|
[1] A. J. Bard, L. R. Faulkner, J. Leddy, and C. G. Zoski, Electrochemical methods: fundamentals and applications. Wiley New York, 1980. [2] D. R. Crow, Principles and applications of electrochemistry. CRC Press, 1994. [3] 胡啟章, 電化學原理與方法. 五南圖書出版股份有限公司, 2002. [4] 田福助, 電化學: 理論與應用. 高立出版, 1987. [5] K. E. T.-A. John Newman, Electrochemical Systems. John Wiley & Sons, Inc., 2004. [6] B. N. Patrick, Rajashree Chakravarti, and T. M. Devine., "Palladium Hydride as a Reference Electrode in Aprotic Solutions.," Journal of The Electrochemical Society, vol. 163.3, pp. H171-H179, 2016. [7] D. R. Gabe, et al., "The rotating cylinder electrode: its continued development and application.," Journal of Applied Electrochemistry, vol. 28.8, pp. 759-780, 1998. [8] Y. Y. Wu, Hsu, C. T., Chang, T. F. M., Sone, M., & Hu, C. C., "Preparation and characterization of palladium-hydride-coated titanium as a reference electrode for the supercritical carbon dioxide emulsion electrochemical system," Electrochimica Acta, vol. 155, pp. 109-216, 2015. [9] D. Pletcher and F. C. Walsh, Industrial electrochemistry. Springer Science & Business Media, 2012. [10] A. M. Couper, D. Pletcher, and F. C. Walsh, "Electrode materials for electrosynthesis," Chemical Reviews, vol. 90, no. 5, pp. 837-865, 1990. [11] D. Galizzioli, F. Tantardini, and S. Trasatti, "Ruthenium dioxide: a new electrode material. II. Non-stoichiometry and energetics of electrode reactions in acid solutions," Journal of Applied Electrochemistry, vol. 5, no. 3, pp. 203-214, 1975. [12] B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media, 2013. [13] R. Kötz and M. Carlen, "Principles and applications of electrochemical capacitors," Electrochimica Acta, vol. 45, no. 15, pp. 2483-2498, 2000. [14] S. Nomoto, H. Nakata, K. Yoshioka, A. Yoshida, and H. Yoneda, "Advanced capacitors and their application," Journal of power sources, vol. 97, pp. 807-811, 2001. [15] J. Pyper, "Israel is creating a water surplus using desalination," E&E Publishing, 2014. [16] 張. 曹知行, "海水淡化的發展," 科學發展, vol. 第438期, pp. 32-39, 2009. [17] Y. Oren, "Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review)," Desalination, vol. 228(1), pp. 10-29, 2008. [18] X. Gao, et al., "Enhanced salt removal in an inverted capacitive deionization cell using amine modified microporous carbon cathodes.," Environmental science & technolog, vol. 49.18, pp. 10920-10926, 2015. [19] X. Gao, et al., "Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior.," Energy & Environmental Science, vol. 8.3, pp. 897-909, 2015. [20] S. Porada, Zhao, R., Van Der Wal, A., Presser, V., & Biesheuvel, P. M., "Review on the science and technology of water desalination by capacitive deionization.," Progress in Materials Science, vol. 58, no. 8, pp. 1388-1442, 2013. [21] L. Zou, Li, L., Song, H., & Morris, G, "Using mesoporous carbon electrodes for brackish water desalination. ," Water research, vol. 42(8), pp. 2340-2348, 2008. [22] Z. Chen, Song, C., Sun, X., Guo, H., & Zhu, G, "Kinetic and isotherm studies on the electrosorption of NaCl from aqueous solutions by activated carbon electrodes.," Desalination, vol. 267(2), pp. 239-243, 2011. [23] 廖英凱. (2015). 輕薄的石墨烯,超級電容的問世關鍵. [24] S. M. Paek, Yoo, E., & Honma, I, "Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure," Nano letters, vol. 9(1), pp. 72-75, 2008. [25] T. N. Tuan, Chung, S., Lee, J. K., & Lee, J, " Improvement of water softening efficiency in capacitive deionization by ultra purification process of reduced graphene oxide," Current Applied Physics, vol. 15(11), pp. 1397-1401, 2015. [26] L. L. Zhang, & Zhao, X. S, "Carbon-based materials as supercapacitor electrodes," Chemical Society Reviews, vol. 38(9), pp. 2520-2531, 2009. [27] C. H. Hou, Liu, N. L., Hsu, H. L., & Den, W, "Development of multi-walled carbon nanotube/poly (vinyl alcohol) composite as electrode for capacitive deionization.," Separation and Purification Technology, vol. 130, no. 7-14, 2014. [28] S. Zhao, Yan, T., Wang, H., Zhang, J., Shi, L., & Zhang, D., "Creating 3D Hierarchical Carbon Architectures with Micro-, Meso-, and Macropores via a Simple Self-Blowing Strategy for a Flow-through Deionization Capacitor.," ACS Applied Materials & Interfaces, vol. 8, no. 28, pp. 18027-18035, 2016. [29] W. Kong, Duan, X., Ge, Y., Liu, H., Hu, J., & Duan, X, "Holey graphene hydrogel with in-plane pores for high-performance capacitive desalination.," Nano Research, vol. 9, no. 8, pp. 2458-2466, 2016. [30] Y. Wei, Huo, Y., Tian, G., Meng, Q., & Cao, B., "Nitrogen-doped functional graphene nanocomposites for capacitive deionization of NaCl aqueous solutions.," Journal of Solid State Electrochemistry, vol. 20, no. 8, pp. 2351-2362, 2016. [31] H. Wang, Yan, T., Shi, L., Chen, G., Zhang, J., & Zhang, D., "Creating Nitrogen-Doped Hollow Multiyolk@ Shell Carbon as High Performance Electrodes for Flow-Through Deionization Capacitors.," ACS Sustainable Chemistry & Engineering, vol. 5, no. 4, pp. 3329-3338, 2017. [32] Y. Cai, Wang, Y., Han, X., Zhang, L., Xu, S., & Wang, J, "Optimization on electrode assemblies based on ion-doped polypyrrole/carbon nanotube composite in capacitive deionization process.," Journal of Electroanalytical Chemistry, vol. 768, pp. 72-80, 2016. [33] X. Gao, Omosebi, A., Holubowitch, N., Liu, A., Ruh, K., Landon, J., & Liu, K. , "Polymer-coated composite anodes for efficient and stable capacitive deionization.," Desalination, vol. 399, pp. 16-20, 2016. [34] Y. H. Liu, Hsi, H. C., Li, K. C., & Hou, C. H., "Electrodeposited manganese dioxide/activated carbon composite as a high-performance electrode material for capacitive deionization.," ACS Sustainable Chemistry & Engineering, vol. 4, no. 9, pp. 4762-4770, 2016. [35] J. Kim, Peck, D. H., Lee, B., Yoon, S. H., & Jung, D. H, "An asymmetrical activated carbon electrode configuration for increased pore utilization in a membrane-assisted capacitive deionization system," New Carbon Materials, vol. 31, no. 4, pp. 378-385, 2016. [36] G. Wang, Qian, B., Dong, Q., Yang, J., Zhao, Z., & Qiu, J., "Highly mesoporous activated carbon electrode for capacitive deionization.," Separation and Purification Technology, vol. 103, pp. 216-221, 2013. [37] P. I. Liu, Chung, L. C., Ho, C. H., Shao, H., Liang, T. M., Chang, M. C., ... & Horng, R. Y., "Comparative insight into the capacitive deionization behavior of the activated carbon electrodes by two electrochemical techniques. ," Desalination, vol. 379, pp. 34-41, 2016. [38] M. W. Ryoo, & Seo, G, " Improvement in capacitive deionization function of activated carbon cloth by titania modification.," Water Research, vol. 37, no. 7, pp. 1527-1534, 2003. [39] J. Choi, Lee, H., & Hong, S., "Capacitive deionization (CDI) integrated with monovalent cation selective membrane for producing divalent cation-rich solution.," Desalination, vol. 400, pp. 38-46, 2016. [40] X. Gu, Deng, Y., & Wang, C, "Fabrication of Anion-Exchange Polymer Layered Graphene-Melamine Electrodes for Membrane Capacitive Deionization. ," ACS Sustainable Chemistry & Engineering, 2016. [41] I. Cohen, Avraham, E., Bouhadana, Y., Soffer, A., & Aurbach, D., "Long term stability of capacitive de-ionization processes for water desalination: the challenge of positive electrodes corrosion.," Electrochimica Acta, vol. 106, no. 91-100, 2013. [42] Y. Bouhadana, Avraham, E., Noked, M., Ben-Tzion, M., Soffer, A., & Aurbach, D., "Capacitive deionization of NaCl solutions at non-steady-state conditions: inversion functionality of the carbon electrodes.," The Journal of Physical Chemistry C, vol. 115, no. 33, pp. 16567-16573, 2011. [43] I. Cohen, Avraham, E., Noked, M., Soffer, A., & Aurbach, D., "Enhanced charge efficiency in capacitive deionization achieved by surface-treated electrodes and by means of a third electrode.," The Journal of Physical Chemistry C, vol. 115, no. 40, pp. 19856-19863, 2011. [44] B. Shapira, Avraham, E., & Aurbach, D., "Side Reactions in Capacitive Deionization (CDI) Processes: The Role of Oxygen Reduction.," Electrochimica Acta, vol. 220, no. 285-295, 2016. [45] Z. Zhang, Zou, L., Aubry, C., Jouiad, M., & Hao, Z., "Chemically crosslinked rGO laminate film as an ion selective barrier of composite membrane.," Journal of Membrane Science, vol. 515, no. 204-211, 2016. [46] X. Liu, Chen, T., Qiao, W. C., Wang, Z., & Yu, L., "Fabrication of graphene/activated carbon nanofiber composites for high performance capacitive deionization.," Journal of the Taiwan Institute of Chemical Engineers, vol. 72, pp. 213-219, 2017. [47] S. Porada, Weinstein, L., Dash, R., Van Der Wal, A., Bryjak, M., Gogotsi, Y., & Biesheuvel, P. M., "Water desalination using capacitive deionization with microporous carbon electrodes.," ACS applied materials & interfaces, vol. 4, no. 3, pp. 1194-1199, 2012. [48] A. Omosebi, Gao, X., Rentschler, J., Landon, J., & Liu, K, "Continuous operation of membrane capacitive deionization cells assembled with dissimilar potential of zero charge electrode pairs," Journal of colloid and interface science, vol. 446, pp. 345-351, 2015. [49] T. Wu, et al., "Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization," Water research, vol. 93, pp. 30-37, 2016. [50] X. Gao, Omosebi, A., Landon, J., & Liu, K, "Dependence of the Capacitive Deionization Performance on Potential of Zero Charge Shifting of Carbon Xerogel Electrodes during Long-Term Operation," Journal of The Electrochemical Society, vol. 16(12), pp. E159-E166, 2014. [51] L.-H. Shao, et al., "Electrocapillary maximum and potential of zero charge of carbon aerogel," Physical Chemistry Chemical Physics, vol. 12(27), pp. 7580-7587, 2010. [52] T. Kim, & Yoon, J, "CDI ragone plot as a functional tool to evaluate desalination performance in capacitive deionization," RSC Advances, vol. 5(2), pp. 1456-1461, 2015. [53] S. Porada, Zhao, R., Van Der Wal, A., Presser, V., & Biesheuvel, P. M., "Review on the science and technology of water desalination by capacitive deionization," Progress in Materials Science, vol. 58(8), pp. 1388-1442, 2013. [54] H. Wendt, "Electrocatalysis in organic electrochemistry.," Electrochimica Acta, vol. 29(11), pp. 1513-1525, 1984. [55] 伍秀菁,汪若文,林美吟, 儀器總覽-表面分析儀器. 行政院國家科學委員會精密儀器發展中心, 2003. [56] W. A. P. Luck, Berichte der Bunsengesellschaft für physikalischeChemie. 1990. [57] A. K. S. C.N.R. Rao, K.S. Subrahmanyam, A. Govindaraj, Angewandte Chemie International Edition, vol. 48, pp. 7752-7777, 2009. [58] B. C. Lippens, & De Boer, J. H., "Studies on pore systems in catalysts: V. The t method.," Journal of Catalysis, vol. 4, no. 3, pp. 319-323., 1965. [59] K. S. Sing, "Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)." Pure and applied chemistry, vol. 57, no. 4, pp. 603-619, 1985. [60] M. Thommes, "Physical adsorption characterization of nanoporous materials.," Chemie Ingenieur Technik, vol. 82, no. 7, pp. 1059-1073, 2010. [61] E. Avraham, Noked, M., Bouhadana, Y., Soffer, A., & Aurbach, D, "Limitations of charge efficiency in capacitive deionization processes III: The behavior of surface oxidized activated carbon electrodes.," Electrochimica Acta, vol. 56(1), pp. 441-447, 2010. [62] H. Yin, et al., "Three‐dimensional graphene/metal oxide nanoparticle hybrids for high‐performance capacitive deionization of saline water.," Advanced Materials, vol. 25(43), pp. 6270-6276, 2013. [63] E. Avraham, Noked, M., Cohen, I., Soffer, A., & Aurbach, D, "The dependence of the desalination performance in capacitive deionization processes on the electrodes PZC," Journal of The Electrochemical Society, vol. 158(12), pp. P168-P173, 2011. [64] R. C. Baetzold, "Chemisorption of halogen on copper and silver clusters," Journal of the American Chemical Society, vol. 103(20), pp. 6116-6120, 1981. [65] C.-C. Hu, and Ten-Chin Wen, "Voltammetric investigation of palladium oxides—II. Their formation/reduction behaviour during glucose oxidation in NaOH," Electrochimica acta, vol. 39(18), pp. 2763-2771, 1994. [66] C.-C. Hu, and Ten-Chin Wen, "Voltammetric investigation of palladium oxides—I: Their formation/reduction in NaOH," Electrochimica acta, vol. 40(4), pp. 495-503, 1995. [67] M. Grdeń, Łukaszewski, M., Jerkiewicz, G., & Czerwiński, A, "Electrochemical behaviour of palladium electrode: oxidation, electrodissolution and ionic adsorption," Electrochimica Acta, vol. 53(26), pp. 7583-7598, 2008. [68] Z. Dai, et al, "Cell voltage versus electrode potential range in aqueous supercapacitors.," Scientific reports, vol. 5, 2015. [69] Y. J. Peng, Wu, T. H., Hsu, C. T., Li, S. M., Chen, M. G., & Hu, C. C., "Electrochemical characteristics of the reduced graphene oxide/carbon nanotube/polypyrrole composites for aqueous asymmetric supercapacitors," Journal of Power Sources, vol. 272, pp. 970-978, 2014. [70] H. C. Chien, Wu, T. H., Rajkumar, M., & Hu, C. C., "Effects of buffer agents on hydrogen adsorption and desorption at/within activated carbon for the negative electrode of aqueous asymmetric supercapacitors," Electrochimica Acta, vol. 205, pp. 1-7, 2016. [71] C. T. Hsu, Hu, C. C., Wu, T. H., Chen, J. C., & Rajkumar, M., "How the electrochemical reversibility of a battery-type material affects the charge balance and performances of asymmetric supercapacitors.," Electrochimica Acta, vol. 146, no. 759-768, 2014. [72] T. N. Blanton, and Debasis Majumdar, "X-ray diffraction characterization of polymer intercalated graphite oxide.," Powder Diffraction, vol. 27, no. 02, pp. 104-107, 2012. [73] H. J. Shin, et al., "Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance," Advanced Functional Materials, vol. 19, no. 12, pp. 1987-1992, 2009. [74] H.-K. Jeong, et al, "Evidence of graphitic AB stacking order of graphite oxides," Journal of the American Chemical Society, vol. 130, no. 4, pp. 1362-1366, 2008. [75] A. Cao, Xu, C., Liang, J., Wu, D., & Wei, B, "X-ray diffraction characterization on the alignment degree of carbon nanotubes," Chemical Physics Letters, vol. 344, no. 1, pp. 13-17, 2001. [76] Z. Li, Yao, Y., Lin, Z., Moon, K. S., Lin, W., & Wong, C, "Ultrafast, dry microwave synthesis of graphene sheets," Journal of Materials Chemistry, vol. 20, no. 23, pp. 4781-4783, 2010. [77] S. Stankovich, et al, "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," carbon, vol. 47, no. 7, pp. 1558-1565, 2007. [78] J. Yan, et al., "Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors," Electrochimica Acta, vol. 55, no. 23, pp. 6973-6978, 2010.
|