帳號:guest(3.21.46.78)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):高信義
作者(外文):Kao, Hsin-Yi
論文名稱(中文):利用化學纖維紡絲法製備鈷觸媒及其在硼氫化鈉水解產氫之應用與研究
論文名稱(外文):Preparation of Cobalt Catalysts by the Chemical Fiber-Spinning Method for Hydrogen Evolution from Sodium Borohydride Hydrolysis
指導教授(中文):胡啟章
指導教授(外文):Hu, Chi-Chang
口試委員(中文):薛康琳
張仍奎
蔡德豪
吳文昌
口試委員(外文):Hsueh, Kan-Lin
Chang, Jeng-Kuei
Tsai, De-Hao
Wu, Wen-Chang
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:104032809
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:172
中文關鍵詞:硼氫化鈉鈷觸媒海藻酸鈉纖維素氫氣動力學便攜式燃料電池燃料匣
外文關鍵詞:NaBH4Cobalt catalystSodium AlginateHydrogenKineticsPortable Fuel Cell SystemCartridge
相關次數:
  • 推薦推薦:0
  • 點閱點閱:425
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨在探討硼氫化鈉(NaBH4)和鈷催化劑(Co/SA)水解產氫的特性,研究內容以海藻酸鈉纖維素(Sodium Alginate, SA)和氯化亞鈷(CoCl2)所組成鈷纖維觸媒(Co/SA)的製備和硼氫化鈉水解產氫性能之關係。最後,展示了使用固體燃料 (NaBH4) 的便攜式燃料電池系統的原型產品。本論文的研究內容可區分為以下四個部分:

1.利用化學纖維紡絲法製備產氫觸媒與探討
使用金屬觸媒鈷(Co),搭配紡絲纖維載體以不同的製程參數來製作纖維觸媒;研究中以較佳製程參數所製作出的Co/SA纖維觸媒,其轉化率為88.27%,產氫速率為0.70 (L/ming-cat),比較商用產氫觸媒Co/IR-120,其轉化率為81.69%,產氫速率為0.27 (L/ming-cat);在液態硼氫化鈉與鈷觸媒的氫生成動力學研究中,由結果揭示了通過液態NaBH4的水解反應可以獲得穩定的氫氣供應並擬合零級動力學模式,其活化能為53 kJ mol-1。

2.液態硼氫化鈉與觸媒於流動式反應系統之產氫速率探討
此部份運用了DOE(實驗設計)之手法;實驗設計以24因素分析法,經由四個控制變因,分別為燃料(NaBH4)濃度、觸媒(CoCl2)濃度、反應液流速以及反應槽水浴循環溫度做為主要的因素。由變異數分析(ANOVA),可了解到產氫反應速率,與四個控制變因的關連、相互影響之作用。最後從等高線圖得知,若要獲得高產氫反應速率,則因素A往high level (NaBH4濃度/高)、B往low level (CoCl2濃度/低)調整。


3.固態硼氫化鈉與鈷觸媒的產氫動力學
此部份為研究一種新型的固態硼氫化鈉產氫系統,在這項研究中搭配鈷催化劑通過機械研磨方法製備,並就其水解性能進行了研究。反應分別以觸媒量0.0063g、0.0111g、0.0158g各別在25、35和45°C溫度下的一個燃料匣(Cartridge)中進行。實驗數據符合到零級的動力學模型,結果表明當反應放熱速率超過熱移除速率時,多餘熱量使反應物溫度上昇,使得反應速率急速增加失去控制,形成「放熱自加速現象」,最後造成失控反應(Runaway)。且這種放熱的自加速水解還導致燃料匣中的氫氣供應過剩;而燃料電池組的不穩定和嚴重波動的表現已經被證明是由於在沒有熱管理的情況下,燃料匣中NaBH4水解的放熱自加速產生的。通過燃料匣的熱管理有效除熱,可以抑制該缺點且延長燃料電池組的運行週期。最後並根據Townsend and Tou [1,2]於1980年提出的絕熱昇溫測試理論給出了氫氣產生的合理描述。

