|
1. Yim, H., et al., Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nature Chemical Biology, 2011. 7(7): p. 445-452. 2. Liu, H.W. and T. Lu, Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli. Metabolic Engineering, 2015. 29: p. 135-141. 3. Tai, Y.S., et al., Engineering nonphosphorylative metabolism to generate lignocellulose-derived products. Nature Chemical Biology, 2016. 12(4): p. 247-+. 4. Cirino, P.C., J.W. Chin, and L.O. Ingram, Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnology and Bioengineering, 2006. 95(6): p. 1167-1176. 5. Khankal, R., J.W. Chin, and P.C. Cirino, Role of xylose transporters in xylitol production from engineered Escherichia coli. Journal of Biotechnology, 2008. 134(3-4): p. 246-252. 6. Oliver, J.W.K., et al., Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Abstracts of Papers of the American Chemical Society, 2013. 246. 7. Lee, T.C., et al., Engineered xylose utilization enhances bio-products productivity in the cyanobacterium Synechocystis sp PCC 6803. Metabolic Engineering, 2015. 30: p. 179-189. 8. McEwen, J.T., et al., Engineering Synechococcus elongatus PCC 7942 for Continuous Growth under Diurnal Conditions. Applied and Environmental Microbiology, 2013. 79(5): p. 1668-1675. 9. Shestakov, S.V. and N.T. Khyen, Evidence for Genetic Transformation in Blue-Green Alga Anacystis-Nidulans. Molecular and General Genetics, 1970. 107(4): p. 372-+. 10. Kaneko, T., et al., Physical and gene maps of the unicellular cyanobacterium Synechococcus sp strain PCC6301 genome. Plant Molecular Biology, 1996. 31(1): p. 193-201. 11. Parajo, J.C., H. Dominguez, and J.M. Dominguez, Biotechnological production of xylitol. Part 1: Interest of xylitol and fundamentals of its biosynthesis. Bioresource Technology, 1998. 65(3): p. 191-201. 12. Parajo, J.C., H. Dominguez, and J.M. Dominguez, Biotechnological production of xylitol. Part 2: Operation in culture media made with commercial sugars. Bioresource Technology, 1998. 65(3): p. 203-212. 13. Yadav, V.G., et al., The future of metabolic engineering and synthetic biology: Towards a systematic practice. Metabolic Engineering, 2012. 14(3): p. 233-241. 14. Rivas, B., et al., Carbon material and bioenergetic balances of xylitol production from corncobs by Debaryomyces hansenii. Biotechnology Progress, 2003. 19(3): p. 706-713. 15. Kastner, J.R., M.A. Eiteman, and S.A. Lee, Effect of redox potential on stationary-phase xylitol fermentations using Candida tropicalis (vol 63, pg 96, 2003). Applied Microbiology and Biotechnology, 2004. 64(4): p. 604-604. 16. Kim, T.B., et al., Increased xylitol production rate during long-term cell recycle fermentation of Candida tropicalis. Biotechnology Letters, 2004. 26(8): p. 623-627. 17. Hasona, A., et al., Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. Journal of Bacteriology, 2004. 186(22): p. 7593-7600. 18. Hernandez-Montalvo, V., et al., Characterization of sugar mixtures utilization by an Escherichia coli mutant devoid of the phosphotransferase system. Applied Microbiology and Biotechnology, 2001. 57(1-2): p. 186-191. 19. Bruckner, R. and F. Titgemeyer, Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. Fems Microbiology Letters, 2002. 209(2): p. 141-148. 20. Eppler, T. and W. Boos, Glycerol-3-phosphate-mediated repression of malT in Escherichia coli does not require metabolism, depends on enzyme IIA(Glc) and is mediated by cAMP levels. Molecular Microbiology, 1999. 33(6): p. 1221-1231. 21. Rodriguez, G.M. and S. Atsumi, Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metabolic Engineering, 2014. 25: p. 227-237. 22. Rodriguez, G.M. and S. Atsumi, Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity. Microbial Cell Factories, 2012. 11. 23. Toivari, M., et al., Metabolic engineering of Saccharomyces cerevisiae for bioconversion of D-xylose to D-xylonate. Metabolic Engineering, 2012. 14(4): p. 427-436. 24. Cao, Y.J., et al., Metabolic Engineering of Escherichia coli for the Production of Xylonate. Plos One, 2013. 8(7).
|