帳號:guest(3.144.124.161)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林炫朋
作者(外文):Lin, Hsuan-Peng
論文名稱(中文):磷化鋁作為新型高電容量之鋰離子電池陽極材料之開發
論文名稱(外文):Aluminum Phosphide: a High-Capacity Lithium-Ion Battery Anode Material with Ultralong Cyclability
指導教授(中文):段興宇
指導教授(外文):Tuan, Hsing-Yu
口試委員(中文):曾院介
袁芳偉
口試委員(外文):Tseng, Yuan-Chieh
Yuan, Fang-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:104032545
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:42
中文關鍵詞:金屬磷化物磷化鋁球磨法鋰離子電池
外文關鍵詞:metal phosphidealuminum phosphideball millinglithium-ion battery
相關次數:
  • 推薦推薦:0
  • 點閱點閱:129
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
鋰離子電池的發展已經有六十多年,雖然已有不少商業化的產品,但是該領域仍有相當多有潛力成為電極的材料值得開發。近年來科技的日新月異,需要高能量的電子產品逐漸增加,一般商業用的鋰離子電池大多採用碳材料作為陽極,然而其電容量不足以應用在電動車或太空科技等需要高能量密度的裝置上,因此開發新的陽極材料有其重要性。本研究成功的將磷化鋁應用在鋰離子電池之陽極,這是磷化鋁首次應用在鋰離子電池上。其中,磷化鋁通過高能球磨法從黑磷和鋁合成,而多壁碳納米管則替代炭黑作為導電劑以提高電池的性能。在此項研究中磷化鋁表現出極高的電容量和驚人的循環壽命。在0.1 C(0.185 A g-1)的充放電循環測試下的可逆容量可以達到1463 mA h g-1,並且在260次循環後仍具有80 %的電容量。此外,在1 C (1.85 A g-1)的充放電循環測試下可以超過2000個循環並且保持650 mAh g-1以上的電容量。即使在0.5 C至10 C的快速階梯充放電循環測試中,磷化鋁的電池性能仍然保持穩定且可逆,這些測試說明了磷化鋁作為鋰離子電池的陽極材料是極度具有價值的,其效能和電容量都比傳統的碳材還要提升了不少。另外,藉由EIS測試、CV測試和Ex-situ SEM的照片,我們確認了循環前後的電池性能變化和電極的結構完整性,並沒有受到充放電太大的影響,進一步證實該電池的長壽命原因。最後,再透過組裝磷化鋁陽極和LiFePO4 (磷酸鋰鐵)陰極的鈕扣型和袋型全電池,測試該全電池的效能和點亮LED燈和驅動電子裝置以證明該項材料的確是具有實際應用價值的。
In this study, we report an unprecedented anode material, aluminum phosphide (AlP), with ultralong cyclability (>2000 cycles) and high specific capacity (1463 mA h g-1) for lithium ion batteries. AlP is synthesized from aluminum and black phosphorus via the facile high energy ball milling method (HEMM) without any other compound ratio. In this study, Multi-wall carbon nanotube (MWCNT) replaces the carbon black to enhance the performance of battery. The AlP electrode possesses excellent electrochemical properties with reversible specific capacities of 1463 mA h g-1 at 0.185 A g-1 (0.1 C) and has 80.1 % retention after 260 cycles. Moreover, the cycle life can astonishingly maintain over 2000 cycles at 1.85 A g-1 (1 C) and exceed 650 mA h g-1. Even at high rate step test from 0.925 A g-1 to 18.5 A g-1, battery performance of AlP is still stable and reversible. Finally, coin-type and pouch-type full cell with high capacity (~1.3 mA h and ~15 mA h, respectively) using AlP anode and LiFePO4 cathode are assembled to demonstrate as an energy supply to light up LED bulbs and to drive electronic devices.
中文摘要........................................i
Abstract.......................................ii
Table of Contents ........................... iii
List of Figures.................................v

Chapter 1. Introduction.........................1
1.1 Development of Lithium-ion batteries........1
1.2 Development of new anode for LIB............3
1.3 Challenge of high capacity active materials.5
1.4 The effect of electrolyte...................6
1.5 Phosphorus based materials as anode ........8
1.6 Aluminum based materials as anode...........10
1.7 High energy ball milling ...................12

Chapter 2.
Experimental Section............................13
2.1 Materials ..................................13
2.2 Synthesis of black phosphorus ................................................14
2.3 Synthesis of Aluminum phosphide.......................................15
2.4 Carbonization of Aluminum phosphide.......................................16
2.5 Prepare of slurry and assemble the cell ....17
2.6 Characterization and Measurement............19

Chapter 3.
Result and discussion.....................................20
3.1 Material characterization.............................20
3.1.1 Characterization of the black phosphorus ...........20
3.1.2 Characterization of the aluminum phosphide .........21
3.1.3 Characterization of the AlP and AlP/CNT mixture.....23
3.2 Electrochemical performance ..........................27
3.2.1 Half cell test......................................27
3.2.2 Full cell test and application......................34

Chapter 4.
Conclusions..............................................37
Reference ...............................................38
1. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.
2. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energ. Environ. Sci. 2011, 4, 3243-3262.
3. Nitta, N.; Yushin, G. High-Capacity Anode Materials for Lithium- Ion Batteries: Choice of Elements and Structures for Active Particles. Part. Part. Syst. Char. 2014, 31, 317-336.
4. Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Edit. 2008, 47, 2930-2946.
5. Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Zaccaria, R. P.; Capiglia, C. Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 2014, 257, 421-443.
6. Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39, 3115-3141.
7. Chockla, A. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A. Solution-Grown Germanium Nanowire Anodes for Lithium-Ion Batteries. ACS Appl. Mater. Inter. 2012, 4, 4658-4664.
8. Verma, P.; Maire, P.; Novak, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 2010, 55, 6332-6341.
9. Yang, T.; Tian, X. D.; Li, X.; Wang, K.; Liu, Z. J.; Guo, Q. G.; Song, Y. Double Core-Shell Si@C@SiO2 for Anode Material of Lithium-Ion Batteries with Excellent Cycling Stability. Chem-Eur. J. 2017, 23, 2165-2170.
10. Qian, J. F.; Qiao, D.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chem. Commun. 2012, 48, 8931-8933.
11. Wang, Z. Y.; Li, Y.; Lee, J. Y. Characterizations of Al-Y thin film composite anode materials for lithium-ion batteries. Electrochem. Commun. 2009, 11, 1179-1182.
12. Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. B.; Cui, Y. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol 2012, 7, 309-314.
13. Chockla, A. M.; Bogart, T. D.; Hessel, C. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A. Influences of Gold, Binder and Electrolyte on Silicon Nanowire Performance in Li-Ion Batteries. J. Phys. Chem. C 2012, 116, 18079-18086.
14. Lin, Y. M.; Klavetter, K. C.; Abel, P. R.; Davy, N. C.; Snider, J. L.; Heller, A.; Mullins, C. B. High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries. Chem. Commun. 2012, 48, 7268-7270.
15. Carenco, S.; Portehault, D.; Boissiere, C.; Mezailles, N.; Sanchez, C. Nanoscaled Metal Borides and Phosphides: Recent Developments and Perspectives. Chem. Rev. 2013, 113, 7981-8065.
16. Sun, J.; Lee, H. W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z.; Cui, Y. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol.2015, 10, 980-U184.
17. Sun, L. Q.; Li, M. J.; Sun, K.; Yu, S. H.; Wang, R. S.; Xie, H. M. Electrochemical Activity of Black Phosphorus as an Anode Material for Lithium-Ion Batteries. J. Phys. Chem. C 2012, 116, 14772-14779.
18. Wang, X.; Sun, P. P.; Qin, J. W.; Wang, J. Q.; Xiao, Y.; Cao, M. H. A three-dimensional porous MoP@C hybrid as a high-capacity, long-cycle life anode material for lithium-ion batteries. Nanoscale 2016, 8, 10330-10338.
19. Li, G. A.; Wang, C. Y.; Chang, W. C.; Tuan, H. Y. Phosphorus-Rich Copper Phosphide Nanowires for Field-Effect Transistors and Lithium-Ion Batteries. ACS Nano 2016, 10, 8632-8644.
20. Carenco, S.; Portehault, D.; Boissiere, C.; Mezailles, N.; Sanchez, C. 25th Anniversary Article: Exploring Nanoscaled Matter from Speciation to Phase Diagrams: Metal Phosphide Nanoparticles as a Case of Study. Adv. Mater. 2014, 26, 371-389.
21. Chang, W. C.; Tseng, K. W.; Tuan, H. Y. Solution Synthesis of Iodine-Doped Red Phosphorus Nanoparticles for Lithium-Ion Battery Anodes. Nano Lett. 2017, 17, 1240-1247.
22. Zhao, T.; She, S.; Ji, X.; Guo, X.; Jin, W.; Zhu, R.; Dang, A.; Li, H.; Li, T.; Wei, B. Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries. Sci. Rep. 2016, 6, 33833.
23. Li, Q. F.; Bjerrum, N. J. Aluminum as anode for energy storage and conversion: a review. J. Power Sources 2002, 110, 1-10.
24. Hamon, Y.; Brousse, T.; Jousse, F.; Topart, P.; Buvat, P.; Schleich, D. M. Aluminum negative electrode in lithium ion batteries. J Power. Sources. 2001, 97-8, 185-187.
25. Au, M.; McWhorter, S.; Ajo, H.; Adams, T.; Zhao, Y. P.; Gibbs, J. Free standing aluminum nanostructures as anodes for Li-ion rechargeable batteries. J Power. Source. 2010, 195, 3333-3337.
26. Huang, Y. G.; Lin, X. L.; Pan, Q. C.; Li, Q. Y.; Zhang, X. H.; Yan, Z. X.; Wu, X. M.; He, Z. Q.; Wang, H. Q. Al@C/Expanded Graphite Composite as Anode Material for Lithium Ion Batteries. Electrochim. Acta 2016, 193, 253-260.
27. Li, S.; Niu, J. J.; Zhao, Y. C.; So, K. P.; Wang, C.; Wang, C. A.; Li, J. High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity. Nat. Commun. 2015, 6.
28. Sharma, S. K.; Kim, M. S.; Kim, D. Y.; Yu, J. S. Al nanorod thin films as anode electrode for Li ion rechargeable batteries. Electrochim. Acta 2013, 87, 872-879.
29. Duveau, D.; Fraisse, B.; Cunin, F.; Monconduit, L. Synergistic Effects of Ge and Si on the Performances and Mechanism of the GexSi-x Electrodes for Li Ion Batteries. Chem .Mater. 2015, 27, 3226-3233.
30. Li, W. W.; Li, H. Q.; Lu, Z. J.; Gan, L.; Ke, L. B.; Zhai, T. Y.; Zhou, H. S. Layered phosphorus-like GeP5: a promising anode candidate with high initial coulombic efficiency and large capacity for lithium ion batteries. Energ. Environ. Sci. 2015, 8, 3629-3636.
31. Zhou, F.; Liao, X. Z.; Zhu, Y. T.; Dallek, S.; Lavernia, E. J. Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling. Acta. Mater. 2003, 51, 2777-2791.
32. Wang, K.; Yang, J.; Xie, J. Y.; Wang, B. F.; Wen, Z. S. Electrochemical reactions of lithium with CuP2 and Li1.75Cu1.25P2 synthesized by ballmilling. Electrochem. Commun. 2003, 5, 480-483.
33. Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 2001, 46, 1-184.
34. Hong, S. J.; Kim, T. S.; Suryanarayana, C.; Chun, B. S. Mechanical milling of gas-atomized Al-Ni-Mm (Mm = misch metal) alloy powders. Metall. Mater. Trans. A 2001, 32, 821-829.
35. Huot, J. Nanocrystalline Metal Hydrides Obtained by Severe Plastic Deformations. Metals-Basel 2012, 2, 22-40.
36. Baheti, V.; Abbasi, R.; Militky, J. Ball milling of jute fibre wastes to prepare nanocellulose. World J. Eng. 2012, 9, 45-50.
37. Pan, C. P.; Li, W. X.; Jiang, S. R. Study on the XPS-ESCA of aluminum phosphide products. Int. J. Mol. Sci. 2005, 6, 198-202.
38. Klein, F.; Pinedo, R.; Hering, P.; Polity, A.; Janek, J.; Adelhelm, P. Reaction Mechanism and Surface Film Formation of Conversion Materials for Lithium- and Sodium-Ion Batteries: An XPS Case Study on Sputtered Copper Oxide (CuO) Thin Film Model Electrodes. J. Phys. Chem. C 2016, 120, 1400-1414.
39. Hinnen, C.; Imbert, D.; Siffre, J. M.; Marcus, P. An in situ XPS study of sputter-deposited aluminium thin films on graphite. Appl. Surf. Sci. 1994, 78, 219-231.
40. Figueiredo, N. M.; Carvalho, N. J. M.; Cavaleiro, A. An XPS study of Au alloyed Al-O sputtered coatings. Appl. Surf. Sci. 2011, 257, 5793-5798.
41. Park, C. M.; Sohn, H. J. Black phosphorus and its composite for lithium rechargeable batteries. Adv. Mater. 2007, 19, 2465.
42. Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *