|
1. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367. 2. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energ. Environ. Sci. 2011, 4, 3243-3262. 3. Nitta, N.; Yushin, G. High-Capacity Anode Materials for Lithium- Ion Batteries: Choice of Elements and Structures for Active Particles. Part. Part. Syst. Char. 2014, 31, 317-336. 4. Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Edit. 2008, 47, 2930-2946. 5. Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Zaccaria, R. P.; Capiglia, C. Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 2014, 257, 421-443. 6. Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39, 3115-3141. 7. Chockla, A. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A. Solution-Grown Germanium Nanowire Anodes for Lithium-Ion Batteries. ACS Appl. Mater. Inter. 2012, 4, 4658-4664. 8. Verma, P.; Maire, P.; Novak, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 2010, 55, 6332-6341. 9. Yang, T.; Tian, X. D.; Li, X.; Wang, K.; Liu, Z. J.; Guo, Q. G.; Song, Y. Double Core-Shell Si@C@SiO2 for Anode Material of Lithium-Ion Batteries with Excellent Cycling Stability. Chem-Eur. J. 2017, 23, 2165-2170. 10. Qian, J. F.; Qiao, D.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chem. Commun. 2012, 48, 8931-8933. 11. Wang, Z. Y.; Li, Y.; Lee, J. Y. Characterizations of Al-Y thin film composite anode materials for lithium-ion batteries. Electrochem. Commun. 2009, 11, 1179-1182. 12. Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. B.; Cui, Y. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol 2012, 7, 309-314. 13. Chockla, A. M.; Bogart, T. D.; Hessel, C. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A. Influences of Gold, Binder and Electrolyte on Silicon Nanowire Performance in Li-Ion Batteries. J. Phys. Chem. C 2012, 116, 18079-18086. 14. Lin, Y. M.; Klavetter, K. C.; Abel, P. R.; Davy, N. C.; Snider, J. L.; Heller, A.; Mullins, C. B. High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries. Chem. Commun. 2012, 48, 7268-7270. 15. Carenco, S.; Portehault, D.; Boissiere, C.; Mezailles, N.; Sanchez, C. Nanoscaled Metal Borides and Phosphides: Recent Developments and Perspectives. Chem. Rev. 2013, 113, 7981-8065. 16. Sun, J.; Lee, H. W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z.; Cui, Y. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol.2015, 10, 980-U184. 17. Sun, L. Q.; Li, M. J.; Sun, K.; Yu, S. H.; Wang, R. S.; Xie, H. M. Electrochemical Activity of Black Phosphorus as an Anode Material for Lithium-Ion Batteries. J. Phys. Chem. C 2012, 116, 14772-14779. 18. Wang, X.; Sun, P. P.; Qin, J. W.; Wang, J. Q.; Xiao, Y.; Cao, M. H. A three-dimensional porous MoP@C hybrid as a high-capacity, long-cycle life anode material for lithium-ion batteries. Nanoscale 2016, 8, 10330-10338. 19. Li, G. A.; Wang, C. Y.; Chang, W. C.; Tuan, H. Y. Phosphorus-Rich Copper Phosphide Nanowires for Field-Effect Transistors and Lithium-Ion Batteries. ACS Nano 2016, 10, 8632-8644. 20. Carenco, S.; Portehault, D.; Boissiere, C.; Mezailles, N.; Sanchez, C. 25th Anniversary Article: Exploring Nanoscaled Matter from Speciation to Phase Diagrams: Metal Phosphide Nanoparticles as a Case of Study. Adv. Mater. 2014, 26, 371-389. 21. Chang, W. C.; Tseng, K. W.; Tuan, H. Y. Solution Synthesis of Iodine-Doped Red Phosphorus Nanoparticles for Lithium-Ion Battery Anodes. Nano Lett. 2017, 17, 1240-1247. 22. Zhao, T.; She, S.; Ji, X.; Guo, X.; Jin, W.; Zhu, R.; Dang, A.; Li, H.; Li, T.; Wei, B. Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries. Sci. Rep. 2016, 6, 33833. 23. Li, Q. F.; Bjerrum, N. J. Aluminum as anode for energy storage and conversion: a review. J. Power Sources 2002, 110, 1-10. 24. Hamon, Y.; Brousse, T.; Jousse, F.; Topart, P.; Buvat, P.; Schleich, D. M. Aluminum negative electrode in lithium ion batteries. J Power. Sources. 2001, 97-8, 185-187. 25. Au, M.; McWhorter, S.; Ajo, H.; Adams, T.; Zhao, Y. P.; Gibbs, J. Free standing aluminum nanostructures as anodes for Li-ion rechargeable batteries. J Power. Source. 2010, 195, 3333-3337. 26. Huang, Y. G.; Lin, X. L.; Pan, Q. C.; Li, Q. Y.; Zhang, X. H.; Yan, Z. X.; Wu, X. M.; He, Z. Q.; Wang, H. Q. Al@C/Expanded Graphite Composite as Anode Material for Lithium Ion Batteries. Electrochim. Acta 2016, 193, 253-260. 27. Li, S.; Niu, J. J.; Zhao, Y. C.; So, K. P.; Wang, C.; Wang, C. A.; Li, J. High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity. Nat. Commun. 2015, 6. 28. Sharma, S. K.; Kim, M. S.; Kim, D. Y.; Yu, J. S. Al nanorod thin films as anode electrode for Li ion rechargeable batteries. Electrochim. Acta 2013, 87, 872-879. 29. Duveau, D.; Fraisse, B.; Cunin, F.; Monconduit, L. Synergistic Effects of Ge and Si on the Performances and Mechanism of the GexSi-x Electrodes for Li Ion Batteries. Chem .Mater. 2015, 27, 3226-3233. 30. Li, W. W.; Li, H. Q.; Lu, Z. J.; Gan, L.; Ke, L. B.; Zhai, T. Y.; Zhou, H. S. Layered phosphorus-like GeP5: a promising anode candidate with high initial coulombic efficiency and large capacity for lithium ion batteries. Energ. Environ. Sci. 2015, 8, 3629-3636. 31. Zhou, F.; Liao, X. Z.; Zhu, Y. T.; Dallek, S.; Lavernia, E. J. Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling. Acta. Mater. 2003, 51, 2777-2791. 32. Wang, K.; Yang, J.; Xie, J. Y.; Wang, B. F.; Wen, Z. S. Electrochemical reactions of lithium with CuP2 and Li1.75Cu1.25P2 synthesized by ballmilling. Electrochem. Commun. 2003, 5, 480-483. 33. Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 2001, 46, 1-184. 34. Hong, S. J.; Kim, T. S.; Suryanarayana, C.; Chun, B. S. Mechanical milling of gas-atomized Al-Ni-Mm (Mm = misch metal) alloy powders. Metall. Mater. Trans. A 2001, 32, 821-829. 35. Huot, J. Nanocrystalline Metal Hydrides Obtained by Severe Plastic Deformations. Metals-Basel 2012, 2, 22-40. 36. Baheti, V.; Abbasi, R.; Militky, J. Ball milling of jute fibre wastes to prepare nanocellulose. World J. Eng. 2012, 9, 45-50. 37. Pan, C. P.; Li, W. X.; Jiang, S. R. Study on the XPS-ESCA of aluminum phosphide products. Int. J. Mol. Sci. 2005, 6, 198-202. 38. Klein, F.; Pinedo, R.; Hering, P.; Polity, A.; Janek, J.; Adelhelm, P. Reaction Mechanism and Surface Film Formation of Conversion Materials for Lithium- and Sodium-Ion Batteries: An XPS Case Study on Sputtered Copper Oxide (CuO) Thin Film Model Electrodes. J. Phys. Chem. C 2016, 120, 1400-1414. 39. Hinnen, C.; Imbert, D.; Siffre, J. M.; Marcus, P. An in situ XPS study of sputter-deposited aluminium thin films on graphite. Appl. Surf. Sci. 1994, 78, 219-231. 40. Figueiredo, N. M.; Carvalho, N. J. M.; Cavaleiro, A. An XPS study of Au alloyed Al-O sputtered coatings. Appl. Surf. Sci. 2011, 257, 5793-5798. 41. Park, C. M.; Sohn, H. J. Black phosphorus and its composite for lithium rechargeable batteries. Adv. Mater. 2007, 19, 2465. 42. Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.
|