帳號:guest(3.12.36.130)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝齊峰
作者(外文):Hsieh, Chi-Feng
論文名稱(中文):多孔性碳材料於電容去離子和逆向電容去離子系統之工作電位範圍探討
論文名稱(外文):Determination of the Working Potential Windows of Porous Carbon Materials for Capacitive Deionization and Invert Capacitive Deionization
指導教授(中文):胡啟章
指導教授(外文):Hu, Chi-Chang
口試委員(中文):黃志彬
衛子健
口試委員(外文):Huang, Chih-Pin
Wei, Tzu-Chien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:104032555
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:107
中文關鍵詞:電容去離子參考電極鈀氫化物活性碳氧化石墨烯
外文關鍵詞:Capacitive DeionizationReference Electrodebeta-PdHxActivated CarbonGraphene Oxide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:654
  • 評分評分:*****
  • 下載下載:24
  • 收藏收藏:0
電容去離子系統是一項新穎且可替代傳統海水淡化的技術,是利用多孔性碳材超級電容器於水相電解液中有著電雙層特性,使其具有可逆性吸、脫附離子之能力。
參考電極可測量電極操作電壓,三極式電化學系統常見的銀/氯化銀鹽橋式參考電極並不適合應用在電容去離子的系統中,由於半鹹水的鹽類濃度稀薄,鹽橋中的離子會干擾離子去除量測。銀氯化物電極會與Cl -,Br -,I - 和CN- 產生反應。第一部分研究主要開發鈀氫化物參考電極並做電容去離子系統之電化學分析應用,故本研究使用以 -0.2 V (vs. Ag/AgCl)進行15分鐘陰極極化的鈀氫化物可替代銀/氯化銀鹽橋式參考電極,研究結果驗證出此參考電極可避免產生離子釋出和電極氧化而影響去離子效果評估,同時可測量離子在不同電壓操作的吸、脫附情形長達4小時的穩定。
第二部分主要探討電極材料的表面特性對電容去離子和逆向電容去離子系統之去除離子效能之影響。本研究藉由微波水熱法將氧化石墨烯混摻奈米碳管等進行改質,進而改變其表面官能基含量與活性碳作比較,並以電容去離子系統探討在8 mM NaCl水溶液中的離子吸附、脫附行為,並以電量平衡概念,透過不同電容器組裝找出最佳去離子效果之操作與組裝方式。證明透過鈀氫化物參考電極輔助於適當組裝和電位操作,以氧化石墨烯混摻奈米碳管與活性碳為非對稱式電容器,去離子效能提升至21.33 mg g-1;經部分還原再和活性碳組裝非對稱式電容器,具有最佳逆向電容去離子效能可達25.2 mg g-1。
This Thesis mainly focuses on the capacitive deionization (CDI) studies, which is an alternative and new technology for desalination process. The process utilizes the formation of electric double layer capacitance (EDLC) at the interfaces of porous carbon electrodes which can reversibly adsorb or desorb the salt ions from aqueous solution.
The reference electrode plays an important role in the CDI system. It can be used to understand the relationship between adsorption/ desorption of ions and working potential of various electrode materials by analyzing their electrochemical behavior. However, for the brackish water, it is not suitable to use the Ag/AgCl electrode as the reference electrode in the CDI system due to the extra release of ions from the salt bridge which can interfere the measurement of salt concentration. Furthermore, AgClx electrode can react with anions such as Cl-, Br-, I-, and CN-, thus, it is difficult to apply it in the CDI system.
The first part was developing β-PdHx as an alternate reference electrode for the CDI system. β-PdHx was fabricated by cathodic polarization at -0.2 V (vs. Ag/AgCl) for 15 min and was used as the reference electrode. The results confirmed that β-PdHx not only can avoid the interference of extra ions releasing from the silver electrode or ion exchange salt bridge, and also can operate stably for the electrochemical analysis of salt ions and electrode materials. Therefore, we can find one of the best CDI assembly and operation by using β-PdHx reference electrode.
The second part was investigation of the effects of surface properties of electrode materials on the deionization performance in the capacitive deionization and the invert capacitive deionization system. In this study, we use graphene oxide/carbon nanotubes composite (GO+CNT) which were modified by microwave hydrothermal in order to obtain the electrode materials with different content of oxidative functional group and compared with activated carbon for CDI studies. Sodium chloride (8 mM) was used as target solution for CDI treatment to find the relationship between the various electrode materials and adsorption/desorption of salt ions by using electrochemical analysis. Using β-PdHx reference electrode for CDI system, when the GO+CNT combined with activated carbon as asymmetric capacitors, the deionization efficiency was increased to 21.33 mg g-1. However, when the rGO+CNT and AC assembled asymmetric capacitors, it was found that the best invert capacitance deionization efficiency was 25.20 mg g-1.
中文摘要 I
Abstract II
誌謝 V
目錄 VII
圖目錄 XI
表目錄 XVI
第一章 緒論及理論基礎 1
1-1 電化學原理 1
1-1-1 電化學反應系統 1
1-1-2 參考電極的種類與應用 3
1-1-3 影響電化學系統之因素 7
1-2 電化學電容器 9
1-2-1 超級電容器之簡介與應用 9
1-2-2 超級電容器之儲能機制與分類 11
1-3 電容去離子技術基礎與應用 13
1-3-1 電容去離子與傳統的去離子技術比較 13
1-3-2 電容去離子技術和原理 15
1-3-3 電容去離子電極材料與特性 16
1-3-4 去離子系統的發展與參考電極的應用 20
1-3-5 逆向電容去離子技術 23
1-3-6 電容去離子效能基準 27
1-4 研究動機 29
第二章 實驗方法與儀器介紹 31
2-1 實驗藥品與儀器介紹 31
2-1-1 實驗藥品 31
2-1-2 實驗儀器 32
2-1-3 實驗流程 33
2-2 電極與電極材料製備 34
2-2-1 金屬鈦片基材之製備與處理 34
2-2-2 氧化石墨烯溶液之配製 34
2-2-3 以微波輔助水熱法合成還原氧化石墨烯 36
2-2-4 去離子系統工作電極之製備 36
2-3 電化學實驗 37
2-3-1 電容去離子系統裝置 37
2-3-2 循環伏安法 (Cyclic voltammetry, CV) 38
2-3-3 安培分析法 (Amperometry, i-t curve) 38
2-3-4 計時電位分析法 (Chronopotentiometry, CP) 39
2-3-5 開環路電壓測試 (Open Circuit Potential, OCP) 40
2-3-6 交流阻抗分析法 (A.C. Impedance, EIS) 40
2-4 製作電容去離子系統之參考電極 42
2-4-1 鈀氫化物參考電極的製作 42
2-4-2 銀氯化物參考電極的製作 42
2-5 材料分析儀器介紹 43
2-5-1 X光繞射分析 (X-ray Diffraction analysis, XRD) 43
2-5-2 掃描式電子顯微鏡 (Scan electron microscope, SEM) 45
2-5-3 電子能譜儀 46
2-5-4 拉曼光譜儀 46
2-5-5 比表面積與孔徑分析儀 (Surface area and porosity analyzer) 48
第三章 開發鈀氫化物參考電極應用於電容去離子系統 51
3-1 參考電極於電容去離子系統中的應用 52
3-2 氫原子於鈀絲上吸附電位特性探討 54
3-2-1 氫原子吸附反應之電位於循環伏安法特徵峰探討 54
3-2-2 氫原子吸附反應之不同下限電位的比較 55
3-2-3 不同陰極極化時間對氫原子吸附反應之影響 57
3-2-4 製作鈀氫化物參考電極並探討其穩定性 58
3-3 鈀氫化物參考電極應用於電容去離子系統 61
3-4 鈀氫化物參考電極應用於活性碳電容去離子系統 64
3-4-1 鈀氫化物參考電極對活性碳電化學分析 64
3-4-2 鈀氫化物參考電極對活性碳去離子效能分析 66
3-5 結論 70
第四章 電容去離子與逆向電容去離子之討論 71
4-1 氧化石墨烯作為電極之合成與材料分析 71
4-1-1 以X光繞射分析探討氧化石墨烯及其還原 72
4-1-2 以X 射線光電子能譜儀分析氧化石墨烯及其還原 73
4-1-3 以拉曼光譜儀分析電極材料特性 75
4-1-4 以掃描式電子顯微鏡分析電極材料特性 76
4-1-5 碳材料之氮氣吸脫附曲線表面積與孔洞分析 78
4-2 以電化學方法探討電極材料與材料表面官能基之關係 82
4-2-1 以循環伏安法探討兩電極於電容去離子系統中操作電位範圍 83
4-2-2 以循環伏安法和交流阻抗分析法探討兩電極材料零和電位 86
4-2-3 不同含氧官能基石墨烯混摻奈米碳管之電極材料在電容去離子系統特性比較 88
4-3 多孔性碳材料電容去離子系統之組裝 90
4-3-1 比較多孔性碳材料之組裝應用於電容去離子系統 90
4-3-2 正逆向電容去離子系統之離子移動情況討論 96
4-4 結論 98
第五章 總結與未來展望 99
5-1 總結 99
5-2 未來展望 100
參考文獻 101
[1] A. J. Bard, L. R. Faulkner, J. Leddy, and C. G. Zoski, Electrochemical methods: fundamentals and applications. Wiley New York, 1980.
[2] D. R. Crow, Principles and applications of electrochemistry. CRC Press, 1994.
[3] 胡啟章, 電化學原理與方法. 五南圖書出版股份有限公司, 2002.
[4] 田福助, 電化學: 理論與應用. 高立出版, 1987.
[5] K. E. T.-A. John Newman, Electrochemical Systems. John Wiley & Sons, Inc., 2004.
[6] B. N. Patrick, Rajashree Chakravarti, and T. M. Devine., "Palladium Hydride as a Reference Electrode in Aprotic Solutions.," Journal of The Electrochemical Society, vol. 163.3, pp. H171-H179, 2016.
[7] D. R. Gabe, et al., "The rotating cylinder electrode: its continued development and application.," Journal of Applied Electrochemistry, vol. 28.8, pp. 759-780, 1998.
[8] Y. Y. Wu, Hsu, C. T., Chang, T. F. M., Sone, M., & Hu, C. C., "Preparation and characterization of palladium-hydride-coated titanium as a reference electrode for the supercritical carbon dioxide emulsion electrochemical system," Electrochimica Acta, vol. 155, pp. 109-216, 2015.
[9] D. Pletcher and F. C. Walsh, Industrial electrochemistry. Springer Science & Business Media, 2012.
[10] A. M. Couper, D. Pletcher, and F. C. Walsh, "Electrode materials for electrosynthesis," Chemical Reviews, vol. 90, no. 5, pp. 837-865, 1990.
[11] D. Galizzioli, F. Tantardini, and S. Trasatti, "Ruthenium dioxide: a new electrode material. II. Non-stoichiometry and energetics of electrode reactions in acid solutions," Journal of Applied Electrochemistry, vol. 5, no. 3, pp. 203-214, 1975.
[12] B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media, 2013.
[13] R. Kötz and M. Carlen, "Principles and applications of electrochemical capacitors," Electrochimica Acta, vol. 45, no. 15, pp. 2483-2498, 2000.
[14] S. Nomoto, H. Nakata, K. Yoshioka, A. Yoshida, and H. Yoneda, "Advanced capacitors and their application," Journal of power sources, vol. 97, pp. 807-811, 2001.
[15] J. Pyper, "Israel is creating a water surplus using desalination," E&E Publishing, 2014.
[16] 張. 曹知行, "海水淡化的發展," 科學發展, vol. 第438期, pp. 32-39, 2009.
[17] Y. Oren, "Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review)," Desalination, vol. 228(1), pp. 10-29, 2008.
[18] X. Gao, et al., "Enhanced salt removal in an inverted capacitive deionization cell using amine modified microporous carbon cathodes.," Environmental science & technolog, vol. 49.18, pp. 10920-10926, 2015.
[19] X. Gao, et al., "Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior.," Energy & Environmental Science, vol. 8.3, pp. 897-909, 2015.
[20] S. Porada, Zhao, R., Van Der Wal, A., Presser, V., & Biesheuvel, P. M., "Review on the science and technology of water desalination by capacitive deionization.," Progress in Materials Science, vol. 58, no. 8, pp. 1388-1442, 2013.
[21] L. Zou, Li, L., Song, H., & Morris, G, "Using mesoporous carbon electrodes for brackish water desalination. ," Water research, vol. 42(8), pp. 2340-2348, 2008.
[22] Z. Chen, Song, C., Sun, X., Guo, H., & Zhu, G, "Kinetic and isotherm studies on the electrosorption of NaCl from aqueous solutions by activated carbon electrodes.," Desalination, vol. 267(2), pp. 239-243, 2011.
[23] 廖英凱. (2015). 輕薄的石墨烯,超級電容的問世關鍵.
[24] S. M. Paek, Yoo, E., & Honma, I, "Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure," Nano letters, vol. 9(1), pp. 72-75, 2008.
[25] T. N. Tuan, Chung, S., Lee, J. K., & Lee, J, " Improvement of water softening efficiency in capacitive deionization by ultra purification process of reduced graphene oxide," Current Applied Physics, vol. 15(11), pp. 1397-1401, 2015.
[26] L. L. Zhang, & Zhao, X. S, "Carbon-based materials as supercapacitor electrodes," Chemical Society Reviews, vol. 38(9), pp. 2520-2531, 2009.
[27] C. H. Hou, Liu, N. L., Hsu, H. L., & Den, W, "Development of multi-walled carbon nanotube/poly (vinyl alcohol) composite as electrode for capacitive deionization.," Separation and Purification Technology, vol. 130, no. 7-14, 2014.
[28] S. Zhao, Yan, T., Wang, H., Zhang, J., Shi, L., & Zhang, D., "Creating 3D Hierarchical Carbon Architectures with Micro-, Meso-, and Macropores via a Simple Self-Blowing Strategy for a Flow-through Deionization Capacitor.," ACS Applied Materials & Interfaces, vol. 8, no. 28, pp. 18027-18035, 2016.
[29] W. Kong, Duan, X., Ge, Y., Liu, H., Hu, J., & Duan, X, "Holey graphene hydrogel with in-plane pores for high-performance capacitive desalination.," Nano Research, vol. 9, no. 8, pp. 2458-2466, 2016.
[30] Y. Wei, Huo, Y., Tian, G., Meng, Q., & Cao, B., "Nitrogen-doped functional graphene nanocomposites for capacitive deionization of NaCl aqueous solutions.," Journal of Solid State Electrochemistry, vol. 20, no. 8, pp. 2351-2362, 2016.
[31] H. Wang, Yan, T., Shi, L., Chen, G., Zhang, J., & Zhang, D., "Creating Nitrogen-Doped Hollow Multiyolk@ Shell Carbon as High Performance Electrodes for Flow-Through Deionization Capacitors.," ACS Sustainable Chemistry & Engineering, vol. 5, no. 4, pp. 3329-3338, 2017.
[32] Y. Cai, Wang, Y., Han, X., Zhang, L., Xu, S., & Wang, J, "Optimization on electrode assemblies based on ion-doped polypyrrole/carbon nanotube composite in capacitive deionization process.," Journal of Electroanalytical Chemistry, vol. 768, pp. 72-80, 2016.
[33] X. Gao, Omosebi, A., Holubowitch, N., Liu, A., Ruh, K., Landon, J., & Liu, K. , "Polymer-coated composite anodes for efficient and stable capacitive deionization.," Desalination, vol. 399, pp. 16-20, 2016.
[34] Y. H. Liu, Hsi, H. C., Li, K. C., & Hou, C. H., "Electrodeposited manganese dioxide/activated carbon composite as a high-performance electrode material for capacitive deionization.," ACS Sustainable Chemistry & Engineering, vol. 4, no. 9, pp. 4762-4770, 2016.
[35] J. Kim, Peck, D. H., Lee, B., Yoon, S. H., & Jung, D. H, "An asymmetrical activated carbon electrode configuration for increased pore utilization in a membrane-assisted capacitive deionization system," New Carbon Materials, vol. 31, no. 4, pp. 378-385, 2016.
[36] G. Wang, Qian, B., Dong, Q., Yang, J., Zhao, Z., & Qiu, J., "Highly mesoporous activated carbon electrode for capacitive deionization.," Separation and Purification Technology, vol. 103, pp. 216-221, 2013.
[37] P. I. Liu, Chung, L. C., Ho, C. H., Shao, H., Liang, T. M., Chang, M. C., ... & Horng, R. Y., "Comparative insight into the capacitive deionization behavior of the activated carbon electrodes by two electrochemical techniques. ," Desalination, vol. 379, pp. 34-41, 2016.
[38] M. W. Ryoo, & Seo, G, " Improvement in capacitive deionization function of activated carbon cloth by titania modification.," Water Research, vol. 37, no. 7, pp. 1527-1534, 2003.
[39] J. Choi, Lee, H., & Hong, S., "Capacitive deionization (CDI) integrated with monovalent cation selective membrane for producing divalent cation-rich solution.," Desalination, vol. 400, pp. 38-46, 2016.
[40] X. Gu, Deng, Y., & Wang, C, "Fabrication of Anion-Exchange Polymer Layered Graphene-Melamine Electrodes for Membrane Capacitive Deionization. ," ACS Sustainable Chemistry & Engineering, 2016.
[41] I. Cohen, Avraham, E., Bouhadana, Y., Soffer, A., & Aurbach, D., "Long term stability of capacitive de-ionization processes for water desalination: the challenge of positive electrodes corrosion.," Electrochimica Acta, vol. 106, no. 91-100, 2013.
[42] Y. Bouhadana, Avraham, E., Noked, M., Ben-Tzion, M., Soffer, A., & Aurbach, D., "Capacitive deionization of NaCl solutions at non-steady-state conditions: inversion functionality of the carbon electrodes.," The Journal of Physical Chemistry C, vol. 115, no. 33, pp. 16567-16573, 2011.
[43] I. Cohen, Avraham, E., Noked, M., Soffer, A., & Aurbach, D., "Enhanced charge efficiency in capacitive deionization achieved by surface-treated electrodes and by means of a third electrode.," The Journal of Physical Chemistry C, vol. 115, no. 40, pp. 19856-19863, 2011.
[44] B. Shapira, Avraham, E., & Aurbach, D., "Side Reactions in Capacitive Deionization (CDI) Processes: The Role of Oxygen Reduction.," Electrochimica Acta, vol. 220, no. 285-295, 2016.
[45] Z. Zhang, Zou, L., Aubry, C., Jouiad, M., & Hao, Z., "Chemically crosslinked rGO laminate film as an ion selective barrier of composite membrane.," Journal of Membrane Science, vol. 515, no. 204-211, 2016.
[46] X. Liu, Chen, T., Qiao, W. C., Wang, Z., & Yu, L., "Fabrication of graphene/activated carbon nanofiber composites for high performance capacitive deionization.," Journal of the Taiwan Institute of Chemical Engineers, vol. 72, pp. 213-219, 2017.
[47] S. Porada, Weinstein, L., Dash, R., Van Der Wal, A., Bryjak, M., Gogotsi, Y., & Biesheuvel, P. M., "Water desalination using capacitive deionization with microporous carbon electrodes.," ACS applied materials & interfaces, vol. 4, no. 3, pp. 1194-1199, 2012.
[48] A. Omosebi, Gao, X., Rentschler, J., Landon, J., & Liu, K, "Continuous operation of membrane capacitive deionization cells assembled with dissimilar potential of zero charge electrode pairs," Journal of colloid and interface science, vol. 446, pp. 345-351, 2015.
[49] T. Wu, et al., "Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization," Water research, vol. 93, pp. 30-37, 2016.
[50] X. Gao, Omosebi, A., Landon, J., & Liu, K, "Dependence of the Capacitive Deionization Performance on Potential of Zero Charge Shifting of Carbon Xerogel Electrodes during Long-Term Operation," Journal of The Electrochemical Society, vol. 16(12), pp. E159-E166, 2014.
[51] L.-H. Shao, et al., "Electrocapillary maximum and potential of zero charge of carbon aerogel," Physical Chemistry Chemical Physics, vol. 12(27), pp. 7580-7587, 2010.
[52] T. Kim, & Yoon, J, "CDI ragone plot as a functional tool to evaluate desalination performance in capacitive deionization," RSC Advances, vol. 5(2), pp. 1456-1461, 2015.
[53] S. Porada, Zhao, R., Van Der Wal, A., Presser, V., & Biesheuvel, P. M., "Review on the science and technology of water desalination by capacitive deionization," Progress in Materials Science, vol. 58(8), pp. 1388-1442, 2013.
[54] H. Wendt, "Electrocatalysis in organic electrochemistry.," Electrochimica Acta, vol. 29(11), pp. 1513-1525, 1984.
[55] 伍秀菁,汪若文,林美吟, 儀器總覽-表面分析儀器. 行政院國家科學委員會精密儀器發展中心, 2003.
[56] W. A. P. Luck, Berichte der Bunsengesellschaft für physikalischeChemie. 1990.
[57] A. K. S. C.N.R. Rao, K.S. Subrahmanyam, A. Govindaraj, Angewandte Chemie International Edition, vol. 48, pp. 7752-7777, 2009.
[58] B. C. Lippens, & De Boer, J. H., "Studies on pore systems in catalysts: V. The t method.," Journal of Catalysis, vol. 4, no. 3, pp. 319-323., 1965.
[59] K. S. Sing, "Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)." Pure and applied chemistry, vol. 57, no. 4, pp. 603-619, 1985.
[60] M. Thommes, "Physical adsorption characterization of nanoporous materials.," Chemie Ingenieur Technik, vol. 82, no. 7, pp. 1059-1073, 2010.
[61] E. Avraham, Noked, M., Bouhadana, Y., Soffer, A., & Aurbach, D, "Limitations of charge efficiency in capacitive deionization processes III: The behavior of surface oxidized activated carbon electrodes.," Electrochimica Acta, vol. 56(1), pp. 441-447, 2010.
[62] H. Yin, et al., "Three‐dimensional graphene/metal oxide nanoparticle hybrids for high‐performance capacitive deionization of saline water.," Advanced Materials, vol. 25(43), pp. 6270-6276, 2013.
[63] E. Avraham, Noked, M., Cohen, I., Soffer, A., & Aurbach, D, "The dependence of the desalination performance in capacitive deionization processes on the electrodes PZC," Journal of The Electrochemical Society, vol. 158(12), pp. P168-P173, 2011.
[64] R. C. Baetzold, "Chemisorption of halogen on copper and silver clusters," Journal of the American Chemical Society, vol. 103(20), pp. 6116-6120, 1981.
[65] C.-C. Hu, and Ten-Chin Wen, "Voltammetric investigation of palladium oxides—II. Their formation/reduction behaviour during glucose oxidation in NaOH," Electrochimica acta, vol. 39(18), pp. 2763-2771, 1994.
[66] C.-C. Hu, and Ten-Chin Wen, "Voltammetric investigation of palladium oxides—I: Their formation/reduction in NaOH," Electrochimica acta, vol. 40(4), pp. 495-503, 1995.
[67] M. Grdeń, Łukaszewski, M., Jerkiewicz, G., & Czerwiński, A, "Electrochemical behaviour of palladium electrode: oxidation, electrodissolution and ionic adsorption," Electrochimica Acta, vol. 53(26), pp. 7583-7598, 2008.
[68] Z. Dai, et al, "Cell voltage versus electrode potential range in aqueous supercapacitors.," Scientific reports, vol. 5, 2015.
[69] Y. J. Peng, Wu, T. H., Hsu, C. T., Li, S. M., Chen, M. G., & Hu, C. C., "Electrochemical characteristics of the reduced graphene oxide/carbon nanotube/polypyrrole composites for aqueous asymmetric supercapacitors," Journal of Power Sources, vol. 272, pp. 970-978, 2014.
[70] H. C. Chien, Wu, T. H., Rajkumar, M., & Hu, C. C., "Effects of buffer agents on hydrogen adsorption and desorption at/within activated carbon for the negative electrode of aqueous asymmetric supercapacitors," Electrochimica Acta, vol. 205, pp. 1-7, 2016.
[71] C. T. Hsu, Hu, C. C., Wu, T. H., Chen, J. C., & Rajkumar, M., "How the electrochemical reversibility of a battery-type material affects the charge balance and performances of asymmetric supercapacitors.," Electrochimica Acta, vol. 146, no. 759-768, 2014.
[72] T. N. Blanton, and Debasis Majumdar, "X-ray diffraction characterization of polymer intercalated graphite oxide.," Powder Diffraction, vol. 27, no. 02, pp. 104-107, 2012.
[73] H. J. Shin, et al., "Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance," Advanced Functional Materials, vol. 19, no. 12, pp. 1987-1992, 2009.
[74] H.-K. Jeong, et al, "Evidence of graphitic AB stacking order of graphite oxides," Journal of the American Chemical Society, vol. 130, no. 4, pp. 1362-1366, 2008.
[75] A. Cao, Xu, C., Liang, J., Wu, D., & Wei, B, "X-ray diffraction characterization on the alignment degree of carbon nanotubes," Chemical Physics Letters, vol. 344, no. 1, pp. 13-17, 2001.
[76] Z. Li, Yao, Y., Lin, Z., Moon, K. S., Lin, W., & Wong, C, "Ultrafast, dry microwave synthesis of graphene sheets," Journal of Materials Chemistry, vol. 20, no. 23, pp. 4781-4783, 2010.
[77] S. Stankovich, et al, "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," carbon, vol. 47, no. 7, pp. 1558-1565, 2007.
[78] J. Yan, et al., "Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors," Electrochimica Acta, vol. 55, no. 23, pp. 6973-6978, 2010.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *