|
1. Nitesh R. Patel, P.P.G., A Review on Biomaterials: Scope, Applications & Human Anatomy Significance. International Journal of Emerging Technology and Advanced Engineering, 2012. 2(4): p. 91-101. 2. Simon E Williams 'K, D.P.M., Daniel M. Horowitz, Oliver P. Peoples, PHA applications: addressing the price performance issue I Tissue engineering. International Journal of Biological Macromolecules, 1999. 25: p. 111-121. 3. Lyu, S.; Untereker, D. Degradability of Polymers for Implantable Biomedical Devices. Int. J. Mol. Sci. 2009, 10, 4033-4065. 4. Robert J. Young, Peter A. Lovell., Introduction to polymers, 3rd ed. 5. Christopher S. Brazel, S.L.R., Fundamemtal Principles of Polymeric Materials. 2012: Wiley. 6. B.L.Lopez, A.I.Mejia, L.Sierra. Biodegradability of poly(vinyl alcohol), Polymer Engineering and Science., Vol.39, 8 (1999), P.1346-1352. 7. V.Sedlarik, N.Saha, I.Kuritka, P.Saha. Environmentally friendly biocomposites based on waste of the dairy industry and poly (vinyl alcohol), Journal of Applied Polymer Science. - Vol. 106, 3 (2007), P. 1869-1879. 8. Jelinska, N & Martins, K & Tupureina, Velta & Anda, D. (2010). Poly(vinyl alcohol)/poly(vinyl acetate) blend films. Sci. J. Riga Tech. Univ. Mater. Sci. Appl. Chem.. 55-61. 9. E. Chiellini, A.Corti, S.D`Antone, R.Solaro. Biodegradation of poly (vinyl alcohol) based materials, Progress in Polymer Science. - 28 (2003), P.963-1014 10. C.Vasile, A.K Kulshreshtha. Handbook of Polymer Blends and Composites. – Rapra Technology. - Vol. 4, 2003. P.758 11. R.Jayasekara, I.Harding, I.Bowater, G.B.Y.Christie, G.T.Lonergan. Preparation, surface modification and characterization of solution cast starch PVA blended films, Polymer Testing. - Vol. 23 (2004), P. 17–27. 12. Alberts B Johnson A, Lewis J, et al. Molecular biology of the cell. 4th edition. 13. C. M. Lapiere and B. V. Nusgens A., Pharmacology of the Skin I. Fibroblast, Collagen, Elastin, proteoglycans and Glycoproteins, 4th ed. 14. Perez-Basterrechea M, Esteban MM, Alvarez-Viejo M, Fontanil T, Cal S, et al. Fibroblasts accelerate islet revascularization and improve long-term graft survival in a mouse model of subcutaneous islet transplantation. PLOS ONE 12(7): e0180695. 15. Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. 16. Sunpio, B.B., J.T. Timothy Riley, and A. Dardik, Cells in focus; endothelial cell. The international Journal of Biochemistry & Cell Biology, 2006.2(2): p93-102 17. Park, H.J., et al., Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insights into the relationship between lipid metabolism and angiogenesis. Stem Cell Rev, 2006.2(2): p 93-102 18. Lyu, S. and D. undereker, Degradability of polymers for implantable biomedical devices. Int J mol Sci, 2009. 10(9): p. 4033-65. 19. Lin, C.-C and K.S. Anseth, Chapter II.4.3 – The Biodegradation of Biodegrdable polymeric Biomaterials, In Biomaterials Science, 3rd edtion, P.716-728. 20. Södergård, A. and Stolt, M. Industrial Production of High Molecular Weight Poly(Lactic Acid), in Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications (eds R. Auras, L.-T. Lim, S. E. M. Selke and H. Tsuji), John Wiley & Sons, Inc., Hoboken, NJ, USA. 21. Gilding, D. K.; A. M. Reed (December 1979). Biodegradable polymers for use in surgery - polyglycolic/poly (lactic acid) homo- and copolymers. Polymer. 20 (12): 1459–1464. 22. Labet, Marianne; Thielemans, Wim (2009). Synthesis of polycaprolactone: a review. Chemical Society Reviews. 38 (12): 3484–3504. 23. Basu, B. and S. Nath, Fundamentals of Biomaterials and Biocompatibility, in Adavanced Biomaterials. 2010, John wiley & Sons, Inc. p1-18. 24. Agrawal, C.M., et al., Introduction to biomaterials. Basic Theory with Engineering Application. 2013: Cambridge University Press. 419. 25. Nitesh R. Patel, P.P.G., A Review on Biomaterials: Scope, Applications & Human Anatomy Significance. International Journal of Emerging Technology and Advanced Engineering, 2012. 2(4): p. 91-101. 26. Satari, V.R., Plastics in Medical Devices Properties, Requirements and Applications., 1st edition, William Andrew, 2010. 27. Kelvin K L Wong, Jiyuan Tu, Zhonghua Sun, Don W Dissanayake, Methods in Research and Development of Biomedical Devices, Mar 2013. 28. Yuanyuan Liu, Chen Jiang, Shuai Li, Qingxi Hu, Composite vascular scaffold combining electrospun fibers and physically-crosslinked hydrogel with copper wire-induced grooves structure, Journal of the Mechanical Behavior of Biomedical Materials, Volume 61, August 2016, Pages 12-25 29. Riaz Akhtar, Michael J. Sherratt, J. Kennedy Cruickshank, Brian Derby, Characterizing the elastic properties of tissues, Materials Today, Volume 14, Issue 3, March 2011, Pages 96-105 30. Lyu, S.; Untereker, D. Degradability of Polymers for Implantable Biomedical Devices. Int. J. Mol. Sci. 2009, 10, 4033-4065. 31. Azevedo, H.S.a.R., R.L., Understanding the Enzymatic Degradation of Biodegradable Polymers and Strategies to Control Their Degradation Rate, Biodegradable Systems in Tissue Engineering and Regenerative Medicine, 2005: p177-201. 32. Nasrul Wathoni, Keiichi Motoyama, Taishi Higashi, Maiko Okajima, Tatsuo Kaneko, Hidetoshi Arima, Physically crosslinked-sacran hydrogel films for wound dressing application, International Journal of Biological Macromolecules, Volume 89, August 2016, Pages 465-470 33. Hélida Gomes de Oliveira Barud, Robson Rosa da Silva, Hernane da Silva Barud, Agnieszka Tercjak, Junkal Gutierrez, Wilton Rogério Lustri, Osmir Batista de Oliveira Junior, Sidney J.L. Ribeiro, A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose, Carbohydrate Polymers, Volume 153, 20 November 2016, Pages 406-420 34. John Maynard, How Wounds Heal: The 4 Main Phases of Wound Healing, http://www.shieldhealthcare.com/community/wound/2015/12/18/how-wounds-heal-the-4-main-phases-of-wound-healing/ 35. C. Mauli Agrawal* and Robert B. Ray, Biodegradable polymeric scaffolds for musculoskeletal tissue engineering, Journal of Biomedical Materials Research, Volume 55, Issue 2, pages 141–150, May 2001. 36. Kyriacos A. Athanasiou, Gabriele G. Niederauer, C.Mauli Agrawal, Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/ polyglycolic acid copolymers, Biomaterials, Volume 17, Issue 2, 1996, Pages 93-102. 37. Riaz Akhtar, Michael J. Sherratt, J. Kennedy Cruickshank, Brian Derby, Characterizing the elastic properties of tissues, Materials Today, Volume 14, Issue 3, March 2011, Pages 96-105. 38. Martin, O.; Avérous, L. Poly(lactic acid): Plasticization and properties of biodegradable multiphase systems. Polymer 2001, 42, 6209–6219 39. Mi, H.-Y.; Salick, M.R.; Jing, X.; Jacques, B.R.; Crone, W.C.; Peng, X.-F.; Turng, L.-S. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Mater. Sci. Eng. C 2013, 33, 4767–4776. 40. Kouya, T.; Tada, S.-i.; Minbu, H.; Nakajima, Y.; Horimizu, M.; Kawase, T.; Lloyd, D.R.; Tanaka, T. Microporous membranes of PLLA/PCL blends for periosteal tissue scaffold. Mater. Lett. 2013, 95, 103–106. 41. Dash, T.K.; Konkimalla, V.B. Poly--caprolactone based formulations for drug delivery and tissue engineering: A review. J. Control. 2012, 158, 15–33. 42. Manavitehrani, I.; Fathi, A.; Badr, H.; Daly, S.; Negahi Shirazi, A.; Dehghani, F. Biomedical Applications of Biodegradable Polyesters. Polymers 2016, 8, 20. 43. Kyriacos A. Athanasiou, Gabriele G. Niederauer and C. Mauli Agrawal, Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers, Biomoterids 17 (1996) 93-102. 44. Peter B. Maurus, Christopher C. Kaeding, Bioabsorbable implant material review, Operative Techniques in Sports Medicine, Volume 12, Issue 3, July 2004, Pages 158-160 45. Rajeev A Jain, The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices, Biomaterials, Volume 21, Issue 23, 1 December 2000, Pages 2475-2490. 46. Priya Vashisth, Vikas Pruthi, Synthesis and characterization of crosslinked gellan/PVA nanofibers for tissue engineering application, Materials Science and Engineering: C, Volume 67, 1 October 2016, Pages 304-312 47. Abraham Ulman, Formation and Structure of Self-Assembled Monolayers, Chem. Rev., 1996, 96 (4), pp 1533–1554. 48. Shuguang Zhang, Fabrication of novel biomaterials through molecular self-assembly, Nature Biotechnology, vol 21, 10 Oct 2003, p1171-1178 49. Chemistry of Crosslinking, https://www.thermofisher.com/tw/zt/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/chemistry-crosslinking.html 50. L. Calcagno, G. Compagnini, G. Foti, Structural modification of polymer films by ion irradiation, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 65, Issue 1, 1992, Pages 413-422 51. Excell, Jon. The rise of additive manufacturing., The Engineer. 2013-10-30. 52. Standard Terminology for Additive Manufacturing – General Principles – Terminology. ASTM International. September 2013, Retrieved 2016-07-11 53. Esben Kjær Unmack Larsen, Niels B. Larsen, Kristoffer Almdal, E. K. U. Larsen, N. B. Larsen, K. Almdal, Multimaterial Hydrogel with Widely Tunable Elasticity by Selective Photopolymerization of PEG Diacrylate and Epoxy Monomers, 8 February 2016. 54. Qi-Zhi Chen, Alexander Bismarck, Ulrich Hansen, Sarah Junaid, Michael Q. Tran, Siân E. Harding, Nadire N. Ali, Aldo R. Boccaccini, Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue, Biomaterials, Volume 29, Issue 1, January 2008, Pages 47-57 55. Ling Zhou, Hui He, Can Jiang, Shuai He, Preparation and characterization of poly(glycerol sebacate)/cellulose nanocrystals elastomeric composites, 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42196. 56. Yadong Wang, Guillermo A. Ameer, Barbara J. Sheppard, and Robert Langer, A tough biodegradable elastomer, Nature Biotechnology, volume 20,june 2002. 57. Yuan Li, George A Thouas and Qi-Zhi Chen, Biodegradable soft elastomers: synthesis/properties of materials and fabrication of scaffolds, RSC Advances , 2012, 8229–8242 58. Christiaan L. E. Nijst , Joost P. Bruggeman , Jeffrey M. Karp , Lino Ferreira , Andreas Zumbuehl , Christopher J. Bettinger , and Robert Langer, Synthesis and Characterization of Photocurable Elastomers from Poly(glycerol-co-sebacate), Biomacromolecules, 2007, 8 (10), pp 3067–3073 59. Bioplastics market data, http://www.european-bioplastics.org/market/ 60. Global Biodegradable Polymer Market Is Expected To Reach Around USD 5.18 Billion in 2020, http://www.marketresearchstore.com/news/global-biodegradable-polymer-market-208 61. A Fibroblast Cell is a connective tissue. https://www.thinglink.com/scene/578216420446306304 62. R. Dinarvand, N.Sepehri, S Manoochehri, H. Rouhani1, F. Atyabi, Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents, International Journal of Nanomedicine (default):877-95, May 2011. 63. Jaffer AK, Amin AN, Brotman DJ, Deitelzweig SB, McKean SC, Spyropoulos AC. Prevention of venous thromboembolism in the hospitalized medical patient. Cleve Clin J Med. 2008 Apr;75 Suppl 3:S7-16. Review. PubMed PMID: 18494223. 64. White RH. The epidemiology of venous thromboembolism. Circulation. 2003;107:I-4-I-8. PMID: 12814979 65. Silverstein MD, Heit JA, Mohr DN, Petterson TM, O’Fallon WM, Melton LJ 3rd (1998) Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year populationbased study. Arch Intern Med ,158:585–593. 66. Office of the Surgeon General (US); National Heart, Lung, and Blood Institute (US). The Surgeon General's Call to Action to Prevent Deep Vein Thrombosis and Pulmonary Embolism. Rockville (MD): Office of the Surgeon General (US); 2008. 67. Prevention and Treatment of Venous Thromboembolism (VTE) Site:http://www.heart.org/HEARTORG/Conditions/VascularHealth/VenousThromboembolism/Prevention-and-Treatment-of-Venous-Thromboembolism-VTE_UCM_479058_Article.jsp#.WVlC44SGOM8 68. Inferior Vena Cava Filter Placement Site: http://emedicine.medscape.com/article/1377859-overview 69. Yasushi Tamada and Yoshito Ikadat, Fibroblast growth on polymer surfaces and biosynthesis of collagen, Journal of Biomedical Materials Research, Vol. 28, 783-789 70. Huang Han Sheng, Wang Jane; Synthesis and Characterization of Biodegradable PGS-PVA co-Polymer. Master thesis, 2015. 71. Ao-Ieong Wai-Sam, Wang Jane; Synthesis and Characterization of Photocrosslinkable Biodegradable Elastomer PGSA. Master thesis, 2015.
|