017). Bio-polyols synthesized from crude glycerol and applications on polyurethane wood adhesives. Industrial Crops and Products, 108(Supplement C), 798-805. [170] Cui, S., Luo, X., & Li, Y. (2017). Synthesis and properties of polyurethane wood adhesives derived from crude glycerol-based polyols. International Journal of Adhesion and Adhesives, 79(Supplement C), 67-72. [171] Najib, M. F., & Nobari, A. S. (2016). Nonlinear viscoelastic constitutive model identification for a polyurethane adhesive in a bonded joint using structural dynamic model updating. Mechanics of Materials, 100(Supplement C), 72-85. [172] Weiss, J., Voigt, M., Kunze, C., Sánchez, J. E. H., Possart, W., & Grundmeier, G. (2016). Ageing mechanisms of polyurethane adhesive/steel interfaces. International Journal of Adhesion and Adhesives, 70(Supplement C), 167-175. [173] Hu, C.-C., Su, J.-H., & Wen, T.-C. (2007). Modification of multi-walled carbon nanotubes for electric double-layer capacitors: Tube opening and surface functionalization. Journal of Physics and Chemistry of Solids, 68(12), 2353-2362. [174] Park, J. H., & Kim, B. K. (2014). Infrared light actuated shape memory effects in crystalline polyurethane/graphene chemical hybrids. Smart Materials and Structures, 23(2), 025038. [175] Pereira, I. M., Gomide, V., Oréfice, R. L., Leite, M. d. F., Zonari, A. A., & Goes, A. d. M. (2010). Proliferation of human mesenchymal stem cells derived from adipose tissue on polyurethanes with tunable biodegradability. Polímeros, 20(4), 280-286. [176] Peng, H. T., Huang, H., Shek, P. N., Charbonneau, S., & Blostein, M. D. (2010). PEGylation of Melittin: structural characterization and hemostatic effects. Journal of Bioactive and Compatible Polymers, 25(1), 75-97. [177] Billingham, J., Breen, C., & Yarwood, J. (1997). Adsorption of polyamine, polyacrylic acid and polyethylene glycol on montmorillonite: an in situ study using ATR-FTIR. Vibrational Spectroscopy, 14(1), 19-34. [178] Mishra, A. K., Chattopadhyay, D., Sreedhar, B., & Raju, K. (2006). FT-IR and XPS studies of polyurethane-urea-imide coatings. Progress in Organic Coatings, 55(3), 231-243. [179] Wu, G., An, J., Sun, D., Tang, X., Xiang, Y., & Yang, J. (2014). Robust microcapsules with polyurea/silica hybrid shell for one-part self-healing anticorrosion coatings. J. Mater. Chem. A, 2(30), 11614-11620. [180] G. Beamson, D. B. (1992). High Resolution XPS of Organic Polymers - The Scienta ESCA300 Database Wiley Interscience. [181] Cárdenas, G., Muñoz, C., & Carbacho, H. (2000). Thermal properties and TGA–FTIR studies of polyacrylic and polymethacrylic acid doped with metal clusters. European polymer journal, 36(6), 1091-1099. [182] Erlich, R. H., & Popov, A. I. (1971). Spectroscopic studies of ionic solvation. X. Study of the solvation of sodium ions in nonaqueous solvents by sodium-23 nuclear magnetic resonance. Journal of the American Chemical Society, 93(22), 5620-5623. [183] Hofer, T. S., Tran, H. T., Schwenk, C. F., & Rode, B. M. (2004). Characterization of dynamics and reactivities of solvated ions by ab initio simulations. Journal of computational chemistry, 25(2), 211-217. [184] Padova, J. (1964). Solvation Approach* to Ion Solvent Interaction. The Journal of Chemical Physics, 40(3), 691-694. [185] Mario Della Monica, & Senatore, L. (1970). Solvated radius of ions in nonaqueous solvents. The Journal of Physical Chemistry, 74(1), 205–207. [186] Kim, D., Keum, K., Lee, G., Kim, D., Lee, S.-S., & Ha, J. S. (2017). Flexible, water-proof, wire-type supercapacitors integrated with wire-type UV/NO2 sensors on textiles. Nano Energy, 35, 199-206. [187] Li, B., Cheng, J., Wang, Z., Li, Y., Ni, W., & Wang, B. (2018). Highly-wrinkled reduced graphene oxide-conductive polymer fibers for flexible fiber-shaped and interdigital-designed supercapacitors. Journal of Power Sources, 376, 117-124. [188] Li, L., Fu, C., Lou, Z., Chen, S., Han, W., Jiang, K., . . . Shen, G. (2017). Flexible planar concentric circular micro-supercapacitor arrays for wearable gas sensing application. Nano Energy, 41, 261-268. [189] Ramadoss, A., Yoon, K.-Y., Kwak, M.-J., Kim, S.-I., Ryu, S.-T., & Jang, J.-H. (2017). Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-Dimensional-graphene/graphite-paper. Journal of Power Sources, 337, 159-165. [190] Conway, B. E., Springer (1999). Electrochemical supercapacitors: scientific fundamentals and technological applications. [191] Wang, G., Zhang, L., & Zhang, J. (2012). A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 41(2), 797-828. [192] Zhang, L. L., & Zhao, X. S. (2009). Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38(9), 2520-2531. [193] Kim, H., Abdala, A. A., & Macosko, C. W. (2010). Graphene/Polymer Nanocomposites. Macromolecules, 43(16), 6515-6530. [194] Li, H., Yuan, D., Tang, C., Wang, S., Sun, J., Li, Z., . . . He, C. (2016). Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor. Carbon, 100, 151-157. [195] Qin, J., Wu, Z.-S., Zhou, F., Dong, Y., Xiao, H., Zheng, S., . . . Bao, X. (2017). Simplified fabrication of high areal capacitance all-solid-state micro-supercapacitors based on graphene and MnO2 nanosheets. Chinese Chemical Letters. [196] Qin, T., Wan, Z., Wang, Z., Wen, Y., Liu, M., Peng, S., . . . Cao, G. (2016). 3D flexible O/N Co-doped graphene foams for supercapacitor electrodes with high volumetric and areal capacitances. Journal of Power Sources, 336, 455-464. [197] Wang, H., Deng, J., Xu, C., Chen, Y., Xu, F., Wang, J., & Wang, Y. (2017). Ultramicroporous carbon cloth for flexible energy storage with high areal capacitance. Energy Storage Materials, 7, 216-221. [198] Wu, Z.-S., Yang, S., Zhang, L., Wagner, J. B., Feng, X., & Müllen, K. (2015). Binder-free activated graphene compact films for all-solid-state micro-supercapacitors with high areal and volumetric capacitances. Energy Storage Materials, 1, 119-126. [199] Yun, X., Xiong, Z., Tu, L., Bai, L., & Wang, X. (2017). Hierarchical porous graphene film: An ideal material for laser-carving fabrication of flexible micro-supercapacitors with high specific capacitance. Carbon, 125, 308-317. [200] Jang, Y., Jo, J., Choi, Y.-M., Kim, I., Lee, S.-H., Kim, D., & Yoon, S. M. (2013). Activated carbon nanocomposite electrodes for high performance supercapacitors. Electrochimica Acta, 102, 240-245. [201] Nandhini, R., Mini, P. A., Avinash, B., Nair, S. V., & Subramanian, K. R. V. (2012). Supercapacitor electrodes using nanoscale activated carbon from graphite by ball milling. Materials Letters, 87, 165-168. [202] Conway, B. E., & Pell, W. G. (2003). Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. Journal of Solid State Electrochemistry, 7(9), 637-644. [203] Singh, P., & Pal, K. (2017). Multiphase nanostructured PANI anchored @ CVD grown MWCNT on rGO coated nickel foam for binder free supercapacitor electrode. Electrochimica Acta, 242, 47-55. [204] Liu, C., Tan, Y., Liu, Y., Shen, K., Peng, B., Niu, X., & Ran, F. (2016). Microporous carbon nanofibers prepared by combining electrospinning and phase separation methods for supercapacitor. Journal of Energy Chemistry, 25(4), 587-593. [205] Rong, Y., Kolodziej, A., Madrid, E., Carta, M., Malpass-Evans, R., McKeown, N. B., & Marken, F. (2016). Polymers of intrinsic microporosity in electrochemistry: Anion uptake and transport effects in thin film electrodes and in free-standing ionic diode membranes. Journal of Electroanalytical Chemistry, 779, 241-249. [206] Binford, L. (2000). Faunal Extinction in an Island Society: Pygmy Hippopotamus Hunters of Cyprus. Simmons Alan H. and Associates. 1999. Kluwer Academic/Plenum Publishers, New York, NY. xxi+ 381 pp. $95.00 (cloth), ISBN 0-306-46088-2. American Antiquity, 65(4), 771-771. [207] Liu, C., Li, F., Ma, L. P., & Cheng, H. M. (2010). Advanced materials for energy storage. Advanced Materials, 22(8). [208] Wei, T. Y., Chen, C. H., Chien, H. C., Lu, S. Y., & Hu, C. C. (2010). A cost‐effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide‐driven sol–gel process. Advanced Materials, 22(3), 347-351. [209] Izadi‐Najafabadi, A., Yasuda, S., Kobashi, K., Yamada, T., Futaba, D. N., Hatori, H., . . . Hata, K. (2010). Extracting the full potential of single‐walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Advanced Materials, 22(35). [210] Chen, W., Rakhi, R., Hu, L., Xie, X., Cui, Y., & Alshareef, H. N. (2011). High-performance nanostructured supercapacitors on a sponge. Nano letters, 11(12), 5165-5172. [211] Khomenko, V., Raymundo-Pinero, E., & Béguin, F. (2006). Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium. Journal of Power Sources, 153(1), 183-190. [212] Chen, P.-C., Shen, G., Shi, Y., Chen, H., & Zhou, C. (2010). Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano, 4(8), 4403-4411. [213] Wang, Y.-g., & Xia, Y.-y. (2005). A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system. Electrochemistry Communications, 7(11), 1138-1142. [214] Wu, Z.-S., Ren, W., Wang, D.-W., Li, F., Liu, B., & Cheng, H.-M. (2010). High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano, 4(10), 5835-5842. [215] Cericola, D., Ruch, P. W., Kötz, R., Novák, P., & Wokaun, A. (2010). Characterization of bi-material electrodes for electrochemical hybrid energy storage devices. Electrochemistry Communications, 12(6), 812-815. [216] Linn, E., Rosezin, R., Kügeler, C., & Waser, R. (2010). Complementary resistive switches for passive nanocrossbar memories. Nature materials, 9(5), 403. [217] Nohara, S., Asahina, T., Wada, H., Furukawa, N., Inoue, H., Sugoh, N., . . . Iwakura, C. (2006). Hybrid capacitor with activated carbon electrode, Ni(OH)2 electrode and polymer hydrogel electrolyte. Journal of Power Sources, 157(1), 605-609. [218] Park, J. H., Park, O. O., Shin, K. H., Jin, C. S., & Kim, J. H. (2002). An electrochemical capacitor based on a Ni(OH)2/activated carbon composite electrode. Electrochemical and solid-state letters, 5(2), H7-H10. [219] Brousse, T., Taberna, P.-L., Crosnier, O., Dugas, R., Guillemet, P., Scudeller, Y., . . . Simon, P. (2007). Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor. Journal of Power Sources, 173(1), 633-641. [220] Qu, Q., Zhang, P., Wang, B., Chen, Y., Tian, S., Wu, Y., & Holze, R. (2009). Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. The Journal of Physical Chemistry C, 113(31), 14020-14027. [221] Wang, H.-Q., Li, Z.-S., Huang, Y.-G., Li, Q.-Y., & Wang, X.-Y. (2010). A novel hybrid supercapacitor based on spherical activated carbon and spherical MnO2 in a non-aqueous electrolyte. Journal of Materials Chemistry, 20(19), 3883-3889. [222] Qu, Q., Shi, Y., Li, L., Guo, W., Wu, Y., Zhang, H., . . . Holze, R. (2009). V2O5· 0.6 H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution. Electrochemistry Communications, 11(6), 1325-1328. [223] Naoi, K., Ishimoto, S., Isobe, Y., & Aoyagi, S. (2010). High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors. Journal of Power Sources, 195(18), 6250-6254. [224] Khomenko, V., Raymundo-Piñero, E., & Béguin, F. (2008). High-energy density graphite/AC capacitor in organic electrolyte. Journal of Power Sources, 177(2), 643-651. [225] Wang, Q., Wen, Z., & Li, J. (2006). A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2–B nanowire anode. Advanced Functional Materials, 16(16), 2141-2146. [226] Jin, W.-H., Cao, G.-T., & Sun, J.-Y. (2008). Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution. Journal of Power Sources, 175(1), 686-691. [227] Park, J. H., & Park, O. O. (2002). Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes. Journal of Power Sources, 111(1), 185-190. [228] Ou, T.-M., Hsu, C.-T., & Hu, C.-C. (2015). Synthesis and characterization of sodium-doped MnO2 for the aqueous asymmetric supercapacitor application. Journal of The Electrochemical Society, 162(5), A5124-A5132. [229] Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a theory of the van der Waals adsorption of gases. Journal of the American Chemical society, 62(7), 1723-1732. [230] Baiker, A., & Blaser, H. (1997). Handbook of Heterogeneous Catalysis. Ertl, G. [231] Fitzpatrick, M., Fry, A., Holdway, P., Kandil, F., Shackleton, J., & Suominen, L. (2005). Determination of residual stresses by X-ray diffraction. [232] Lin, S.-C., Lu, Y.-T., Chien, Y.-A., Wang, J.-A., You, T.-H., Wang, Y.-S., . . . Hu, C.-C. (2017). Asymmetric supercapacitors based on functional electrospun carbon nanofiber/manganese oxide electrodes with high power density and energy density. Journal of Power Sources, 362, 258-269. [233] Wang, J.-G., Yang, Y., Huang, Z.-H., & Kang, F. (2013). Effect of temperature on the pseudo-capacitive behavior of freestanding MnO2@carbon nanofibers composites electrodes in mild electrolyte. Journal of Power Sources, 224, 86-92. [234] Chastain, J., King, R. C., & Moulder, J. (1992). Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data: Physical Electronics Division, Perkin-Elmer Corporation Eden Prairie, Minnesota. [235] Li, Z., Wang, J., Liu, S., Liu, X., & Yang, S. (2011). Synthesis of hydrothermally reduced graphene/MnO2 composites and their electrochemical properties as supercapacitors. Journal of Power Sources, 196(19), 8160-8165. [236] Yan, J., Fan, Z., Wei, T., Cheng, J., Shao, B., Wang, K., . . . Zhang, M. (2009). Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities. Journal of Power Sources, 194(2), 1202-1207. [237] Welham, N. (2002). Activation of the carbothermic reduction of manganese ore. International Journal of Mineral Processing, 67(1-4), 187-198. [238] Hao, J., Zhong, Y., Liao, Y., Shu, D., Kang, Z., Zou, X., . . . Guo, S. (2015). Face-to-face self-assembly graphene/MnO2 nanocomposites for supercapacitor applications using electrochemically exfoliated graphene. Electrochimica Acta, 167, 412-420.
|