4.便攜式燃料電池系統的研究與開發
此部份研究展示了使用固體燃料(NaBH4)之便攜式燃料電池系統的原型產品。在這項工作中設計的便攜式燃料電池系統的架構可以分為三個部分:(1)燃料匣,(2)電池堆(PEMFC)和(3)能源管理系統(EMS,Master Control-Hybrid)。單電池堆操作性能達120mA/cm2@0.6V (環境溫度25˚C);4 Cell Stack (1.2W, 2.4V、0.5A)、系統最大輸出功率達7.5W (5V、1.5A),此原型產品預期可進一步應用於防災載具、戶外充電應用,並提供於防(救)災之緊急使用場合。
PEMFC中的金屬雙極板和流道表面採用PVD沉積技術塗覆非晶MoN耐蝕薄膜鍍層,以提高其在運行過程中的耐腐蝕性能。於燃料配置中,根據10組樣品,纖維催化劑和燃料的複合實現了良好的製氫反應速率。通過對燃料配方和燃料盒設計的研究,氫氣流速為 15 sccm (±3%) 在環境溫度下持續 264 min,平均氫氣體積為 3.2 L,轉化率為 77.7%,搭配電池堆之實際發電量達3.86 Wh。此外,由於無需在使用前手動加水,使得系統在便攜性和便利性方面有了重大突破。最後,通過燃料電池能量管理系統的測試驗證,可以得到相應的控制邏輯和控制參數。
The purpose of this thesis is to investigate the hydrogen generation from the hydrolysis reaction of sodium borohydride (NaBH4) catalyzed by a cobalt catalyst, (Co/SA). A new catalyst, cobalt fiber, consisting of sodium aliginate (SA) and cobalt chloride (CoCl2) is developed to study the relationship between the preparation of fiber catalyst (denoted as Co/SA) and the hydrogen production performance from the sodium borohydride hydrolysis. Finally, this thesis demonstrates a prototype product of a portable fuel cell system with the solid-type fuel (NaBH4). There are four parts in this thesis:

1.Preparation of hydrogen generation catalysts by a chemical fiber spinning method.
The fiber catalysts are composed of metallic cobalt catalyst particles and sodium aliginate fiber carriers prepared under various conditions. The best fiber catalyst, Co/SA, shows the yield up to 88.27% at a H2 generation rate of 0.70 L/(ming-cat). This best fiber catalyst exhibits a better performance than a commercial catalyst, Co/IR-120, with a yield of 81.69% at a H2 generation rate of 0.27 L/(ming-cat). In the kinetic study of hydrogen generation in the liquid sodium borohydride medium containing such a Co catalyst, the stable H2 supply is obtained because of the prefect zero-order model of the sodium borohydride hydrolysis reaction. Its activation energy is 53 kJ mol-1.

2.The hydrogen generation in flow reactors using the liquid-phase sodium borohydride and catalyst.
This research characterizes the hydrogen generation phenomena in the flow reactors on the basis of the design of experiment (DOE) method. It starts with a 24 full factor design considering 4 main factors: the concentrations of NaBH4 (A) and catalyst CoCl2 (B), the reactant flow rate (C), and the reaction temperature (D). From the analysis of variance (ANOVA) and regression analysis, the relationship between H2 generation rate and 4 factors can be established. Finally, from the contour plot, a high and stable H2 production rate is obtained when factor A (NaBH4 concentration) is moved to the high level and factor B (CoCl2 concentration) is moved to the low level.

3.Kinetics of hydrogen generation on NaBH4 powders using cobalt catalysts
The hydrogen generation kinetics for the hydrolysis reaction of a solid mixture consisting of sodium borohydride powders and Co catalyst prepared by mechanical grinding are investigated in this part. The hydrolysis reaction for hydrogen generation has been conducted in a fuel cartridge with various catalyst contents (0.0063, 0.0111, and 0.0158g) and hydrolysis temperatures (25, 35, and 45oC). The hydrogen generation data can be fitted with the zero-order kinetic models. The results reveal the importance of initial reaction temperature and heat removal during the hydrolysis and that the monotonous increase in the reaction temperature caused by the excess heat generated from this exothermic reaction leads to uncontrollable and unpredictable hydrolysis rates. This drawback can be circumvented by effective heat removal through the thermal management in the fuel cartridge, prolonging the operating period of the fuel cell stack (> 3 h).

4.Development of a Portable Fuel Cell System with the solid-type fuel (NaBH4).
This study demonstrates a prototype product of a portable fuel cell system with the solid-type fuel (NaBH4). The architecture of a portable fuel cell system designed in this work can be divided into three parts: (1) fuel cartridge, (2) cell stack (proton exchange membrane fuel cells, PEMFCs), and (3) energy management system (EMS, Master Control-Hybrid).
A single PEMFC in the stack shows a discharge voltage of 0.6 V at 120 mA/cm2 at ambient temperature. Consequently, the 4-cell stack provides the output of 1.2 W at 2.4 V and 0.5 A and the maximum power of this portable fuel cell system output can achieve 7.5 W at 5 V and 1.5 A. This prototype product can be applied to the disaster prevention, outdoor charging applications, and disaster prevention (relief) in emergency.
The surface of metallic bipolar plates and flow channel in the PEMFC has been coated with an amorphous MoN anticorrosion film using the PVD method in order to increase their corrosion resistance during the operation. In the fuel formulation, the compounding of the fiber catalyst and solid fuel achieves a reliable hydrogen production rate according to 10 sets of independent samples. The hydrogen generation rate is 15 sccm (±3%) at ambient temperature for 264 min and the average hydrogen volume is 3.2 L with a good conversion of 77.7% through the investigations of the fuel formulation and fuel cartridge design, leading to the stack energy generation of 3.86 Wh. In addition, there is a major breakthrough in portability and convenience for our system because of no need to manually add water before use. Finally, through the fuel cell energy management system with test verification, the corresponding control logic and control parameters can be obtained.

摘要
目錄
第一章 緒論與研究背景介紹----------------------------------1
第二章 文獻回顧與原理--------------------------------------4
第三章 利用化學纖維紡絲法製備產氫觸媒與探討------------------41
第四章 液態硼氫化鈉與觸媒於流動式反應系統之產氫速率探討-------72
第五章 固態硼氫化鈉與鈷觸媒的產氫動力學----------------------90
第六章 便攜式燃料電池系統的研究與開發------------------------116
第七章 總結論----------------------------------------------162
第八章 未來工作--------------------------------------------166
第九章 參考文獻--------------------------------------------167

[1]Townsend DI, Tou JC. Thermal Hazard Evaluation by An Accelerating Rate Calorimeter. Thermochimica Acta 1980;37:1-30.
[2]Lees FP. Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control, 2nd ed., 1996, Oxford, UK.
[3]Kim SJ, Lee J, Kong KY, Jung CR, Min IG, Lee SY, Kim YJ, Nam SW, Lim TH. Hydrogen generation system using sodium borohydride for operation of a 400W-scale polymer electrolyte fuel cell stack. Journal of Power Sources 2007;170:412-8.
[4]Marrero-Alfonso EY, Gray JR, Davis TA, Matthews MA. Minimizing water utilization in hydrolysis of sodium borohydride : The role of sodium metaborate hydrates. Int Journal of Hydrogen energy 2007;32:4723-30.
[5]Moon GY, Lee SS, Lee KY, Kim SH, Song KH. Behavior of hydrogen evolution of aqueous sodium borohydride solutions. Journal of Industrial and Engineering Chemistry 2008;14:94-9.
[6]Kim DR, Cho KW, Choi YI, Park CJ. Fabrication of porous Co-Ni-P catalysts by electrodeposition and their catalytic characteristics for the generation of hydrogen from an alkaline NaBH4 solution. Int Journal of Hydrogen Energy 2009;34:2622-30.
[7]Gislon P, Monteleone G, Prosini PP. Hydrogen production from solid sodium borohydride. Int Journal Hydrogen energy 2009;34:929-37.
[8]Schlesinger HI, Brown HC, Finholt AE, James R, Gilbreath, Henry R, Hoekstra, Hyde EK. Sodium Borohydride, Its Hydrolysis and its Use as a Reducing Agent and in the Generation of Hydrogen. Journal of the American Chemical Society 1953;75: 215-19.
[9]Brown HC, Brown CA. A Simple Preparation of Highly Active Platinum Metal Catalysts for Catalytic Hydrogenation. Journal of the American Chemical Society 1962;84:1494-95
[10]Levy A, Brown JB, Lyons CJ. Catalyzed Hydrolysis of Sodium Borohydride. Industrial and Engineering Chemistry 1960;52:211-14
[11]Amendola SC, Sharp-Goldman SL, Janjua MS, Spencer NC, Kelly MT, Petillo PJ, Binder M. A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst. Int Journal of Hydrogen Energy 2000;25:969-75.
[12]Amendola SC, Sharp-Goldman SL, Janjua MS, Spencer NC, Kelly MT, Petillo PJ, Binder M. An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst. Journal of power sources 2000;85:186-9.
[13]Wang P , Kang XD. Hydrogen-rich boron-containing materials for hydrogen storage. Dalton Transactions 2008;40:5400-13.
[14]Richardson BS, Birdwell JF, Pin FG, Jansen JF, Lind RF. Sodium borohydride based hybrid power system. Journal of power sources 2005;145:21-9.
[15]Wee JH , Lee KY, Kim SH. Sodium borohydride as the hydrogen supplier for proton exchange membrane fuel cell systems. Fuel processing technology 2006;87:811-9.
[16]Kaufman CM, Sen B. Hydrogen generation by hydrolysis of sodium tetrahydroborate: effects of acids and transition metals and their salts. Journal of the Chemical Society-Dalton transactions 1985;2:307-13.
[17]Kreevoy MM, Meeks BS. Hydrolysis mechanism of tetrahydroborate (1-) ion in moist acetonitrile. 2. The nature of the intermediate. Journal of the American Chemical Society 1979;17:4918-21.
[18]Kuo YC, Chen BH, Hsueh CL, Hwang KJ, Ku JR, Tsau F, Jeng MS. Synthesis of solid-state NaBH4/Co-based catalyst composite for hydrogen storage through a high-energy ball-milling process. Int Journal of Hydrogen Energy 2010;35:4027-40.
[19]Minkina VG, Shabunya SI, Kalinin VI , Martynenko VV. Stability of aqueous-alkaline sodium borohydride formulations. Russian Journal of Applied Chemistry 2008;81:380-5.
[20]Minkina VG, Shabunya SI, Martynenko VV, Smirnova AL. Long-term stability of sodium borohydrides for hydrogen generation. Int Journal of Hydrogen Energy 2008;33:5629-35.
[21]Kojima Y, Kawai Y, Nakanishi H, Matsumoto S. Compressed hydrogen generation using chemical hydride. Journal Power Sources 2004;135:36-41.
[22]Xu D, Dai P, Guo Q, Yue X, Improved hydrogen generation from alkaline NaBH4 solution using cobalt catalysts supported on modified activated carbon. Int Journal of Hydrogen Energy 2008;33:7371-7.
[23]Ingersoll JC, Mani N, Thenmozhiyal JC, Muthaiah A. Catalystic hydrolysis of sodium borohydride by a novel nickel-cobalt-boride catalyst. Journal Power Sources 2007;173:450-7.
[24]Tian H, Guo Q, Xu D. Hydrogen generation from catalytic hydrolysis of alkaline sodium borohydride solution using attapulgite clay-supported Co-B catalyst. Journal Power Sources 2010 ; 195:2136-42.
[25]Patel N, Fernandes R, Miotello A. Hydrogen generation by hydrolysis of NaBH4 with efficient Co–P–B catalyst: A kinetic study. Journal Power Sources 2009;188:411-20.
[26]Akdim O, Demirci UB, Miele P. Acetic acid, arelatively green single-use catalyst for hydrogen generation from sodium borohydride. Int Journal of Hydrogen Energy 2009;34:7231-8.
[27]Akdim O, Demirci UB, Miele P. Highly efficient acid-treated coablt catalyst for hydrogen generation from NaBH4 hydrolysis. Int Journal of Hydrogen Energy 2009;34:4780-7.
[28]Murugesan S, Subramanian V. Effects of acid accelerators on hydrogen generation from solid sodium borohydride using small scale devices. Journal Power Sources 2009;187:216-23.
[29]Liu BH, Li ZP. A review : Hydrogen generation from borohydride hydrolysis reaction. Journal Power Sources 2009;187:527-34.
[30]Demirci UB, Akdim O, Miele P. Aluminum chloride for accelerating hydrogen generation from sodium borohydride. Journal Power Sources 2009;192:310-5.
[31]Fernades VR, Pinto AMFR, Rangel CM. Hydrogen production from sodium borohydride in methanol-water mixtures. Int Journal of Hydrogen Energy 2009;35:9862-8.
[32]Zhang JS, Fisher TS, Gore JP, Hazra D, Ramachandran PV. Heat of reaction measurements of sodium borohydride alcoholysis and hydrolysis. Int Journal of Hydrogen Energy 2006;31:2292-8.
[33]Cento C, Fislon P, Prosini PP. Hydrogen generation by hydrolysis of NaBH4 . Int Journal of Hydrogen Energy 2009;34:4551-4.
[34]Aiello R, Sharp JH, Matthews MA. Production of hydrogen from chemical hydrides via hydrolysis with steam. Int Journal of Hydrogen Energy 1999;24:1123-30.
[35]Marrero-Alfonso EY, Gray JR, Davis TA, Matthews MA. Hydrolysis of sodium borohydride with steam. Int Journal of Hydrogen Energy 2007;32:4717-22.
[36]Kim JH, Choi KH, Choi YS. Hydrogen generation from solid NaBH4 with catalytic solution for planar air-breathing proton exchange membrane fuel cells. Int Journal of Hydrogen Energy 2010;35:4015-9.
[37]Wu C, Wu F, Bai Y, Zhang H. Cobalt boride catalysts for hydrogen generation from alkaline NaBH4 solution. Materials Letters 2005;59:1748-51.
[38]Liu BH, Li Q. A highly active Co-B catalyst for hydrogen generation from sodium borohydride hydrolysis. Int Journal of Hydrogen Energy 2008;33:7385-91.
[39]Akdim O, Demirci UB, Miele P. More reactive cobalt chloride in the hydrolysis of sodium borohydride. Int Journal of Hydrogen Energy 2009;34:9444-9.
[40]Andrieux J, Swierczynski D, Laversenne L, Garron A, Bennici S, Goutaudier C, Miele P, Auroux A, Bonnetot B. A multifactor study of catalyzed hydrolysis of solid NaBH4 on cobalt nanoparticles: Themodynamics and kinetics. Int Journal of Hydrogen Energy 2009;34:938-51.
[41]Li ZQ, Lu CJ, Xia ZP, Zhou Y, Luo Z. X-ray diffraction patterns of graphite and turbostratic carbon. 2007;45:1686-95.
[42]Khomenko V, Raymundo-Pinero E, Frackowiak E, Beguin F. High-voltage asymmetric supercapacitors operating in aqueous electrolyte. Applied physics. A 2006;82:567-73.
[43]Bonard JM, Dean KA, Coll BF, Klinke C. Field emission of individual carbon nanotubes in the scanning electron microscope. Physical review letters 2002;89:197602.
[44]L. Yuan, X.-H. Lu, X. Xiao, T. Zhai, J. Dai, F. Zhang, B. Hu, X. Wang, L. Gong, J. Chen, Acs Nano 2011;6:656-661.
[45]Han S, Na S, Li W, Xing W. Development of High Water Selective Sodium Alginate-Silica Hybrid Membranes via Sol-gel Technique for Pervaporation Dehydration of Ethanol. Journal of Membrane Science & Technology 2016;6:165.
[46]Lee J, Kong KY, Jung CR, Cho E, Yoon SP, Han J, Lee TG, Nam SW. A structured Co-B catalyst for hydrogen extraction from NaBH4 solution. Catalysis Today 2007;120:305-10.
[47]Krishnan P, Yang TH, Lee WY, Kim CS. PtRu-LiCoO2 - an efficient catalyst for hydrogen generation from sodium borohydride solutions.
Journal of power sources 2005;143:17-23.
[48]Shang Y, Chen R, Jiang G. Kinetic study of NaBH4 hydrolysis over carbon-supported ruthenium. Int Journal of Hydrogen Energy 2008;33:6719-26.
[49]Hung AJ, Tsai SF, Hsu YY, Ku JR, Chen YH, Yu CC. Kinetics of sodium borohydride hydrolysis reaction for hydrogen generation. Int Journal of Hydrogen Energy 2008;33:6205-15.
[50]Zhang JS, Delgass WN, Fisher TS, Gore JP. Kinetics of Ru-catalyzed sodium borohydride hydrolysis. Journal of Power Sources 2007;164:772-81.
[51]Jianming Lu, DB Dreisinger, WC Cooper. Cobalt precipitation by reduction with sodium borohydride. Hydrometallurgy 45 (1997) 305-322.
[52]Adnan Younis, Dewei Chu, Xi Lin, Jiunn Lee, Sean Li. Bipolar resistive switching in p-type Co3O4 nanosheets prepared by electrochemical deposition. Younis et al. Nanoscale Research Letters 2013, 8:36.
[53]MT, Dolla TH, Maxakato NW. Mn-Ni-Co-O Spinel Oxides towards Oxygen Reduction Reaction in Alkaline Medium: Mn0.5Ni0.5Co2O4/C Synergism and Cooperation. Catalysts 2021, 11, 1059.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *