帳號:guest(3.137.218.225)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):范氏青竹
作者(外文):Phan, Thi-Thanh-Truc
論文名稱(中文):聚(3-己基噻吩)混摻原位還原之鈀奈米粒子的形態學研究
論文名稱(外文):Morphological Structure of the Hybrids of Poly(3-hexylthiophene) and Palladium Nanoparticles Synthesized by in-situ Reduction
指導教授(中文):陳信龍
指導教授(外文):Chen, Hsin-Lung
口試委員(中文):蘇群仁
林榆喬
口試委員(外文):Su, Chiun-Ren
Lin, Yu-Chiao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:104032709
出版年(民國):107
畢業學年度:107
語文別:英文
論文頁數:37
中文關鍵詞:聚(3-己基噻吩)鈀奈米粒子
外文關鍵詞:Poly(3-hexylthiophene)Palladium Nanoparticles
相關次數:
  • 推薦推薦:0
  • 點閱點閱:370
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
奈米顆粒(NP)在高分子基材的分散狀態和NP-高分子界面結構態是控制高分子與NP混成材料性質的關鍵因素。通過原位還原金屬鹽類,NP在混成材料中有可能可以做良好的分散。在本論文中,我們透過原位還原法將鈀(Pd)鹽在聚(3-己基噻吩)(P3HT)基材中還原成Pd奈米顆粒,我們系統性探討還原條件對於Pd奈米顆粒在高分子基材中的分散形態。本論文分成兩部分,在第一部分,我們添加還原劑芐醇(BA),使整個系統呈現凝膠態,再藉由加熱誘導原位還原反應,之後利用小角度X光散射解析Pd NP在凝膠中的分散結構。在第二部分中,我們研究沒有BA存在,Pd鹽類在固態基材中藉由熱分解還原後,Pd NP的分散形態。我們使用小角度X射線散射技術解析了還原溫度和Pd鹽類濃度對於形態的影響.
The morphology characterized by the dispersion state of the nanoparticles (NPs) in the polymer matrix and the structure of the NPs-Polymer interface are the key factors controlling the properties of hybrids. Through the in-situ reduction of metal precursor in hybrid, the nanohybrid may be formed at a good dispersion of the NPs through structural arrest. In this thesis, we discussed how the reduction condition of a palladium (Pd) salt dissolved in a conjugated polymer matrix composed of poly(3-hexylthiophene-2,5-diyl) (P3HT) influenced the morphology of the resultant Pd NPs in the hybrid.
For the first part of the work, we prepared Pd NPs through in situ reduction of palladium acetylacetonate (Pd(acac)2) dissolved in P3HT in the present of a reduction agent, benzyl alcohol (BA), as the media for the reaction. The reduction reaction occurred through thermal decomposition of Pd(acac)2 at sufficiently high temperature. We examined the effects of reduction temperature (Tred) and the concentration of Pd(acac)2 precursor on the morphology of nanohybrid using small angle X-ray scattering (SAXS) technique. Using the combination of the power-law model and the hard-sphere model, we were able to resolve the morphological parameters including primary NP size, polydispersity, the mass fractal dimension of the aggregate superstructure and the local volume fraction of the NPs. The fact that the local volume fraction was significantly higher than the overall NP volume fraction attested the aggregation of the primary NPs into large mass-fractal objects. It was proposed that Pd NPs were bridged by the P3HT chains, which in turn gave rise to a repulsive interaction with entropic in origin.
In the second part, we dealt with the hybrid formed without the presence of BA. In this case, the reduction of the salt was induced by thermal decomposition in the P3HT composed of metal salt. We examined the effect of reduction temperature and metal precursor concentration on the dispersion morphology of the Pd NPs in the nanohybrids by SAXS. The Pd NPs thus formed were found to disperse quite uniformly in P3HT matrix. Our results demonstrated that P3HT is a useful polymer matrix that is able to yield Pd NPs with relatively uniform size. Finally, the electrical conductivity of the hybrid films was measured and the results showed significant enhancement of the conductivity in the presence of Pd NPs in P3HT matrix.
摘要 i
Abstract ii
Table of Content iv
List of Figures vi
List of Tables viii
Chapter 1. Introduction 1
1.1. Previous Studies relating to Pd NPs templated by polymer matrix 3
1.2. Motivation of study 8
Chapter 2. P3HT/Pd Nanoparticle Hybrids Prepared by in-situ Reduction in the Presence of Benzyl Alcohol as the Reductio Agent 9
2.1. Experimental 9
2.1.1. Sample preparation 9
2.1.2. Optical Microscopy (OM) Observation 10
2.1.3. Differential Scanning Calorimetry (DSC) Measurement 10
2.1.4. Small and Wide Angle X-ray Scattering (SWAXS) Measurement 10
2.2. Results and discussion 10
2.3. Conclusions 23
Chapter 3. Morphology of P3HT/Pd NP Hybrids Prepared by Thermal Reduction in the Bulk State 24
3.1. Experimental 24
3.1.1. Sample preparation 24
3.1.2. Transmission Electron Microscopy (TEM) observation 24
3.1.3. Differential Scanning Calorimetry (DSC) Measurement 24
3.1.4. Small and Wide Angle X-ray Scattering (SWAXS) Measurement 25
3.2. Results 25
3.3. Conclusions 33
Chapter 4. References 35
1. Buehler, M. I. S. M. J. 2012.
2. Nikolov, S.; Petrov, M.; Lymperakis, L.; Friák, M.; Sachs, C.; Fabritius, H. O.; Raabe, D.; Neugebauer, J. Advanced Materials 2010, 22, (4), 519-526.
3. Liu, R. Materials 2014, 7, (4), 2747-2771.
4. Kickelbick, G. Progress in polymer science 2003, 28, (1), 83-114.
5. Jancar, J.; Douglas, J.; Starr, F. W.; Kumar, S.; Cassagnau, P.; Lesser, A.; Sternstein, S. S.; Buehler, M. Polymer 2010, 51, (15), 3321-3343.
6. Zvelindovsky, A. V., Nanostructured soft matter: experiment, theory, simulation and perspectives. Springer Science & Business Media: 2007.
7. Sandi, G.; Kizilel, R.; Carrado, K. A.; Fernández-Saavedra, R.; Castagnola, N. Electrochimica acta 2005, 50, (19), 3891-3896.
8. Grossiord, N.; Loos, J.; Regev, O.; Koning, C. E. Chemistry of materials 2006, 18, (5), 1089-1099.
9. Hashimoto, T.; Harada, M.; Sakamoto, N. Macromolecules 1999, 32, (20), 6867-6870.
10. Sakamoto, N.; Harada, M.; Hashimoto, T. Macromolecules 2006, 39, (3), 1116-1124.
11. Shin, W.-J.; Kim, J.-Y.; Lee, J.-S. Macromolecular research 2010, 18, (8), 742-746.
12. Tanaka, H.; Koizumi, S.; Hashimoto, T.; Itoh, H.; Satoh, M.; Naka, K.; Chujo, Y. Macromolecules 2007, 40, (12), 4327-4337.
13. Hanemann, T.; Szabó, D. V. Materials 2010, 3, (6), 3468-3517.
14. Sidorov, S.; Bronstein, L.; Davankov, V.; Tsyurupa, M.; Solodovnikov, S.; Valetsky, P.; Wilder, E.; Spontak, R. Chemistry of materials 1999, 11, (11), 3210-3215.
15. Choi, K. M.; Shea, K. J. Journal of the American Chemical Society 1994, 116, (20), 9052-9060.
16. Haryono, A.; Binder, W. H. Small 2006, 2, (5), 600-611.
17. Lin, Y.-C.; Chen, C.-Y.; Chen, H.-L.; Hashimoto, T.; Chen, S.-A.; Li, Y.-C. The Journal of chemical physics 2015, 142, (21), 214905.
18. Akasaka, S.; Mori, H.; Osaka, T.; Mareau, V. H.; Hasegawa, H. Macromolecules 2009, 42, (4), 1194-1202.
19. Percus, J. K.; Yevick, G. J. Physical Review 1958, 110, (1), 1.
20. Lu, L.-M.; Li, H.-B.; Qu, F.; Zhang, X.-B.; Shen, G.-L.; Yu, R.-Q. Biosensors and Bioelectronics 2011, 26, (8), 3500-3504.
21. Mubeen, S.; Zhang, T.; Yoo, B.; Deshusses, M. A.; Myung, N. V. The Journal of Physical Chemistry C 2007, 111, (17), 6321-6327.
22. Huang, J.; Liu, Y.; Hou, H.; You, T. Biosensors and Bioelectronics 2008, 24, (4), 632-637.
23. Park, S. J.; Kwon, O. S.; Jang, J. Chemical Communications 2013, 49, (41), 4673-4675.
24. Sekol, R. C.; Li, X.; Cohen, P.; Doubek, G.; Carmo, M.; Taylor, A. D. Applied Catalysis B: Environmental 2013, 138, 285-293.
25. Patton, J.; Lavrik, N.; Joy, D.; Hunter, S.; Datskos, P.; Smith, D.; Sepaniak, M. Nanotechnology 2012, 23, (46), 465403.
26. Zou, J.; Stewart, S. G.; Raston, C. L.; Iyer, K. S. Chemical Communications 2011, 47, (6), 1803-1805.
27. Zhao, H.; Yang, J.; Wang, L.; Tian, C.; Jiang, B.; Fu, H. Chemical Communications 2011, 47, (7), 2014-2016.
28. Prechtl, M. H.; Scholten, J. D.; Dupont, J. Molecules 2010, 15, (5), 3441-3461.
29. Wang, Z.; Xiao, P.; Shen, B.; He, N. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2006, 276, (1-3), 116-121.
30. Altavilla, C.; Ciliberto, E. Inorganic Nanoparticles: Synthesis, Applications, and Perspectives. ed by Altavilla C and Ciliberto E, CRC Press, New York 2011, 1-17.
31. Henglein, A. The Journal of Physical Chemistry B 2000, 104, (6), 1206-1211.
32. Henglein, A.; Meisel, D. Langmuir 1998, 14, (26), 7392-7396.
33. Sun, S.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. science 2000, 287, (5460), 1989-1992.
34. Pol, V. G.; Srivastava, D.; Palchik, O.; Palchik, V.; Slifkin, M.; Weiss, A.; Gedanken, A. Langmuir 2002, 18, (8), 3352-3357.
35. Vinodgopal, K.; He, Y.; Ashokkumar, M.; Grieser, F. The Journal of Physical Chemistry B 2006, 110, (9), 3849-3852.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *