|
1. Hsiao, C.-W., et al., Effective Photothermal Killing of Pathogenic Bacteria by Using Spatially Tunable Colloidal Gels with Nano-Localized Heating Sources. Advanced Functional Materials, 2015. 25(5): p. 721-728. 2. Weidenmaier, C., et al., Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med, 2004. 10(3): p. 243-5. 3. Trevani, A.S., et al., Extracellular Acidification Induces Human Neutrophil Activation. The Journal of Immunology, 1999. 162(8): p. 4849. 4. Thet, N.T., et al., Prototype Development of the Intelligent Hydrogel Wound Dressing and Its Efficacy in the Detection of Model Pathogenic Wound Biofilms. ACS Applied Materials & Interfaces, 2015. 5. Ladd, A.P., M.S. Levy, and J. Quilty, Minimally invasive technique in treatment of complex, subcutaneous abscesses in children. J Pediatr Surg, 2010. 45(7): p. 1562-6. 6. Huang, Y.T., et al., Diallyl trisulfide and diallyl disulfide ameliorate cardiac dysfunction by suppressing apoptotic and enhancing survival pathways in experimental diabetic rats. Journal of Applied Physiology (1985), 2013. 114(3): p. 402-10. 7. Pan, W.-Y., et al., Synergistic antibacterial effects of localized heat and oxidative stress caused by hydroxyl radicals mediated by graphene/iron oxide-based nanocomposites. Nanomedicine: Nanotechnology, Biology and Medicine, 2016. 12(2): p. 431-438. 8. Feng, L., L. Wu, and X. Qu, New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Advanced Material, 2013. 25(2): p. 168-86. 9. Li, F., et al., Preparation and characterization novel polymer-coated magnetic nanoparticles as carriers for doxorubicin. Colloids Surf B Biointerfaces, 2011. 88(1): p. 58-62. 10. Kuo, W.S., et al., Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells. Chem Commun (Camb), 2008(37): p. 4430-2. 11. Solway, J. and C.G. Irvin, Airway Smooth Muscle as a Target for Asthma Therapy. New England Journal of Medicine, 2007. 356(13): p. 1367-1369. 12. Thomas, L.A., et al., Carboxylic acid-stabilised iron oxide nanoparticles for use in magnetic hyperthermia. Journal of Materials Chemistry, 2009. 19(36): p. 6529. 13. Saxena, V., M. Sadoqi, and J. Shao, Indocyanine green-loaded biodegradable nanoparticles: preparation, physicochemical characterization and in vitro release. Int J Pharm, 2004. 278(2): p. 293-301. 14. Makadia, H.K. and S.J. Siegel, Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel), 2011. 3(3): p. 1377-1397. 15. Yan, L., et al., A pH-Responsive Drug-Delivery Platform Based on Glycol Chitosan-Coated Liposomes. Small, 2015. 11(37): p. 4870-4. 16. Nafee, N., et al., Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomedicine, 2007. 3(3): p. 173-83. 17. Budhian, A., S.J. Siegel, and K.I. Winey, Controlling the in vitro release profiles for a system of haloperidol-loaded PLGA nanoparticles. International Journal of Pharmaceutics, 2008. 346(1-2): p. 151-9. 18. Gavini, E., et al., PLGA microspheres for the ocular delivery of a peptide drug, vancomycin using emulsification/spray-drying as the preparation method: in vitro/in vivo studies. Eur J Pharm Biopharm, 2004. 57(2): p. 207-12. 19. Rosca, I.D., F. Watari, and M. Uo, Microparticle formation and its mechanism in single and double emulsion solvent evaporation. Journal of Control Release, 2004. 99(2): p. 271-80. 20. Gao, F., et al., Double Emulsion Templated Microcapsules with Single Hollow Cavities and Thickness-Controllable Shells. Langmuir, 2009. 25(6): p. 3832-3838. 21. Jian, W.H., et al., Indocyanine Green-Encapsulated Hybrid Polymeric Nanomicelles for Photothermal Cancer Therapy. Langmuir, 2015. 31(22): p. 6202-10. 22. Xu, J., et al., The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Letters in Applied Microbiology, 2008. 47(3): p. 174-9. 23. Korupalli, C., et al., Acidity-triggered charge-convertible nanoparticles that can cause bacterium-specific aggregation in situ to enhance photothermal ablation of focal infection. Biomaterials, 2017. 116: p. 1-9. 24. Zheng, M., et al., Robust ICG theranostic nanoparticles for folate targeted cancer imaging and highly effective photothermal therapy. ACS Applied Mater Interfaces, 2014. 6(9): p. 6709-16. 25. Tahara, K., et al., Establishing chitosan coated PLGA nanosphere platform loaded with wide variety of nucleic acid by complexation with cationic compound for gene delivery. Int J Pharm, 2008. 354(1-2): p. 210-6. 26. Subhash, H.M., et al., Optical detection of indocyanine green encapsulated biocompatible poly (lactic-co-glycolic) acid nanoparticles with photothermal optical coherence tomography. Optics Letters, 2012. 37(5): p. 981-983. 27. Tang, Y., et al., Simultaneous delivery of chemotherapeutic and thermal-optical agents to cancer cells by a polymeric (PLGA) nanocarrier: an in vitro study. Pharmaceutical Research, 2010. 27(10): p. 2242-53. 28. Achilefu, S., et al., A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo. 2009. 7190: p. 71900L. 29. Alander, J.T., et al., A review of indocyanine green fluorescent imaging in surgery. International Journal of Biomedical Imaging, 2012. 2012: p. 940585. 30. Shemesh, C.S., et al., Indocyanine green loaded liposome nanocarriers for photodynamic therapy using human triple negative breast cancer cells. Photodiagnosis Photodynamic Therapy, 2014. 11(2): p. 193-203. 31. Saxena, V., M. Sadoqi, and J. Shao, Enhanced photo-stability, thermal-stability and aqueous-stability of indocyanine green in polymeric nanoparticulate systems. J Photochem Photobiol B, 2004. 74(1): p. 29-38. 32. Bjarnsholt, T., et al., Applying insights from biofilm biology to drug development - can a new approach be developed? Nat Rev Drug Discov, 2013. 12(10): p. 791-808. 33. Halder, S., et al., Alteration of Zeta potential and membrane permeability in bacteria: a study with cationic agents. Springerplus, 2015. 4: p. 672. 34. Tsao, S.M., C.C. Hsu, and M.C. Yin, Garlic extract and two diallyl sulphides inhibit methicillin-resistant Staphylococcus aureus infection in BALB/cA mice. J Antimicrob Chemother, 2003. 52(6): p. 974-80. 35. Li, X., et al., Control of nanoparticle penetration into biofilms through surface design. Chemical Communication (Camb), 2015. 51(2): p. 282-5. 36. Gupta, A., R.F. Landis, and V.M. Rotello, Nanoparticle-Based Antimicrobials: Surface Functionality is Critical. F1000Res, 2016. 5.
|