帳號:guest(3.148.115.173)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱子恆
作者(外文):Chiu, Tzu-Heng
論文名稱(中文):樹脂轉注成型之滲透率與孔隙率的估計
論文名稱(外文):Estimation of Permeability and Porosity in Resin Transfer Molding
指導教授(中文):姚遠
指導教授(外文):Yao, Yuan
口試委員(中文):汪上曉
王智偉
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:104032556
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:61
中文關鍵詞:樹脂轉注成型高分子複合材料滲透率孔隙率平行板電容器電容值介電常數達西定律
外文關鍵詞:Resin Transfer MoldingPolymer CompositesPermeabilityPorosityParallel-Plate CapacitorCapacitanceDielectric ConstantDarcy’s Law
相關次數:
  • 推薦推薦:0
  • 點閱點閱:329
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
樹脂轉注成型(Resin Transfer Molding, RTM)是一種常用來製造高分子複合材料(polymer composites)的技術,在RTM製程中,纖維預織物的滲透率與孔隙率的比值是影響流動的關鍵因素,其隨著纖維預織物的不均勻編織或是不整齊的堆疊而有差異,此參數也決定了樹脂流動的特性,繼而影響最終產品的品質。量測滲透率的方法已經發展成許多不同的量測系統,然而在大部分的文獻中,多半假定材料的孔隙率為一個常數,因此計算出的滲透率數值為一個單一的量值,也代表著局部區域的差異大多被視作為相同的堆疊情形。
在本研究內,提出一套能於樹脂轉注成型中,估算局部滲透率與孔隙率比值的量測方法,此方法能免於裝設壓力傳感器於模具內,便能獲得樹脂流動的局部壓力信息,且再藉由達西定律及灌注過程中,獲得的灌注孔至波前位置的全局滲透率與孔隙率的比值,估算出局部區域的資訊。在此方法中,局部的壓力能藉由灌注孔的壓力估算獲得,實驗中採取可視化分析系統擷取樹脂流動波前的資訊,藉由一連串的推演能估算出兩個已知位置間的全局滲透率與孔隙率比值的局部訊息,且為了驗證此方法的可行性,與文獻所提出的方法進行實驗比對。
在現有的文獻中,大多採用高速攝影機記錄流體流動的波前,然而文獻所提出方法的可行性,需能辨識流體與纖維預織物的顏色差異,當纖維預織物放置於一個非透明的模具抑或是流體的顏色跟纖維預織物相仿,此方法便難以辨別,為了去克服現有方法所遇到的問題,本研究採用平行板電容器紀錄流體流動的波前位置,且進一步推導並驗證電容值與位移的關係為一條線性遞增直線。量測的過程如下述,在灌注開始前,模具內只含有空氣與纖維預織物,隨著樹脂的填充,空氣被樹脂取代,系統中的混合介電常數(dielectric constant)隨樹脂灌入而變動,也導致電容值不斷增加,爾後將灌注時擷取出的電容值轉換成位移,代入達西定律,即可估計出纖維預織物的全局滲透率與孔隙率的比值,並藉由獲得直線的斜率與截距,聯立求解後能獲得玻璃纖維預織物的孔隙率,此研究主要採取樹脂轉注成型的方式估算出玻璃纖維預織物的全局滲透率與孔隙率。
Resin transfer molding (RTM) is one of the most promising techniques for manufacturing high-performance fiber-reinforced plastic (FRP). In RTM, the permeability/porosity ratio of the fiber preform inside the mold is a critical process parameter, which varies with the geometric formation of the fiber reinforcement. This parameter dominates the characteristics of resin flow and, hence, influences the final product quality. Various measurement systems have been developed for permeability estimation. However, most of them assume that the material porosity is a constant and estimate the permeability of the entire fiber preform as a single value, while local variations are often ignored.
In this study, a measurement system is developed to estimate the local values of the permeability/porosity ratio in RTM reinforcements, which does not require mounting a large number of pressure sensors in the mold to obtain the local pressure gradients. Instead, at each sampling time point, the overall (global) permeability/porosity ratio of the fiber preform between the injection gate and the flow front is calculated using Darcy’s law. In the formula, the pressure difference along the flow path is known when the constant-pressure injection is employed, while the position of the flow front is acquired through a visualization system. Then, the local ratio can be derived based on the relationship between the overall and local values. The feasibility of the proposed method is illustrated with the experimental results.
In many research efforts of permeability estimation, the flow-front information is captured by a CCD camera. However, the feasibility of this method relies on the visibility of the melt flow. Whenever the mold is not transparent or the color of the resin melt is similar to that of the fiber, this method is not applicable. To overcome the limitation of the existing method, a parallel-plate capacitor is developed in this research for measuring the flow front. The relationship between the measured capacitance and the position of flow front is approximately linear. The principle of this measurement is as follows. Before mold filling, the medium between the capacitor plates consists of the air and the fiber. Then, the air is gradually replaced by resin melt during filling. Hence, the dielectric constant of the medium is continually varying, resulting in the change of the capacitor value. Based on the information of the resin flow-front positions, the flow velocity is calculated and substituted into the Darcy’s law together with the value of the injection pressure. In doing this, the permeability of the fiber preform can be estimated. In addition, the porosity of the fiber preform can be obtained from the slope and intercept of the regression line between the capacitance and the flow-front position. The proposed method is illustrated with experiments on an RTM process producing glass fiber reinforced plastic (GFRP).
一. 緒論 9
1.1 前言 9
1.2 文獻回顧 11
1.3 研究動機與目的 14
1.4 文章架構 15
二. 研究方法與結果討論 16
2.1 局部滲透率與孔隙率的比值估計 16
2.1.1樹脂轉注成型簡介 16
2.1.2基礎理論模式 17
2.1.3局部滲透率與孔隙率的比值推導 22
2.1.4實驗材料與設備 23
2.1.5實驗流程 30
2.1.6研究結果與討論 32
2.2 利用平行板電容器估算全局滲透率與孔隙率 38
2.2.1平行板電容器簡介 38
2.2.2理論模式 38
2.2.3實驗材料與設備 42
2.2.4實驗流程 46
2.2.5研究結果與討論 48
2.2.5-1九層玻璃纖維驗證結果 48
2.2.5-2七層玻璃纖維驗證結果 52
三. 結論 56
四. 參考文獻 57
[1] S.G. Advani, K. T. Hsiao, (Eds.), Manufacturing techniques for polymer matrix composites (PMCs), Elsevier, 2012.
[2] S.G. Advani, E. M. Sozer, (Eds.), Process modeling in composites manufacturing (Vol. 59), CRC Press, 2010.
[3] D. Nielsen, R. Pitchumani, Control of flow in resin transfer molding with real-time preform permeability estimation, Polymer Compos, vol. 23, pp. 1087-110, 2002.
[4] Jing Li, Xiang Fu, Chuck Zhang, Richard Liang and Ben Wang, Optimal Injection Design for Resin Transfer Molding with In Situ Permeability Measurement and Process Simulation, Journal of Composite Materials, vol. 43, pp. 1695-1712, 2009.
[5] R. Arbter, J.M. Beraud, C. Binetruy, L. Bizet, J. Breard, S. Comas-Cardona, C. Demaria, A. Endruweit, P. Ermanni, F. Gommer, S. Hasanovic, P. Henrat, F. Klunker, B. Laine, S. Lavanchy, S.V. Lomov, A. Long, V. Michaud, G. Morren, E. Ruiz, H. Sol, F. Trochu, B. Verleye, M. Wietgrefe, W. Wu, G. Ziegmann, Experimental determination of the permeability of textiles: A benchmark exercise, Composites: Part A, vol. 42, pp. 1157-1168, 2011.
[6] T.J. Wang, C.H. Wu, and L.J. Lee, In‐plane permeability measurement and analysis in liquid composite molding, Polymer Composites, vol. 15, pp. 278-288, 1994.
[7] Y.J. Lee, J.H. Wu, Y. Hsu, and C.H. Chung, A prediction method on in-plane permeability of mat/roving fibers laminates in vacuum assisted resin transfer molding, Polymer Composites, vol. 27, pp. 665-670, 2006.
[8] Y.J. Lee, Y.T. Jhan, C.H. Chung, Y. Hsu, A prediction method for in-plane permeability and manufacturing applications in VARTM process, Engineering, vol. 3, pp. 691-699, 2011.
[9] P. Simacek, S.G. Advani, Equivalent permeability and flow in compliant porous media, Composites: Part A, vol. 80, pp. 107-110, 2016.
[10] J.J Liu, Y. Sano, A. Nakayama, A simple mathematical model for determining the equivalent permeability of fractured porous media, International Communications in Heat and Mass Transfer, vol. 36, pp. 220-224, 2009.
[11] Y. Luo, I. Verpoest, K. Hoes, M. Vanheule, H. Sol, A. Cardon, Permeability measurement of textile reinforcements with several test fluids, Composites Part A: Applied Science and Manufacturing, vol. 32, pp. 1497-1504, 2001.
[12] E. Ameri, G. Lebrun, L. Laperriere, In-plane permeability characterization of a unidirectional flax/paper reinforcement for composite molding processes, Composite : Part A, vol. 85, pp. 52-64, 2016.
[13] S. Amico, C. Lekakou, An experimental study of the permeability and capillary pressure in resin-transfer molding, Composites Part A: Applied Science and Technology, vol. 61, pp. 1945-1959, 2001.
[14] G. Morren, S. Bossuyt, H. Sol, 2D permeability tensor identification of fibrous reinforcements for RTM using an inverse method, Composites Part A: Applied Science and Manufacturing, vol. 39, pp. 1530-1536, 2008.
[15] Q. Liu, R. S. Parnas, and H. S. Giffard, New set-up for in-plane permeability measurement, Composites Part A: Applied Science and Manufacturing, vol. 38, pp. 954-962, 2007.
[16] K. K. Han, C. W. Lee, B. P. Rice, Measurements of the permeability of fiber preforms and applications, Composites Science and Technology, vol. 60, pp. 2435-2441, 2000.
[17] G. Morren, S. Bossuyt, H. Sol, 2D permeability tensor identification of fibrous reinforcements for RTM using an inverse method, Composites Part A: Applied Science and Manufacturing, vol. 39, pp. 1530-1536, 2008.
[18] S.K. Kim, I.M. Daniel, Determination of three-dimensional permeability of fiber preforms by the inverse parameter estimation technique, Composites Part A: Applied Science and Manufacturing, vol. 34, pp. 421-429, 2003.
[19] M. Li, S.K. Wang, Y.Z. Gu, Y.X. Li, K. Potter, Z.G. Zhang, Evaluation of through-thickness permeability and capillary effect in vacuum assisted liquid molding process, Composites Science and Technology, vol. 72, pp. 873-878, 2012.
[20] L.C. Fang, J.J. Jiang, J.B. Wang, C. Deng, Effect of nesting on the out-of-plane permeability of unidirectional fabric in resin transfer molding, Appl Compos Mater, vol. 22, pp. 231-249, 2015.
[21] X.L. Xiao, A. Endruweit, X.S. Zeng, J.L. Hu, A. Long, Through-thickness permeability study of orthogonal and angle-interlock woven fabrics, J Mater Sci, vol. 50, pp. 1257-1266, 2015.
[22] A. Nabovati, E.W. Llewellin, A.C.M. Sousa, Through-thickness permeability prediction of three-dimensional multifilament woven fabric, Composites Part A, vol. 41, pp. 453-463, 2010.
[23] L. Ding, C. Shih, Z. Liang, C. Zhang, and B. Wang, In situ measurement and monitoring of whole-field permeability profile of fiber preform for liquid composite molding processes, Composites Part A: Applied Science and Manufacturing, vol. 34, pp. 779-789, 2003.
[24] B.J. Wei, Y.S. Chang, Y. Yao, and J. Fang, Online estimation and monitoring of local permeability in resin transfer molding, Polymer Composites, vol. 37, pp. 1249–1258, 2016.
[25] R. J. Johnson, R. Pitchumani, Enhancement of flow in VARTM using localized induction heating, Composites Science and Technology, vol. 63, pp. 2201-2215, 2003.
[26] R. J. Johnson, R. Pitchumani, Simulation of active flow control based on localized preform heating in a VARTM process, Composites Part A : Applied Science and Manufacturing, vol. 37, pp. 1815-1830, 2006.
[27] R. J. Johnson, R. Pitchumani, Flow control using localized induction heating in a VARTM process, Composites Science and Technology, vol. 67, pp. 669–684, 2007.
[28] R. Matsuzaki, S. Kobayashi, A. Todoroki, Y. Mizutani, Full-field monitoring of resin flow using an area-sensor array in a VaRTM process. Composites Part A : Applied Science and Manufacturing, vol. 42, pp. 550-559, 2011.
[29] R. Matsuzaki, S. Kobayashi, A. Todoroki, Y. Mizutani, Control of resin flow/temperature using multifunctional interdigital electrode array film during a VaRTM process. Composites Part A: Applied Science and Manufacturing, vol. 42, pp. 782-793, 2011.
[30] R. Matsuzaki, S. Kobayashi, A. Todoroki, Y. Mizutani, Cross-sectional monitoring of resin impregnation using an area-sensor array in an RTM process. Composites Part A: Applied Science and Manufacturing, vol. 43, pp. 695-702, 2012.
[31] R. Matsuzaki, S. Kobayashi, A. Todoroki, Y. Mizutani, Flow control by progressive forecasting using numerical simulation during vacuum-assisted resin transfer molding. Composites Part A: Applied Science and Manufacturing, vol. 45, pp. 79-87, 2013.
[32] B. Yenilmez, E.M. Sozer, A grid of dielectric sensors to monitor mold filling and resin transfer molding, Composites : Part A, vol. 40, pp. 476-489, 2009.
[33] A.A. Skordos, P.I. Karkanas, I.K. Partridge, A dielectric sensor for measuring flow in resin transfer molding, Meas. Sci. Technol, vol. 11, pp. 25-31, 2000.
[34] P. Carlone, G.S. Palazzo, Unsaturated and saturated flow front tracking in liquid composite molding processes using dielectric sensors, Appl Compos Mater, vol. 22, pp. 543-557, 2015.
[35] 魏百鍵. (2014). 基於局部滲透係數線上估計之樹脂轉注成型監控與流動控制. 國立清華大學化學工程學系學位論文, 1-67.
[36] 陳凱琳. (2005). VARTM應用於複合夾芯材料之技術與數值模流分析.國立台灣大學工程科學及海洋工程學系學位論文,23-25.
[37] A.V. Goncharenko, V.Z. Lozovski, E.F. Venger, Lichtencker’s equation : applicability and limitations, Optics Communications, vol. 174, pp. 19-32, 2000.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *