帳號:guest(3.140.188.185)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王政安
作者(外文):Wang, Jeng-An
論文名稱(中文):新型水性聚氨酯-聚丙烯酸鉀之多功能高分子於可撓式超級電容器之製備與特性
論文名稱(外文):Preparation and Characterization of Novel Bifunctional Waterborne Polyurethane-Potassium Poly(acrylate) Polymer for Flexible Supercapacitors
指導教授(中文):馬振基
胡啟章
指導教授(外文):Ma, M. Chen-Chi
Hu, Chi-Chang
口試委員(中文):劉英麟
吳乃立
溫添進
口試委員(外文):Liu, Ying-Ling
Wu, Nae-Lih
Wen, Ten-Chin
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:104032811
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:295
中文關鍵詞:超級電容器高分子膠態電解質離子通道
外文關鍵詞:supercapacitorgel polymer electrolyteionictunnel
相關次數:
  • 推薦推薦:0
  • 點閱點閱:222
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨在研究且開發新型且多功能之吸水性高分子材料(waterborne polyurethane - potassium poly(acrylate), WPU-PAAK)應用於可撓式超級電容器(flexible supercapacitor)之中。本論文的研究可分為三個部分:
(一) 應用於超級電容器之新型多功能鹼性高分子電解質WPU-PAAK之製備與性能探討
(二) 多功能高分子WPU-PAAK應用於鹼性離子通道與電極間之黏著劑探討
(三) 高性能之非對稱式類固態超級電容器NaxMnO2@CNT/WPU-PAAK/AC-CNT之製備與性能研究

1. 應用於超級電容器之新型多功能鹼性高分子電解質WPU-PAAK之製備與性能探討
本論文第一部分(第三章)旨在開發一種新型黏性具網狀結構之聚氨酯-聚丙烯酸鉀聚合物(WPU-PAAK)應用於膠態電解質中,此特殊的交聯網狀結構不僅可增強高分子之保水性,亦提供了良好的可撓曲性,且其可避免膠態電解質由於環境因素所造成含水量上升或下降。
本研究所製備之鹼性膠態電解質(WPU-PAAK-M,M:Li、Na與K)除了可以當作超級電容器的電解質層外,亦可充當黏著劑緊密的貼合正、負兩電極,避免撓曲過程電極剝離或接觸所造成的阻抗或內短路。其中聚丙烯酸鉀(PAAK)由與側鏈羧基具有良好的吸水與保水能力,有利於電解質離子的擴散,並且使用水性聚氨脂(WPU)交聯後,可避免PAA高分子的結晶性,進而提升其離子導電度。再者,WPU優異的黏著性質亦反應於膠態電解質之上,使其可緊密塗佈黏貼於電極之表面。在性質探討部分,WPU-PAAK-M鹼性膠態電解質具有良好之離子導電度,其值可達10-2 S/cm。而本研究所使用之電極材料為經過酸洗處理之氧化商用碳紙( acidic treatment carbon paper, ACP),此酸洗碳紙搭配WPU-PAAK-K膠態電解質使用後,其在循環伏安法掃描速率為10 mV/s時,比電容值可達211.6 mF/cm2。且於交流阻抗測試中,由於WPU優異的黏著性質,可有效地降低裝置的等效串聯電阻,其值僅為0.44 Ω,明顯低於使用商用膠態電解質PVA與PAAK之6.65與5.14 Ω。而在類固態式超級電容器ACP/WPU-PAAK-K/ACP的測試中,在恆電流充放電測試中且電流密度為0.5 mA/cm2時,其裝置之比電容值可達35.5 mF/cm2。並且在彎曲測試中,保有良好的比電容維持率,甚至當其彎曲角度達到180o時,其依舊保有90 %的電容維持率。

2. 多功能高分子WPU-PAAK應用於鹼性離子通道與電極間之黏著劑探討
本論文第二部分(第四章)的目的是通過WPU-PAAK高分子在電極材料內部形成離子通道,進而提升可撓式超級電容器之性能。本研究採用中鋼碳素公司所提供之高表面積之活性碳(activated carbon, ACS 25 - 2500 m2/g),進行超級電容器之電容值的提升,並且使用本研究所製備之黏性WPU-PAAK高分子取代電極材料中一般常用之黏著劑聚偏二氟乙烯(polyvinylidene difluoride, PVDF)。
應用於電極活性材料中的WPU-PAAK黏著劑,除了可以固定且黏住活性材料之顆粒外,其經由電解液膨潤後可形成深入於電極層之離子通道,可顯著的提升電解質層與電極層的接觸面積且優化活性材料的利用率,達到更高的比電容值。從研究結果得知,使用WPU-PAAK取代PVDF當作電極材料之間的黏著劑,將有助於比電容值的提升,在恆電流充放電的情況下,當電流密度為1 A/g時,其提升率可達64 %,甚至當電流密度提高到10 A/g,其提升率可超過100 %。並且使用WPU-PAAK當作電極層之黏著劑時,隨著電極活性材料AC-CNT沉積量的提升,由於離子通道的作用,在單位面積之下比電容值亦與沉積量呈現正比的提升。再者,在全電池的測試中,經過電荷平衡之活性碳AC/WPU-PAAK-K/AC對稱式超級電容器其電位窗可達1.4 V,且其裝置比電容值在電流密度1 mA/cm2時可達122.43 mF/cm2,而能量密度與功率密度則可達33.33 Wh cm-2 與0.7 mW cm-2。此外,此可撓式超級電容器亦展現出良好的循環穩定性以及撓取穩定性。當其循環圈數達到10,000圈時,電容維持率可達87 .5 %;當彎曲角度達到100o時,其電容維持率可達95.6 %。

3. 高性能之對稱式類固態超級電容器NaxMnO2@CNT /WPU-PAAK/AC-CNT之製備與性能研究
本論文第三部分(第五章)的目的是透過Na+的預嵌入用以提高MnO2的比電容值,並且進行NaxMnO2@CNT/AC-CNT非對稱式的組裝以提高電位窗範圍。藉由裝置電容值與電位窗範圍的優化用以提升整個儲能元件的電化學性能。
從實驗室的先前研究得知,Na+的預嵌可以優化二氧化錳的氧化還原反應,進而提升比電容值;再者,CNT的使用將有益於改善二氧化錳的電子導電度。因此,本研究將對CNT與NaxMnO2沉積量進行性能最適化之探討。從研究結果得知,NaxMnO2@CNT21具有最佳之電化學性能。在1 M Na2SO4電解液中進行恆電流充放電試驗可發現,當電流密度為1 A/g時,其比電容值可達150 F/g,甚至當電流密度提高到20 A/g,其比電容值可達130 F/g。在使用WPU-PAAK膠態電解質時,其比電容值在1與20 A/g時,可更進一步的提升到330.2與140.4 F/g。在全電池的測試中,經過電荷平衡之NaxMnO2@CNT21/WPU-PAAK-1M Na2SO4/AC-CNT「非」對稱式超級電容器其電位窗可達1.53 V,且其在電流密度1 mA/cm2時,裝置比電容值可達301.9 mF/cm2,而能量密度與功率密度則可達130.51 Wh cm-2 與1.03 mW cm-2。並且在循環穩定性以及可撓性測試中可發現,當充放電圈數達到10,000時,其電容維持率約為72.2 %;彎曲角度達到180o時,其電容維持率依舊可達92.4 %。
This study focuses on the preparation and the performance of the supercapacitor for energy storage devices. The research topics of this dissertation are related to the preparation and properties of novel absorbent polymer, polyurethane - potassium poly(acrylate) (WPU-PAAK), which not only forms the gel polymer electrolyte but also substitutes the commercial binder between electrode materials. There are three parts in this study:

(1) Synthesis and characterization of the novel polymer for the electrolyte and adhesive in flexible all-solid-state electrical double-layer capacitors.
(2) Mechanism of bi-functional WPU-PAAK polymer in both electrodes and electrolyte.
(3) High performance asymmetric supercapacitor NaxMnO2@CNT /WPU-PAAK/AC-CNT

The objective of the first part (chapter 3) of this dissertation is to develop a sticky network copolymer, WPU-PAAK. The cross-linked structure is believed to not only enhance the water retention but also provide the mechanical strength in gel polymer electrolyte (GPE). This interesting polymer can avoid the swelling or drying of GPE due to its naturally adsorption/desorption of moisture from the ambient environment.
This polymer neutralized with 1 M KOH and soaked with various alkaline solutions (denoted as WPU-PAAK-M, M: Li, Na, K) which can act not only as an electrolyte but also as an adhesive for both positive and negative electrodes for flexible quasi solid-state electrical double-layer capacitors (EDLCs). The PAA backbone chains in the copolymer increase the amount of carboxyl groups and promote the segmental motion. The carboxyl groups enhance the water-uptake capacity which facilitates the ion transport and therefore improves the ionic conductivity. The cross-linked agent, WPU chains, effectively keeps the water content and provides the unique stickiness to serve as a binder for electrodes. The WPU-PAAK soaked with alkaline solutions exhibits an ionic conductivity which is greater than 10-2 S cm-1. A commercial available carbon paper treated with acidic solutions (denoted as ACP) demonstrates excellent capacitive behavior using the WPU-PAAK-K polymer electrolyte. From the cyclic voltammetric test, this ACP shows a high area capacitance of 211.6 mF cm-2 at 10 mV s-1. In the electrochemical impedance spectroscopic analysis, a full cell of ACP/WPU-PAAK-K/ACP displays a low equivalent series resistance of 0.44 Ω in comparison with the other cells using commercial available polymer electrolytes. A quasi solid-state ACP/WPU-PAAK-K/ACP EDLC provides an excellent specific capacitance of 35.5 mF cm-2 at 0.5 mA cm-2. This device with over 90 % capacitance retention under 180o bending angle shows an outstanding flexibility.

The objective of the second part (chapter 4) is to develop a high performance supercapacitor by generating the ionic tunnel in the electrode material. To further enhance the performance of flexible supercapacitor, a high surface area (~2500 m2/g) activated carbon, namely ACS 25, was used as electrode material in this study. And the commercial binder of poly(vinylidene fluoride) (PVDF) was substituted by WPU-PAAK in electrode materials. This hydrogel of WPU-PAAK not only acted as the adhesive between each particle of electrode active materials, but also formed the ionic tunnel in the electrode materials, which can more deeply bring the electrolyte ions into the inner site of active materials to enhance the effective area in the interface of electrode and electrolyte.
The results show that WPU-PAAK binder in substitution for PVDF binder can enhance the specific capacitance of active electrode about 64 % in current density of 1 A/g. In the high current density of 10 A/g, it can even enhance over 100 % in specific capacitance. Furthermore, the areal specific capacitance of active electrode, which used the WPU-PAAK binder, was increased with the increasing of mass loading in the same ratio. The quasi solid-state device of the sandwich type demonstrates a potential window of 1.4 V and a high device-areal specific capacitance of 122.43 mF cm-2 at 1 mA cm-2. This highly flexible electrical double-layer capacitor (over 95.6 % areal specific capacitance retention at a bending angle of 180o) also delivers an energy density of 33.33 Wh cm-2 at a power density of 0.7 mW cm-2 with an excellent cycle life of 87.5% retention in the 10,000-cycle test.

The objective of the third part (chapter 5) is to develop a high performance supercapacitor by enhancing the specific capacitance and potential window. Therefore, this study tries to use the pre-intercalation of Na+ in MnO2 to improve the pseudocapacitance, and also building NaxMnO2@CNT/AC-CNT asymmetrical assembly to enlarge the potential window.
According to our previous research, the pre-intercalution of Na+ can optimize the redox reaction in MnO2 to increase the specific capacitance. In addition, the use of CNTs could be beneficial to optimize the electronic conductivity in MnO2. Therefore, this study will explore the performance optimization in the ratio of CNT and NaxMnO2. From the results, NaxMnO2@CNT21 shows the best electrochemical performance. Which exhibits the highest specific capancitance of 150 and 130 F/g at current density of 1 and 20 A/g in 1 M Na2SO4 electrolyte. Furthermore, the specific capacitance of NaxMnO2@CNT21 can be further increased to 330.2 and 140.4 F/g at different current densities in WPU-PAAK-1M Na2SO4 gel polymer electrolyte. This quasi solid-state asymmetrical device, NaxMnO2@CNT21/WPU-PAAK-1M Na2SO4/AC-CNT, shows a potential window of 1.53 V and a high device-areal specific capacitance, specific energy density and specific power density of 301.9 mF cm-2, 130.51 uWh cm-2 and 1.03 mW cm-2 at 1 mA cm-2, respetively. This highly flexible asymmetrical supercapacitor (over 92.4 % areal specific capacitance retention at a bending angle of 180o) also exhibits an excellent cycle life of 90 % and 72.2 % retention in the 5,000-cycle and 10,000-cycle test.
中文摘要 I
ABSTRACT V
謝誌 X
目錄 XII
圖目錄 XVIII
表目錄 XXX
第一章 緒論 1
1-1 前言 1
1-2 電化學原理 7
1-2-1 電化學反應系統[21] 7
1-2-2 影響電化學反應系統之變數 12
1-2-3 法拉第反應與非法拉第反應 13
1-3超級電容器 15
1-3-1 超級電容器之種類與其作用機制 15
1-3-1-1 電雙層超級電容器(Electric double layer capacitors) [37] 18
1-3-1-2 擬電容機制(Pseudocapacitors)[37] 20
1-3-2 可撓曲式超級電容器[45; 46; 47; 48; 49; 50] 21
1-3-2-1 纖維式可撓曲超級電容器(fiber liked flexible SCs) 21
1-3-2-1 紙式可撓曲超級電容器(paper liked flexible SCs) 23
1-3-2-1 3D多孔式可撓曲超級電容器 (3D porous flexible SCs) 26
1-3-3電解質種類[76] 28
1-3-3-1 水相與有機相電解質 28
1-3-3-2 離子液體[76] 31
1-3-3-2 高分子固態電解質[76] 33
第二章 文獻回顧 35
2-1 高分子電解質種類 35
2-1-1 固態高分子電解質(SPE) [89] 35
2-1-2 複合高分子電解質(CPE) [96] 39
2-1-3 膠態高分子電解質(GPE) [95] 41
2-2 水性高分子膠態電解質 43
2-2-1 聚環氧乙烷(Poly(ethylene oxide) hydrogel electrolytes) 43
2-2-2 聚乙烯醇 (Poly(vinyl alcohol) hydrogel electrolytes) 45
2-2-3 聚丙烯酸鉀 (Potassium poly(acrylate) hydrogel electrolytes) 50
2-3 聚氨酯(POLYURETHANE, PU) 53
2-3-1 PU 彈性體(Polyurethane-elastomer)之結構 53
2-3-2 PU之化學反應 55
2-3-3 水性聚氨酯(WPU) 57
2-3-4水性聚氨脂固態電解質 60
2-3-5水性聚氨脂膠態電解質 62
2-4 電極材料黏著劑(BINDER) 65
2-4-1 聚偏二氟乙烯(PVDF) 65
2-4-2聚氨脂(PU) 68
2-4-3 水性黏著劑 70
2-5 二氧化錳擬電容材料 76
2-5-1類固態超級電容器-二氧化錳電極 76
2-5-2二氧化錳結構[134] 81
第三章 應用於超級電容器之新型多功能鹼性高分子電解質WPU-PAAK之製備與性能探討 88
3-1 研究目的 88
3-2 實驗部分 91
3-2-1 實驗藥品 91
3-2-2 實驗儀器 93
3-2-3 實驗儀器設備原理 97
3-2-4 高分子合成 102
3-2-4-1 水性聚氨脂(WPU)之製備 102
3-2-4-2 聚丙烯酸(Polyacrylic acid, PAA)之製備 102
3-2-4-3 WPU-PAAK製備 103
3-2-5 電極與膠態電解質之製備 107
3-2-6 電池組裝 107
3-2-7 電化學檢測 109
3-3 結果與討論 111
3-3-1高分子結構與熱性質分析(WPU、PAA與WPU-PAA) 111
3-3-1-1 FTIR鑑定分析 111
3-3-1-2 XPS鑑定分析 116
3-3-1-3 DSC鑑定分析 120
3-3-1-4 TGA鑑定分析 122
3-3-1-5 WPU-PAA交聯性質分析 124
3-3-2 高分子電解質與電極材料性質分析 127
3-3-2-1 高分子膠態電解質離子導電度檢測分析 127
3-3-2-2電極活性材料性質分析 131
3-3-3 電化學行為分析 134
3-3-3-1 超級電容器ACP/WPU-PAAK-M/ACP性能分析 134
3-3-3-2 WPU-PAAK-K之GPE與商業用GPE性能比較 138
3-3-3-3 類固態超級電容器測試 150
3-4結論 157
第四章 多功能高分子WPU-PAAK應用於鹼性離子通道與電極間之黏著劑探討 159
4-1 研究目的 159
4-2 實驗部分 161
4-2-1 實驗藥品 161
4-2-2 實驗儀器 161
4-2-3 實驗儀器設備原理 162
4-2-4 電極製備 162
4-2-5電池組裝 164
4-2-6 電化學檢測 165
4-3 結果與討論 166
4-3-1 WPU-PAAK與PVDF黏著劑之比較 166
4-3-1-1表面形貌分析 166
4-3-1-2電化學分析 171
4-3-2 活性材料(AC-CNT)於不同沉積量之電化學分析 176
4-3-2-1活性材料(AC-CNT)於不同沉積厚度利用率之探討 176
4-3-2-2 活性材料(AC-CNT)於不同沉積厚度電容量探討 180
4-3-2-3活性材料(AC-CNT)於不同沉積厚度之阻抗分析 183
4-3-3 對稱式全電池AC/WPU-PAAK-K/AC之電化學分析 185
4-3-3-1 電荷平衡(charge balance)測試 185
4-3-3-2 類固態超級電容器測試 188
4-4結論 194
第五章 高性能之非對稱式類固態超級電容器NAXMNO2@CNT/WPU-PAAK/AC-CNT之製備與性能研究 196
5-1 研究目的 196
5-2 實驗部分 199
5-2-1 實驗藥品 199
5-2-2實驗儀器 199
5-2-3實驗儀器設備原理 200
5-2-4 NaxMnO2@CNT活性材料合成 208
5-2-5 電極製備 208
5-2-6電池組裝 209
5-2-7 電化學檢測 210
5-3 結果與討論 211
5-3-1 NaxMnO2@CNT材料性質分析 211
5-3-1-1 XRD鑑定分析 211
5-3-1-2 XPS鑑定分析 213
5-3-1-3 SEM形貌鑑定分析 215
5-3-1-4 TGA鑑定分析 218
5-3-1-5 BET鑑定分析 220
5-3-2電化學行為分析 225
5-3-2-1 NaxMnO2@CNT電化學性質分析 225
5-3-2-2 活性材料在膠態電解質之電化學性質分析 232
5-3-3 非對稱式全電池NaxMnO2@CNT21/ WPU-PAAK-1M Na2SO4/AC之電化學分析 239
5-3-3-1 電荷平衡測試 239
5-3-3-2 類固態超級電容器測試 241
5-4結論 247
第六章 總結論 248
參考文獻 255
附錄 – 作者簡介及發表著作一覽表 290

[1] Chen, H., Cong, T. N., Yang, W., Tan, C., Li, Y., & Ding, Y. (2009). Progress in electrical energy storage system: A critical review. Progress in Natural Science, 19(3), 291-312.
[2] Grantham, A., Pudney, P., Ward, L. A., Whaley, D., & Boland, J. (2017). The viability of electrical energy storage for low-energy households. Solar Energy, 155(Supplement C), 1216-1224.
[3] Olabi, A. G. (2017). Renewable energy and energy storage systems. Energy, 136(Supplement C), 1-6.
[4] Rohit, A. K., & Rangnekar, S. (2017). An overview of energy storage and its importance in Indian renewable energy sector: Part II – energy storage applications, benefits and market potential. Journal of Energy Storage, 13(Supplement C), 447-456.
[5] Smallbone, A., Jülch, V., Wardle, R., & Roskilly, A. P. (2017). Levelised Cost of Storage for Pumped Heat Energy Storage in comparison with other energy storage technologies. Energy Conversion and Management, 152(Supplement C), 221-228.
[6] Shukur, M. F., & Kadir, M. (2015). Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices (Vol. 158).
[7] Bai, N., Xu, Z., Tian, Y., Gai, L., Jiang, H., Marcus, K., & Liang, K. (2017). Tailorable polypyrrole nanofilms with exceptional electrochemical performance for all-solid-state flexible supercapacitors. Electrochimica Acta, 249, 360-368.
[8] Christinelli, W. A., Gonçalves, R., & Pereira, E. C. (2016). A new generation of electrochemical supercapacitors based on layer-by-layer polymer films. Journal of Power Sources, 303, 73-80.
[9] Ma, C., Wang, X., Ma, Y., Sheng, J., Li, Y., Li, S., & Shi, J. (2015). Carbon nanofiber/graphene composite paper for flexible supercapacitors with high volumetric capacitance. Materials Letters, 145, 197-200.
[10] Meng, Y., Zhao, Y., Hu, C., Cheng, H., Hu, Y., Zhang, Z., . . . Qu, L. (2013). All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater, 25(16), 2326-2331.
[11] Ramadoss, A., Saravanakumar, B., & Kim, S. J. (2015). Thermally reduced graphene oxide-coated fabrics for flexible supercapacitors and self-powered systems. Nano Energy, 15, 587-597.
[12] Ren, J., Bai, W., Guan, G., Zhang, Y., & Peng, H. (2013). Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv Mater, 25(41), 5965-5970.
[13] Tang, Q., Chen, M., Wang, L., & Wang, G. (2015). A novel asymmetric supercapacitors based on binder-free carbon fiber paper@ nickel cobaltite nanowires and graphene foam electrodes. Journal of Power Sources, 273, 654-662.
[14] Xu, J., Wang, D., Fan, L., Yuan, Y., Wei, W., Liu, R., . . . Xu, W. (2015). Fabric electrodes coated with polypyrrole nanorods for flexible supercapacitor application prepared via a reactive self-degraded template. Organic Electronics, 26, 292-299.
[15] Chae, J. S., Kwon, H.-N., Yoon, W.-S., & Roh, K. C. (2017). Non-aqueous quasi-solid electrolyte for use in supercapacitors. Journal of Industrial and Engineering Chemistry.
[16] Devaux, D., Villaluenga, I., Bhatt, M., Shah, D., Chen, X. C., Thelen, J. L., . . . Balsara, N. P. (2017). Crosslinked perfluoropolyether solid electrolytes for lithium ion transport. Solid State Ionics, 310(Supplement C), 71-80.
[17] Jiang, C., Li, H., & Wang, C. (2017). Recent progress in solid-state electrolytes for alkali-ion batteries. Science Bulletin, 62(21), 1473-1490.
[18] Noh, S., Nichols, W. T., Park, C., & Shin, D. (2017). Enhanced energy density and electrochemical performance of all-solid-state lithium batteries through microstructural distribution of solid electrolyte. Ceramics International, 43(17), 15952-15958.
[19] Felix B. Dias, Lambertus Plomp, & Veldhuis, J. B. J. (2000). Trends in polymer electrolytes for secondary lithium batteries. Journal of Power Sources, 88, 169-191.
[20] G. Feuillade, & Perche, P. (1975). Ion-conductive macromolecular gels and membranes for solid lithium cells Journal of Applied Electrochemistry, 5, 63-69.
[21] 胡啟章. (2011). 電化學原理與方法(二版): 五南圖書出版股份有限公司.
[22] Chemistry LibreTexts. (2015). from https://chem.libretexts.org/Under_Construction/Core_Construction/Chemistry_30/Electrochemistry/2.2_Electrochemical_Cells
[23] Faulkner, A. J. B. a. L. R. (2001). Electochemical Methods Fundamentals and Applications. in John Wiley & Sonic, Inc.
[24] 陳奕勳. (2003). 陽極沈積錳系水合氧化物於電化學超級電容器之應用: 撰者.
[25] Bard, A. J., & Faulkner, L. R. (2001). ELECTROCHEMICAL METHODS Fundamentals and Applications: JOHN WILEY & SONS, INC.
[26] An, K. H., Kim, W. S., Park, Y. S., Moon, J.-M., Bae, D. J., Lim, S. C., . . . Lee, Y. H. (2001). Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Advanced functional materials, 11(5), 387-392.
[27] Burke, A. (2000). Ultracapacitors: why, how, and where is the technology. Journal of Power Sources, 91(1), 37-50.
[28] Simon, P., & Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nature materials, 7(11), 845.
[29] Winter, M., & Brodd, R. J. (2004). What are batteries, fuel cells, and supercapacitors? : ACS Publications.
[30] Knox, J. H., Kaur, B., & Millward, G. (1986). Structure and performance of porous graphitic carbon in liquid chromatography. Journal of Chromatography A, 352, 3-25.
[31] Lee, J., Kim, J., & Hyeon, T. (2006). Recent progress in the synthesis of porous carbon materials. Advanced Materials, 18(16), 2073-2094.
[32] Liu, Y., Li, G., Guo, Y., Ying, Y., & Peng, X. (2017). Flexible and Binder-Free Hierarchical Porous Carbon Film for Supercapacitor Electrodes Derived from MOFs/CNT.
[33] Shen, J., Li, X., Wan, L., Liang, K., Tay, B. K., Kong, L., & Yan, X. (2016). An Asymmetric Supercapacitor with Both Ultra-High Gravimetric and Volumetric Energy Density Based on 3D Ni (OH) 2/MnO2@ Carbon Nanotube and Activated Polyaniline-Derived Carbon. ACS applied materials & interfaces, 9(1), 668-676.
[34] Shi, P., Li, L., Hua, L., Qian, Q., Wang, P., Zhou, J., . . . Huang, W. (2016). Design of Amorphous Manganese Oxide@ Multiwalled Carbon Nanotube Fiber for Robust Solid-State Supercapacitor. ACS nano, 11(1), 444-452.
[35] Yu, J., Lu, W., Pei, S., Gong, K., Wang, L., Meng, L., . . . Li, Q. (2016). Omnidirectionally stretchable high-performance supercapacitor based on isotropic buckled carbon nanotube films. ACS nano, 10(5), 5204-5211.
[36] Zhao, W., Li, Y., Wu, S., Wang, D., Zhao, X., Xu, F., . . . Cao, A. (2016). Highly Stable Carbon Nanotube/Polyaniline Porous Network for Multifunctional Applications. ACS applied materials & interfaces, 8(49), 34027-34033.
[37] Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., . . . Zhang, L. (2009). Progress of electrochemical capacitor electrode materials: A review. International journal of hydrogen energy, 34(11), 4889-4899.
[38] Bae, J., Song, M. K., Park, Y. J., Kim, J. M., Liu, M., & Wang, Z. L. (2011). Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew Chem Int Ed Engl, 50(7), 1683-1687.
[39] Bai, H., Li, C., & Shi, G. (2011). Functional composite materials based on chemically converted graphene. Advanced Materials, 23(9), 1089-1115.
[40] Brezesinski, T., Wang, J., Tolbert, S. H., & Dunn, B. (2010). Ordered mesoporous [alpha]-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nature materials, 9(2), 146-151.
[41] Huang, L., Chen, D., Ding, Y., Feng, S., Wang, Z. L., & Liu, M. (2013). Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano letters, 13(7), 3135-3139.
[42] Jiang, J., Li, Y., Liu, J., Huang, X., Yuan, C., & Lou, X. W. D. (2012). Recent advances in metal oxide‐based electrode architecture design for electrochemical energy storage. Advanced Materials, 24(38), 5166-5180.
[43] Wang, H., Casalongue, H. S., Liang, Y., & Dai, H. (2010). Ni (OH) 2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. Journal of the American Chemical Society, 132(21), 7472-7477.
[44] Xia, X., Tu, J., Zhang, Y., Wang, X., Gu, C., Zhao, X.-b., & Fan, H. J. (2012). High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS nano, 6(6), 5531-5538.
[45] Dong, L., Xu, C., Li, Y., Huang, Z.-H., Kang, F., Yang, Q.-H., & Zhao, X. (2016). Flexible electrodes and supercapacitors for wearable energy storage: a review by category. J. Mater. Chem. A, 4(13), 4659-4685.
[46] Areir, M., Xu, Y., Harrison, D., & Fyson, J. (2017). 3D printing of highly flexible supercapacitor designed for wearable energy storage. Materials Science and Engineering: B, 226(Supplement C), 29-38.
[47] Han, Y., Ge, Y., Chao, Y., Wang, C., & Wallace, G. G. (2017). Recent progress in 2D materials for flexible supercapacitors. Journal of Energy Chemistry.
[48] Herou, S., Schlee, P., Jorge, A. B., & Titirici, M. (2017). Biomass-derived electrodes for flexible supercapacitors. Current Opinion in Green and Sustainable Chemistry.
[49] Song, X.-l., Guo, J.-x., Guo, M.-x., Jia, D.-z., Sun, Z.-p., & Wang, L.-x. (2016). Freestanding needle-like polyaniline–coal based carbon nanofibers composites for flexible supercapacitor. Electrochimica Acta, 206(Supplement C), 337-345.
[50] Xi, S., Kang, Y., Qu, S., & Han, S. (2016). Flexible supercapacitors on chips with interdigital carbon nanotube fiber electrodes. Materials Letters, 175(Supplement C), 126-130.
[51] Gupta, V., & Miura, N. (2006). Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. Electrochimica Acta, 52(4), 1721-1726.
[52] Jost, K., Dion, G., & Gogotsi, Y. (2014). Textile energy storage in perspective. Journal of Materials Chemistry A, 2(28), 10776.
[53] Jost, K., Perez, C. R., McDonough, J. K., Presser, V., Heon, M., Dion, G., & Gogotsi, Y. (2011). Carbon coated textiles for flexible energy storage. Energy & Environmental Science, 4(12), 5060.
[54] Lee, S.-Y., Choi, K.-H., Choi, W.-S., Kwon, Y. H., Jung, H.-R., Shin, H.-C., & Kim, J. Y. (2013). Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries. Energy & Environmental Science, 6(8), 2414.
[55] Lu, X., Yu, M., Wang, G., Tong, Y., & Li, Y. (2014). Flexible solid-state supercapacitors: design, fabrication and applications. Energy & Environmental Science, 7(7), 2160.
[56] Zhang, Y. Z., Wang, Y., Cheng, T., Lai, W. Y., Pang, H., & Huang, W. (2015). Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chem Soc Rev, 44(15), 5181-5199.
[57] Niu, Z., Zhou, W., Chen, J., Feng, G., Li, H., Ma, W., . . . Xie, S. (2011). Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy & Environmental Science, 4(4), 1440.
[58] Yan, X., Tai, Z., Chen, J., & Xue, Q. (2011). Fabrication of carbon nanofiber-polyaniline composite flexible paper for supercapacitor. Nanoscale, 3(1), 212-216.
[59] Meng, C., Liu, C., & Fan, S. (2009). Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties. Electrochemistry Communications, 11(1), 186-189.
[60] Zhang, L. L., Zhao, X., Stoller, M. D., Zhu, Y., Ji, H., Murali, S., . . . Ruoff, R. S. (2012). Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors. Nano letters, 12(4), 1806-1812.
[61] Fan, Z., Yan, J., Wei, T., Zhi, L., Ning, G., Li, T., & Wei, F. (2011). Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density. Advanced functional materials, 21(12), 2366-2375.
[62] Qunting Qu, Peng Zhang, Bin Wang, Yuhui Chen, Shu Tian, Yuping Wu, & Holze, R. (2009). Electrochemical Performance of MnO2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors. J. Phys. Chem. C, 113, 14020-14027.
[63] Sheng Chen, Junwu Zhu, Xiaodong Wu, Qiaofeng Han, & Xin Wang. (2010). Graphene Oxide MnO2 Nanocomposites for Supercapacitors. ACS nano, 4, 2822-2830.
[64] Liu, J., Jiang, J., Cheng, C., Li, H., Zhang, J., Gong, H., & Fan, H. J. (2011). Co3O4 Nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv Mater, 23(18), 2076-2081.
[65] Stoller, M. D., & Ruoff, R. S. (2010). Best practice methods for determining an electrode material's performance for ultracapacitors. Energy & Environmental Science, 3(9), 1294.
[66] Chmiola, J., Largeot, C., Taberna, P.-L., Simon, P., & Gogotsi, Y. (2010). Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors. Science, 328(5977), 480.
[67] Yan Huang, Hong Hu, Yang Huang, Minshen Zhu, Wenjun Meng, Chang Liu, . . . Chunyi Zhi. (2015). From Industrially Weavable and Knittable Highly Conductive Yarns to Large Wearable Energy Storage Textiles. ACS nano, 9, 4766-4775.
[68] Cheng, H., Dong, Z., Hu, C., Zhao, Y., Hu, Y., Qu, L., . . . Dai, L. (2013). Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale, 5(8), 3428-3434. doi: 10.1039/c3nr00320e
[69] Hu, L., Choi, J. W., Yang, Y., Jeong, S., La Mantia, F., Cui, L.-F., & Cui, Y. (2009). Highly conductive paper for energy-storage devices. Proceedings of the National Academy of Sciences, 106(51), 21490-21494.
[70] Du Pasquier, A., Plitz, I., Menocal, S., & Amatucci, G. (2003). A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. Journal of Power Sources, 115(1), 171-178.
[71] Park, B.-O., Lokhande, C. D., Park, H.-S., Jung, K.-D., & Joo, O.-S. (2004). Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes—effect of film thickness. Journal of Power Sources, 134(1), 148-152.
[72] Tao, J., Liu, N., Li, L., Su, J., & Gao, Y. (2014). Hierarchical nanostructures of polypyrrole@MnO2 composite electrodes for high performance solid-state asymmetric supercapacitors. Nanoscale, 6(5), 2922-2928.
[73] Hu, L., Pasta, M., La Mantia, F., Cui, L., Jeong, S., Deshazer, H. D., . . . Cui, Y. (2010). Stretchable, Porous, and Conductive Energy Textiles. Nano letters, 10(2), 708-714.
[74] Fischer, N., Fischer, D., Klapotke, T. M., Piercey, D. G., & Stierstorfer, J. (2012). Pushing the limits of energetic materials - the synthesis and characterization of dihydroxylammonium 5,5[prime or minute]-bistetrazole-1,1[prime or minute]-diolate. Journal of Materials Chemistry, 22(38), 20418-20422.
[75] Liu, W.-w., Yan, X.-b., Lang, J.-w., Peng, C., & Xue, Q.-j. (2012). Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. Journal of Materials Chemistry, 22(33), 17245-17253.
[76] González, A., Goikolea, E., Barrena, J. A., & Mysyk, R. (2016). Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 58, 1189-1206.
[77] Pell, W. G., & Conway, B. E. (2001). Voltammetry at a de Levie brush electrode as a model for electrochemical supercapacitor behaviour. Journal of Electroanalytical Chemistry, 500(1), 121-133.
[78] Kötz, R., & Carlen, M. (2000). Principles and applications of electrochemical capacitors. Electrochimica Acta, 45(15), 2483-2498.
[79] Wang, G., Zhang, L., & Zhang, J. (2012). A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev, 41(2), 797-828.
[80] Pandolfo, A. G., & Hollenkamp, A. F. (2006). Carbon properties and their role in supercapacitors. Journal of Power Sources, 157(1), 11-27.
[81] Halper, M. S., & Ellenbogen, J. C. (2006). Supercapacitors: A brief overview. The MITRE Corporation, McLean, Virginia, USA, 1-34.
[82] Zoski, C. G. (2006). Handbook of electrochemistry: Elsevier.
[83] Galiński, M., Lewandowski, A., & Stępniak, I. (2006). Ionic liquids as electrolytes. Electrochimica Acta, 51(26), 5567-5580.
[84] Largeot, C., Portet, C., Chmiola, J., Taberna, P.-L., Gogotsi, Y., & Simon, P. (2008). Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. Journal of the American Chemical Society, 130(9), 2730-2731.
[85] Liu, H., Liu, Y., & Li, J. (2010). Ionic liquids in surface electrochemistry. Physical Chemistry Chemical Physics, 12(8), 1685-1697.
[86] Warner, I. M., El-Zahab, B., & Siraj, N. (2014). Perspectives on moving ionic liquid chemistry into the solid phase. Analytical chemistry, 86(15), 7184-7191.
[87] Watanabe, M., & Ogata, N. (1988). Ionic conductivity of polymer electrolytes and future applications. Polymer International, 20(3), 181-192.
[88] Shriver, D. F., Papke, B. L., Ratner, M. A., Dupon, R., Wong, T., & Brodwin, M. (1981). Structure and ion transport in polymer-salt complexes. Solid State Ionics, 5(Supplement C), 83-88.
[89] Wright, P. V. (1975). Electrical conductivity in ionic complexes of poly (ethylene oxide). Polymer International, 7(5), 319-327.
[90] Armand, M., Chabagno, J., & Duclot, M. Second international meeting on solid electrolytes, St Andrews, Scotland; September 20–22, 1978. Paper presented at the Extended Abstract.
[91] Meyer, W. H. (1998). Polymer electrolytes for lithium‐ion batteries. Advanced materials, 10(6), 439-448.
[92] Killis, A., LeNest, J.-F., Gandini, A., Cheradame, H., & Cohen-Addad, J.-P. (1982). Correlation between ionic conductivity and 7 Li-NMR of polyether-polyurethane networks containing lithium perchlorate. Polymer Bulletin, 6(7), 351-358.
[93] Hall, P. (1986). GR davies, JE Mcintyre, IM Ward, DJ Bannister, LMF Le Brocq. Polymer Communications, 27, 98.
[94] Vallée, A., Besner, S., & Prud'Homme, J. (1992). Comparative study of poly (ethylene oxide) electrolytes made with LiN(CF3SO2)2, LiCF3SO3 and LiClO4: Thermal properties and conductivity behaviour. Electrochimica Acta, 37(9), 1579-1583.
[95] Dias, F. B., Plomp, L., & Veldhuis, J. B. (2000). Trends in polymer electrolytes for secondary lithium batteries. Journal of Power Sources, 88(2), 169-191.
[96] Weston, J., & Steele, B. (1982). Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes. Solid State Ionics, 7(1), 75-79.
[97] Appetecchi, G., Hassoun, J., Scrosati, B., Croce, F., Cassel, F., & Salomon, M. (2003). Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes: II. Quasi solid-state Li/LiFePO4 polymer batteries. Journal of Power Sources, 124(1), 246-253.
[98] Bronstein, L. M., Karlinsey, R. L., Ritter, K., Joo, C. G., Stein, B., & Zwanziger, J. W. (2004). Design of organic–inorganic solid polymer electrolytes: synthesis, structure, and properties. Journal of Materials Chemistry, 14(12), 1812-1820.
[99] Croce, F., Curini, R., Martinelli, A., Persi, L., Ronci, F., Scrosati, B., & Caminiti, R. (1999). Physical and chemical properties of nanocomposite polymer electrolytes. The Journal of Physical Chemistry B, 103(48), 10632-10638.
[100] Krawiec, W., Scanlon, L., Fellner, J., Vaia, R., Vasudevan, S., & Giannelis, E. (1995). Polymer nanocomposites: a new strategy for synthesizing solid electrolytes for rechargeable lithium batteries. Journal of Power Sources, 54(2), 310-315.
[101] Feuillade, G., & Perche, P. (1975). Ion-conductive macromolecular gels and membranes for solid lithium cells. Journal of Applied Electrochemistry, 5(1), 63-69.
[102] Stephan, A. M. (2006). Review on gel polymer electrolytes for lithium batteries. European polymer journal, 42(1), 21-42.
[103] Abraham, K., & Alamgir, M. (1994). Room temperature polymer electrolytes and batteries based on them. Solid State Ionics, 70, 20-26.
[104] Vassal, N., Salmon, E., & Fauvarque, J.-F. (2000). Electrochemical properties of an alkaline solid polymer electrolyte based on P (ECH-co-EO). Electrochimica Acta, 45(8), 1527-1532.
[105] Lewandowski, A., Zajder, M., Frąckowiak, E., & Beguin, F. (2001). Supercapacitor based on activated carbon and polyethylene oxide–KOH–H2O polymer electrolyte. Electrochimica Acta, 46(18), 2777-2780.
[106] Wada, H., Yoshikawa, K., Nohara, S., Furukawa, N., Inoue, H., Sugoh, N., . . . Iwakura, C. (2006). Electrochemical characteristics of new electric double layer capacitor with acidic polymer hydrogel electrolyte. Journal of Power Sources, 159(2), 1464-1467.
[107] Choudhury, N., Sampath, S., & Shukla, A. (2009). Hydrogel-polymer electrolytes for electrochemical capacitors: an overview. Energy & Environmental Science, 2(1), 55-67.
[108] Kamath, K. R., & Park, K. (1993). Biodegradable hydrogels in drug delivery. Advanced Drug Delivery Reviews, 11(1-2), 59-84.
[109] Iwakura, C., Furukawa, N., Ohnishi, T., Sakamoto, K., Nohara, S., & Inoue, H. (2001). Nickel/metal hydride cells using an alkaline polymer gel electrolyte based on potassium salt of crosslinked poly (acrylic acid). Electrochemistry, 69(9), 659-663.
[110] Iwakura, C., Nohara, S., Furukawa, N., & Inoue, H. (2002). The possible use of polymer gel electrolytes in nickel/metal hydride battery. Solid State Ionics, 148(3), 487-492.
[111] Iwakura, C., Wada, H., Nohara, S., Furukawa, N., Inoue, H., & Morita, M. (2003). New electric double layer capacitor with polymer hydrogel electrolyte. Electrochemical and solid-state letters, 6(2), A37-A39.
[112] Nohara, S., Wada, H., Furukawa, N., Inoue, H., Morita, M., & Iwakura, C. (2003). Electrochemical characterization of new electric double layer capacitor with polymer hydrogel electrolyte. Electrochimica Acta, 48(6), 749-753.
[113] Wada, H., Nohara, S., Furukawa, N., Inoue, H., Sugoh, N., Iwasaki, H., . . . Iwakura, C. (2004). Electrochemical characteristics of electric double layer capacitor using sulfonated polypropylene separator impregnated with polymer hydrogel electrolyte. Electrochimica Acta, 49(27), 4871-4875.
[114] Liu, X., Xu, K., Liu, H., Cai, H., Su, J., Fu, Z., . . . Chen, M. (2011). Preparation and properties of waterborne polyurethanes with natural dimer fatty acids based polyester polyol as soft segment. Progress in Organic Coatings, 72(4), 612-620.
[115] Hepburn, C. (1992). Polyurethane elastomer chemistry Polyurethane Elastomers (pp. 29-50): Springer.
[116] Dieterich, D. (1981). Aqueous emulsions, dispersions and solutions of polyurethanes; synthesis and properties. Progress in Organic Coatings, 9(3), 281-340.
[117] Wen, T.-C., Wang, Y.-J., Cheng, T.-T., & Yang, C.-H. (1999). The effect of DMPA units on ionic conductivity of PEG–DMPA–IPDI waterborne polyurethane as single-ion electrolytes. Polymer, 40(14), 3979-3988.
[118] Tang, Q., Chen, M., Wang, G., Bao, H., & Sáha, P. (2015). A facile prestrain-stick-release assembly of stretchable supercapacitors based on highly stretchable and sticky hydrogel electrolyte. Journal of Power Sources, 284, 400-408.
[119] Levi, N., Czerw, R., Xing, S., Iyer, P., & Carroll, D. L. (2004). Properties of polyvinylidene difluoride− carbon nanotube blends. Nano letters, 4(7), 1267-1271.
[120] Maranchi, J., Hepp, A., & Kumta, P. (2003). High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochemical and solid-state letters, 6(9), A198-A201.
[121] Mochizuki, T., Aoki, S., Horiba, T., Schulz-Dobrick, M., Han, Z.-J., Fukuyama, S., . . . Komaba, S. (2017). “Natto” Binder of Poly-γ-glutamate Enabling to Enhance Silicon/Graphite Composite Electrode Performance for Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering, 5(7), 6343-6355.
[122] Wang, S., Wang, C., & Ji, X. (2017). Towards understanding the salt-intercalation exfoliation of graphite into graphene. RSC Advances, 7(82), 52252-52260.
[123] Fang, C.-H., Liu, P.-I., Chung, L.-C., Shao, H., Ho, C.-H., Chen, R.-S., . . . Horng, R.-Y. (2016). A flexible and hydrophobic polyurethane elastomer used as binder for the activated carbon electrode in capacitive deionization. Desalination, 399, 34-39.
[124] Li, J., Lewis, R., & Dahn, J. (2007). Sodium carboxymethyl cellulose a potential binder for Si negative electrodes for Li-ion batteries. Electrochemical and solid-state letters, 10(2), A17-A20.
[125] Komaba, S., Ozeki, T., & Okushi, K. (2009). Functional interface of polymer modified graphite anode. Journal of Power Sources, 189(1), 197-203.
[126] Han, Z.-J., Yabuuchi, N., Shimomura, K., Murase, M., Yui, H., & Komaba, S. (2012). High-capacity Si–graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries. Energy & Environmental Science, 5(10), 9014-9020.
[127] Toupin, M., Brousse, T., & Bélanger, D. (2004). Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chemistry of Materials, 16(16), 3184-3190.
[128] Débart, A., Paterson, A. J., Bao, J., & Bruce, P. G. (2008). α‐MnO2 Nanowires: A Catalyst for the O2 Electrode in Rechargeable Lithium Batteries. Angewandte Chemie, 120(24), 4597-4600.
[129] Li, S.-M., Wang, Y.-S., Yang, S.-Y., Liu, C.-H., Chang, K.-H., Tien, H.-W., . . . Hu, C.-C. (2013). Electrochemical deposition of nanostructured manganese oxide on hierarchically porous graphene–carbon nanotube structure for ultrahigh-performance electrochemical capacitors. Journal of Power Sources, 225, 347-355.
[130] Zhang, X., Peng, X., Li, W., Li, L., Gao, B., Wu, G., . . . Chu, P. K. (2015). Robust Electrodes Based on Coaxial TiC/C–MnO2 Core/Shell Nanofiber Arrays with Excellent Cycling Stability for High‐Performance Supercapacitors. Small, 11(15), 1847-1856.
[131] Lee, K.-T., & Wu, N.-L. (2008). Manganese oxide electrochemical capacitor with potassium poly(acrylate) hydrogel electrolyte. Journal of Power Sources, 179(1), 430-434.
[132] Kuo, S.-L., & Wu, N.-L. (2006). Investigation of pseudocapacitive charge-storage reaction of MnO2∙ nH2O supercapacitors in aqueous electrolytes. Journal of The Electrochemical Society, 153(7), A1317-A1324.
[133] Lee, K.-T., Lee, J.-F., & Wu, N.-L. (2009). Electrochemical characterizations on MnO2 supercapacitors with potassium polyacrylate and potassium polyacrylate-co-polyacrylamide gel polymer electrolytes. Electrochimica Acta, 54(26), 6148-6153.
[134] Devaraj, S., & Munichandraiah, N. (2008). Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. The Journal of Physical Chemistry C, 112(11), 4406-4417.
[135] Nagarajan, N., Cheong, M., & Zhitomirsky, I. (2007). Electrochemical capacitance of MnOx films. Materials Chemistry and Physics, 103(1), 47-53.
[136] Zhi, M., Manivannan, A., Meng, F., & Wu, N. (2012). Highly conductive electrospun carbon nanofiber/MnO2 coaxial nano-cables for high energy and power density supercapacitors. Journal of Power Sources, 208, 345-353.
[137] Bao, L., Zang, J., & Li, X. (2011). Flexible Zn2SnO4/MnO2 core/shell nanocable− carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano letters, 11(3), 1215-1220.
[138] Lee, S. W., Kim, J., Chen, S., Hammond, P. T., & Shao-Horn, Y. (2010). Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS nano, 4(7), 3889-3896.
[139] Baur, W. H. (1976). Rutile-type compounds. V. Refinement of MnO2 and MgF2. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 32(7), 2200-2204.
[140] Brock, S. L., Duan, N., Tian, Z. R., Giraldo, O., Zhou, H., & Suib, S. L. (1998). A review of porous manganese oxide materials. Chemistry of Materials, 10(10), 2619-2628.
[141] Ma, R., Bando, Y., Zhang, L., & Sasaki, T. (2004). Layered MnO2 nanobelts: hydrothermal synthesis and electrochemical measurements. Advanced Materials, 16(11), 918-922.
[142] Reddy, R. N., & Reddy, R. G. (2003). Sol–gel MnO2 as an electrode material for electrochemical capacitors. Journal of Power Sources, 124(1), 330-337.
[143] Ou, T. M., Hsu, C. T., & Hu, C. C. (2015). Synthesis and Characterization of Sodium-Doped MnO2 for the Aqueous Asymmetric Supercapacitor Application. Journal of the Electrochemical Society, 162(5), A5124-A5132.
[144] Radhiyah, A. A., Izan Izwan, M., Baiju, V., Kwok Feng, C., Jamil, I., & Jose, R. (2015). Doubling of electrochemical parameters via the pre-intercalation of Na+in layered MnO2nanoflakes compared to α-MnO2nanorods. RSC Adv., 5(13), 9667-9673.
[145] Zhang, Y., Sun, C., Lu, P., Li, K., Song, S., & Xue, D. (2012). Crystallization design of MnO2 towards better supercapacitance. CrystEngComm, 14(18), 5892-5897.
[146] Ghodbane, O., Pascal, J.-L., & Favier, F. (2009). Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS applied materials & interfaces, 1(5), 1130-1139.
[147] Adomkevicius, A., Cabo-Fernandez, L., Wu, T.-H., Ou, T.-M., Chen, M.-G., Andreev, Y., . . . Hardwick, L. J. (2017). Na0.35MnO2 as an ionic conductor with randomly distributed nano-sized layers. Journal of Materials Chemistry A, 5(20), 10021-10026.
[148] Karikalan, N., Karuppiah, C., Chen, S. M., Velmurugan, M., & Gnanaprakasam, P. (2017). Three‐Dimensional Fibrous Network of Na0.21MnO2 for Aqueous Sodium‐Ion Hybrid Supercapacitors. Chemistry-A European Journal, 23(10), 2379-2386.
[149] Chen, J., Xu, J., Zhou, S., Zhao, N., & Wong, C.-P. (2016). Nitrogen-doped hierarchically porous carbon foam: A free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy, 25, 193-202.
[150] Hou, Y., Tang, H., Li, B., Chang, K., Chang, Z., Yuan, X.-Z., & Wang, H. (2016). Hexagonal-layered Na0.7MnO2.05 via solvothermal synthesis as an electrode material for aqueous Na-ion supercapacitors. Materials Chemistry and Physics, 171, 137-144.
[151] Lu, X.-F., Huang, Z.-X., Tong, Y.-X., & Li, G.-R. (2016). Asymmetric supercapacitors with high energy density based on helical hierarchical porous NaxMnO2 and MoO2. Chemical science, 7(1), 510-517.
[152] Parant, J.-P., Olazcuaga, R., Devalette, M., Fouassier, C., & Hagenmuller, P. (1971). Sur quelques nouvelles phases de formule NaxMnO2 (x⩽ 1). Journal of Solid State Chemistry, 3(1), 1-11.
[153] Mendiboure, A., Delmas, C., & Hagenmuller, P. (1985). Electrochemical intercalation and deintercalation of NaxMnO2 bronzes. Journal of Solid State Chemistry, 57(3), 323-331.
[154] Mai, L., Li, H., Zhao, Y., Xu, L., Xu, X., Luo, Y., . . . Zhang, Q. (2013). Fast ionic diffusion-enabled nanoflake electrode by spontaneous electrochemical pre-intercalation for high-performance supercapacitor. Scientific reports, 3.
[155] Radhiyah, A., Izwan, M. I., Baiju, V., Feng, C. K., Jamil, I., & Jose, R. (2015). Doubling of electrochemical parameters via the pre-intercalation of Na+ in layered MnO2 nanoflakes compared to α-MnO2 nanorods. RSC Advances, 5(13), 9667-9673.
[156] Byrom, B., Watson, C., Doll, H., Coons, S. J., Eremenco, S., Ballinger, R., . . . Howry, C. (2017). Selection of and Evidentiary Considerations for Wearable Devices and Their Measurements for Use in Regulatory Decision Making: Recommendations from the ePRO Consortium. Value in Health.
[157] Kekade, S., Hseieh, C.-H., Islam, M. M., Atique, S., Mohammed Khalfan, A., Li, Y.-C., & Abdul, S. S. (2018). The usefulness and actual use of wearable devices among the elderly population. Computer Methods and Programs in Biomedicine, 153(Supplement C), 137-159.
[158] Kim, H., & Ahn, J.-H. (2017). Graphene for flexible and wearable device applications. Carbon, 120(Supplement C), 244-257.
[159] Wu, S., Liu, P., Zhang, Y., Zhang, H., & Qin, X. (2017). Flexible and conductive nanofiber-structured single yarn sensor for smart wearable devices. Sensors and Actuators B: Chemical, 252(Supplement C), 697-705.
[160] NEWSROOM, S. (2017). [Infographic] Galaxy Note7: What We Discovered. from https://news.samsung.com/global/infographic-galaxy-note7-what-we-discovered
[161] Xie, Y., Liu, Y., Zhao, Y., Tsang, Y. H., Lau, S. P., Huang, H., & Chai, Y. (2014). Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode. J. Mater. Chem. A, 2(24), 9142-9149.
[162] Li, X., Zhao, T., Chen, Q., Li, P., Wang, K., Zhong, M., . . . Zhu, H. (2013). Flexible quasi solid-state supercapacitors based on chemical vapor deposition derived graphene fibers. Phys Chem Chem Phys, 15(41), 17752-17757.
[163] Zhi, J., Yang, C., Lin, T., Cui, H., Wang, Z., Zhang, H., & Huang, F. (2016). Flexible quasi solid state supercapacitor with high energy density employing black titania nanoparticles as a conductive agent. Nanoscale, 8(7), 4054-4062.
[164] Vijayakumar, V., Anothumakkool, B., Torris A. T, A., Nair, S. B., Badiger, M. V., & Kurungot, S. (2017). An all-solid-state-supercapacitor possessing a non-aqueous gel polymer electrolyte prepared using a UV-assisted in situ polymerization strategy. J. Mater. Chem. A, 5(18), 8461-8476.
[165] Palaniappan, R., & Botte, G. G. (2013). Efficacy of potassium poly(acrylate) gel electrolyte as a substitute to aqueous electrolytes for alkaline ammonia electrolysis. Electrochimica Acta, 88, 772-781.
[166] Ten-Chin Wena, Y.-J. W., Tsung-Tien Chenga, Chien-Hsin Yangb. (1999). The effect of DMPA units on ionic conductivity of PEG–DMPA–IPDI waterborne polyurethane as single-ion electrolytes. polymer, 40, 3979-3988.
[167] Xing, Y., Wu, Y., Wang, H., Yang, G., Li, W., Xu, L., & Jiang, X. (2014). Preparation of hybrid polymer based on polyurethane lithium salt and polyvinylidene fluoride as electrolyte for lithium-ion batteries. Electrochimica Acta, 136, 513-520.
[168] Yu, R., Bao, J.-J., Chen, T.-T., Zou, B.-K., Wen, Z.-Y., Guo, X.-X., & Chen, C.-H. (2017). Solid polymer electrolyte based on thermoplastic polyurethane and its application in all-solid-state lithium ion batteries. Solid State Ionics, 309, 15-21.
[169] Cui, S., Liu, Z., & Li, Y. (2017). Bio-polyols synthesized from crude glycerol and applications on polyurethane wood adhesives. Industrial Crops and Products, 108(Supplement C), 798-805.
[170] Cui, S., Luo, X., & Li, Y. (2017). Synthesis and properties of polyurethane wood adhesives derived from crude glycerol-based polyols. International Journal of Adhesion and Adhesives, 79(Supplement C), 67-72.
[171] Najib, M. F., & Nobari, A. S. (2016). Nonlinear viscoelastic constitutive model identification for a polyurethane adhesive in a bonded joint using structural dynamic model updating. Mechanics of Materials, 100(Supplement C), 72-85.
[172] Weiss, J., Voigt, M., Kunze, C., Sánchez, J. E. H., Possart, W., & Grundmeier, G. (2016). Ageing mechanisms of polyurethane adhesive/steel interfaces. International Journal of Adhesion and Adhesives, 70(Supplement C), 167-175.
[173] Hu, C.-C., Su, J.-H., & Wen, T.-C. (2007). Modification of multi-walled carbon nanotubes for electric double-layer capacitors: Tube opening and surface functionalization. Journal of Physics and Chemistry of Solids, 68(12), 2353-2362.
[174] Park, J. H., & Kim, B. K. (2014). Infrared light actuated shape memory effects in crystalline polyurethane/graphene chemical hybrids. Smart Materials and Structures, 23(2), 025038.
[175] Pereira, I. M., Gomide, V., Oréfice, R. L., Leite, M. d. F., Zonari, A. A., & Goes, A. d. M. (2010). Proliferation of human mesenchymal stem cells derived from adipose tissue on polyurethanes with tunable biodegradability. Polímeros, 20(4), 280-286.
[176] Peng, H. T., Huang, H., Shek, P. N., Charbonneau, S., & Blostein, M. D. (2010). PEGylation of Melittin: structural characterization and hemostatic effects. Journal of Bioactive and Compatible Polymers, 25(1), 75-97.
[177] Billingham, J., Breen, C., & Yarwood, J. (1997). Adsorption of polyamine, polyacrylic acid and polyethylene glycol on montmorillonite: an in situ study using ATR-FTIR. Vibrational Spectroscopy, 14(1), 19-34.
[178] Mishra, A. K., Chattopadhyay, D., Sreedhar, B., & Raju, K. (2006). FT-IR and XPS studies of polyurethane-urea-imide coatings. Progress in Organic Coatings, 55(3), 231-243.
[179] Wu, G., An, J., Sun, D., Tang, X., Xiang, Y., & Yang, J. (2014). Robust microcapsules with polyurea/silica hybrid shell for one-part self-healing anticorrosion coatings. J. Mater. Chem. A, 2(30), 11614-11620.
[180] G. Beamson, D. B. (1992). High Resolution XPS of Organic Polymers - The Scienta ESCA300 Database Wiley Interscience.
[181] Cárdenas, G., Muñoz, C., & Carbacho, H. (2000). Thermal properties and TGA–FTIR studies of polyacrylic and polymethacrylic acid doped with metal clusters. European polymer journal, 36(6), 1091-1099.
[182] Erlich, R. H., & Popov, A. I. (1971). Spectroscopic studies of ionic solvation. X. Study of the solvation of sodium ions in nonaqueous solvents by sodium-23 nuclear magnetic resonance. Journal of the American Chemical Society, 93(22), 5620-5623.
[183] Hofer, T. S., Tran, H. T., Schwenk, C. F., & Rode, B. M. (2004). Characterization of dynamics and reactivities of solvated ions by ab initio simulations. Journal of computational chemistry, 25(2), 211-217.
[184] Padova, J. (1964). Solvation Approach* to Ion Solvent Interaction. The Journal of Chemical Physics, 40(3), 691-694.
[185] Mario Della Monica, & Senatore, L. (1970). Solvated radius of ions in nonaqueous solvents. The Journal of Physical Chemistry, 74(1), 205–207.
[186] Kim, D., Keum, K., Lee, G., Kim, D., Lee, S.-S., & Ha, J. S. (2017). Flexible, water-proof, wire-type supercapacitors integrated with wire-type UV/NO2 sensors on textiles. Nano Energy, 35, 199-206.
[187] Li, B., Cheng, J., Wang, Z., Li, Y., Ni, W., & Wang, B. (2018). Highly-wrinkled reduced graphene oxide-conductive polymer fibers for flexible fiber-shaped and interdigital-designed supercapacitors. Journal of Power Sources, 376, 117-124.
[188] Li, L., Fu, C., Lou, Z., Chen, S., Han, W., Jiang, K., . . . Shen, G. (2017). Flexible planar concentric circular micro-supercapacitor arrays for wearable gas sensing application. Nano Energy, 41, 261-268.
[189] Ramadoss, A., Yoon, K.-Y., Kwak, M.-J., Kim, S.-I., Ryu, S.-T., & Jang, J.-H. (2017). Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-Dimensional-graphene/graphite-paper. Journal of Power Sources, 337, 159-165.
[190] Conway, B. E., Springer (1999). Electrochemical supercapacitors: scientific fundamentals and technological applications.
[191] Wang, G., Zhang, L., & Zhang, J. (2012). A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 41(2), 797-828.
[192] Zhang, L. L., & Zhao, X. S. (2009). Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38(9), 2520-2531.
[193] Kim, H., Abdala, A. A., & Macosko, C. W. (2010). Graphene/Polymer Nanocomposites. Macromolecules, 43(16), 6515-6530.
[194] Li, H., Yuan, D., Tang, C., Wang, S., Sun, J., Li, Z., . . . He, C. (2016). Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor. Carbon, 100, 151-157.
[195] Qin, J., Wu, Z.-S., Zhou, F., Dong, Y., Xiao, H., Zheng, S., . . . Bao, X. (2017). Simplified fabrication of high areal capacitance all-solid-state micro-supercapacitors based on graphene and MnO2 nanosheets. Chinese Chemical Letters.
[196] Qin, T., Wan, Z., Wang, Z., Wen, Y., Liu, M., Peng, S., . . . Cao, G. (2016). 3D flexible O/N Co-doped graphene foams for supercapacitor electrodes with high volumetric and areal capacitances. Journal of Power Sources, 336, 455-464.
[197] Wang, H., Deng, J., Xu, C., Chen, Y., Xu, F., Wang, J., & Wang, Y. (2017). Ultramicroporous carbon cloth for flexible energy storage with high areal capacitance. Energy Storage Materials, 7, 216-221.
[198] Wu, Z.-S., Yang, S., Zhang, L., Wagner, J. B., Feng, X., & Müllen, K. (2015). Binder-free activated graphene compact films for all-solid-state micro-supercapacitors with high areal and volumetric capacitances. Energy Storage Materials, 1, 119-126.
[199] Yun, X., Xiong, Z., Tu, L., Bai, L., & Wang, X. (2017). Hierarchical porous graphene film: An ideal material for laser-carving fabrication of flexible micro-supercapacitors with high specific capacitance. Carbon, 125, 308-317.
[200] Jang, Y., Jo, J., Choi, Y.-M., Kim, I., Lee, S.-H., Kim, D., & Yoon, S. M. (2013). Activated carbon nanocomposite electrodes for high performance supercapacitors. Electrochimica Acta, 102, 240-245.
[201] Nandhini, R., Mini, P. A., Avinash, B., Nair, S. V., & Subramanian, K. R. V. (2012). Supercapacitor electrodes using nanoscale activated carbon from graphite by ball milling. Materials Letters, 87, 165-168.
[202] Conway, B. E., & Pell, W. G. (2003). Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. Journal of Solid State Electrochemistry, 7(9), 637-644.
[203] Singh, P., & Pal, K. (2017). Multiphase nanostructured PANI anchored @ CVD grown MWCNT on rGO coated nickel foam for binder free supercapacitor electrode. Electrochimica Acta, 242, 47-55.
[204] Liu, C., Tan, Y., Liu, Y., Shen, K., Peng, B., Niu, X., & Ran, F. (2016). Microporous carbon nanofibers prepared by combining electrospinning and phase separation methods for supercapacitor. Journal of Energy Chemistry, 25(4), 587-593.
[205] Rong, Y., Kolodziej, A., Madrid, E., Carta, M., Malpass-Evans, R., McKeown, N. B., & Marken, F. (2016). Polymers of intrinsic microporosity in electrochemistry: Anion uptake and transport effects in thin film electrodes and in free-standing ionic diode membranes. Journal of Electroanalytical Chemistry, 779, 241-249.
[206] Binford, L. (2000). Faunal Extinction in an Island Society: Pygmy Hippopotamus Hunters of Cyprus. Simmons Alan H. and Associates. 1999. Kluwer Academic/Plenum Publishers, New York, NY. xxi+ 381 pp. $95.00 (cloth), ISBN 0-306-46088-2. American Antiquity, 65(4), 771-771.
[207] Liu, C., Li, F., Ma, L. P., & Cheng, H. M. (2010). Advanced materials for energy storage. Advanced Materials, 22(8).
[208] Wei, T. Y., Chen, C. H., Chien, H. C., Lu, S. Y., & Hu, C. C. (2010). A cost‐effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide‐driven sol–gel process. Advanced Materials, 22(3), 347-351.
[209] Izadi‐Najafabadi, A., Yasuda, S., Kobashi, K., Yamada, T., Futaba, D. N., Hatori, H., . . . Hata, K. (2010). Extracting the full potential of single‐walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Advanced Materials, 22(35).
[210] Chen, W., Rakhi, R., Hu, L., Xie, X., Cui, Y., & Alshareef, H. N. (2011). High-performance nanostructured supercapacitors on a sponge. Nano letters, 11(12), 5165-5172.
[211] Khomenko, V., Raymundo-Pinero, E., & Béguin, F. (2006). Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium. Journal of Power Sources, 153(1), 183-190.
[212] Chen, P.-C., Shen, G., Shi, Y., Chen, H., & Zhou, C. (2010). Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano, 4(8), 4403-4411.
[213] Wang, Y.-g., & Xia, Y.-y. (2005). A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system. Electrochemistry Communications, 7(11), 1138-1142.
[214] Wu, Z.-S., Ren, W., Wang, D.-W., Li, F., Liu, B., & Cheng, H.-M. (2010). High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano, 4(10), 5835-5842.
[215] Cericola, D., Ruch, P. W., Kötz, R., Novák, P., & Wokaun, A. (2010). Characterization of bi-material electrodes for electrochemical hybrid energy storage devices. Electrochemistry Communications, 12(6), 812-815.
[216] Linn, E., Rosezin, R., Kügeler, C., & Waser, R. (2010). Complementary resistive switches for passive nanocrossbar memories. Nature materials, 9(5), 403.
[217] Nohara, S., Asahina, T., Wada, H., Furukawa, N., Inoue, H., Sugoh, N., . . . Iwakura, C. (2006). Hybrid capacitor with activated carbon electrode, Ni(OH)2 electrode and polymer hydrogel electrolyte. Journal of Power Sources, 157(1), 605-609.
[218] Park, J. H., Park, O. O., Shin, K. H., Jin, C. S., & Kim, J. H. (2002). An electrochemical capacitor based on a Ni(OH)2/activated carbon composite electrode. Electrochemical and solid-state letters, 5(2), H7-H10.
[219] Brousse, T., Taberna, P.-L., Crosnier, O., Dugas, R., Guillemet, P., Scudeller, Y., . . . Simon, P. (2007). Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor. Journal of Power Sources, 173(1), 633-641.
[220] Qu, Q., Zhang, P., Wang, B., Chen, Y., Tian, S., Wu, Y., & Holze, R. (2009). Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. The Journal of Physical Chemistry C, 113(31), 14020-14027.
[221] Wang, H.-Q., Li, Z.-S., Huang, Y.-G., Li, Q.-Y., & Wang, X.-Y. (2010). A novel hybrid supercapacitor based on spherical activated carbon and spherical MnO2 in a non-aqueous electrolyte. Journal of Materials Chemistry, 20(19), 3883-3889.
[222] Qu, Q., Shi, Y., Li, L., Guo, W., Wu, Y., Zhang, H., . . . Holze, R. (2009). V2O5· 0.6 H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution. Electrochemistry Communications, 11(6), 1325-1328.
[223] Naoi, K., Ishimoto, S., Isobe, Y., & Aoyagi, S. (2010). High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors. Journal of Power Sources, 195(18), 6250-6254.
[224] Khomenko, V., Raymundo-Piñero, E., & Béguin, F. (2008). High-energy density graphite/AC capacitor in organic electrolyte. Journal of Power Sources, 177(2), 643-651.
[225] Wang, Q., Wen, Z., & Li, J. (2006). A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2–B nanowire anode. Advanced Functional Materials, 16(16), 2141-2146.
[226] Jin, W.-H., Cao, G.-T., & Sun, J.-Y. (2008). Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution. Journal of Power Sources, 175(1), 686-691.
[227] Park, J. H., & Park, O. O. (2002). Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes. Journal of Power Sources, 111(1), 185-190.
[228] Ou, T.-M., Hsu, C.-T., & Hu, C.-C. (2015). Synthesis and characterization of sodium-doped MnO2 for the aqueous asymmetric supercapacitor application. Journal of The Electrochemical Society, 162(5), A5124-A5132.
[229] Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a theory of the van der Waals adsorption of gases. Journal of the American Chemical society, 62(7), 1723-1732.
[230] Baiker, A., & Blaser, H. (1997). Handbook of Heterogeneous Catalysis. Ertl, G.
[231] Fitzpatrick, M., Fry, A., Holdway, P., Kandil, F., Shackleton, J., & Suominen, L. (2005). Determination of residual stresses by X-ray diffraction.
[232] Lin, S.-C., Lu, Y.-T., Chien, Y.-A., Wang, J.-A., You, T.-H., Wang, Y.-S., . . . Hu, C.-C. (2017). Asymmetric supercapacitors based on functional electrospun carbon nanofiber/manganese oxide electrodes with high power density and energy density. Journal of Power Sources, 362, 258-269.
[233] Wang, J.-G., Yang, Y., Huang, Z.-H., & Kang, F. (2013). Effect of temperature on the pseudo-capacitive behavior of freestanding MnO2@carbon nanofibers composites electrodes in mild electrolyte. Journal of Power Sources, 224, 86-92.
[234] Chastain, J., King, R. C., & Moulder, J. (1992). Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data: Physical Electronics Division, Perkin-Elmer Corporation Eden Prairie, Minnesota.
[235] Li, Z., Wang, J., Liu, S., Liu, X., & Yang, S. (2011). Synthesis of hydrothermally reduced graphene/MnO2 composites and their electrochemical properties as supercapacitors. Journal of Power Sources, 196(19), 8160-8165.
[236] Yan, J., Fan, Z., Wei, T., Cheng, J., Shao, B., Wang, K., . . . Zhang, M. (2009). Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities. Journal of Power Sources, 194(2), 1202-1207.
[237] Welham, N. (2002). Activation of the carbothermic reduction of manganese ore. International Journal of Mineral Processing, 67(1-4), 187-198.
[238] Hao, J., Zhong, Y., Liao, Y., Shu, D., Kang, Z., Zou, X., . . . Guo, S. (2015). Face-to-face self-assembly graphene/MnO2 nanocomposites for supercapacitor applications using electrochemically exfoliated graphene. Electrochimica Acta, 167, 412-420.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *