|
[1] Antoni, S.; Ferlay, J.; Soerjomataram, I.; Znaor, A.; Jemal, A.; Bray, F., Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends. Eur. Urol. 2017, 71 (1), 96–108. [2] Bertuccio, P.; Turati, F.; Carioli, G.; Rodriguez, T.; La Vecchia, C.; Malvezzi, M.; Negri, E., Global Trends and Predictions in Hepatocellular Carcinoma Mortality. J. Hepatol. 2017, 67 (2), 302–309. [3] Yang, J. D.; Hainaut, P.; Gores, G. J.; Amadou, A.; Plymoth, A.; Roberts, L. R., A Global View of Hepatocellular Carcinoma: Trends, Risk, Prevention and Management. Nat. Rev. Gastro. Hepat. 2019, 16 (10), 589–604. [4] Shao, J.; Xie, H.; Huang, H.; Li, Z.; Sun, Z.; Xu, Y.; Xiao, Q.; Yu, X. F.; Zhao, Y.; Zhang, H.; Wang, H.; Chu, P. K. Biodegradable Black Phosphorus-Based Nanospheres for In Vivo Photothermal Cancer Therapy. Nat. Commun. 2016, 7, 12967. [5] Liu, W.; Li, X.; Li, W.; Zhang, Q.; Bai, H.; Li, J.; Xi, G., Highly Stable Molybdenum Dioxide Nanoparticles with Strong Plasmon Resonance are Promising in Photothermal Cancer Therapy. Biomaterials 2018, 163, 43–54. [6] Guo, L.; Yan, D. D.; Yang, D.; Li, Y.; Wang, X.; Zalewski, O.; Yan, B.; Lu, W., Combinatorial Photothermal and Immuno Cancer Therapy Using Chitosan-Coated Hollow Copper Sulfide Nanoparticles. ACS Nano 2014, 8 (6), 5670–81. [7] Chen, Q.; Xu, L.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal Therapy with Immune-Adjuvant Nanoparticles Together with Checkpoint Blockade for Effective Cancer Immunotherapy. Nat. Commun. 2016, 7, 13193. [8] Ahmed, M.; Brace, C. L.; Lee, F. T., Jr.; Goldberg, S. N. Principles of and Advances in Percutaneous Ablation. Radiology 2011, 258, 351–69. [9] Rhim, H.; Dodd, G. D.; Chintapalli, K. N.; Wood, B. J.; Dupuy, D. E.; Hvizda, U. L.; Sewell, P. E.; Goldberg, S. N. Radiofrequency Thermal Ablation of Abdominal Tumors: Lessons Learned from Complications. Radiographics 2004, 24, 41–52. [10] Chu, K. F.; Dupuy, D. E. Thermal Ablation of Tumours: Biological Mechanisms and Advances in Therapy. Nat. Rev. Cancer. 2014, 14, 199–208. [11] Zhang, L.; Wang, D.; Yang, K.; Sheng, D.; Tan, B.; Wang, Z.; Ran, H.; Yi, H.; Zhong, Y.; Lin, H.; Chen, Y., Mitochondria-Targeted Artificial "Nano-RBCs" for Amplified Synergistic Cancer Phototherapy by a Single NIR Irradiation. Adv. Sci. 2018, 5 (8), 1800049. [12] Schueller, G.; Kettenbach, J.; Sedivy, R.; Stift, A.; Friedl, J.; Gnant, M.; Lammer, J. Heat Shock Protein Expression Induced by Percutaneous Radiofrequency Ablation of Hepatocellular Carcinoma In Vivo. Int. J. Oncol. 2004, 24, 609–13. [13] Calderwood, S. K.; Gong, J.; Murshid, A. Extracellular HSPs: The Complicated Roles of Extracellular HSPs in Immunity. Front. Immunol. 2016, 7, 159. [14] Kawasaki, T.; Kawai, T. Toll-Like Receptor Signaling Pathways. Front. Immunol. 2014, 5, 461. [15] Lynn, G. M.; Laga, R.; Darrah, P. A.; Ishizuka, A. S.; Balaci, A. J.; Dulcey, A. E.; Pechar, M.; Pola, R.; Gerner, M. Y.; Yamamoto, A.; Buechler, C. R.; Quinn, K. M.; Smelkinson, M. G.; Vanek, O.; Cawood, R.; Hills, T.; Vasalatiy, O.; Kastenmuller, K.; Francica, J. R.; Stutts, L.; Tom, J. K.; Ryu, K. A.; Esser-Kahn, A. P.; Etrych, T.; Fisher, K. D.; Seymour, L. W.; Seder, R. A. In Vivo Characterization of the Physicochemical Properties of Polymer-Linked TLR Agonists that Enhance Vaccine Immunogenicity. Nat. Biotechnol. 2015, 33, 1201–10. [16] Marabelle, A.; Kohrt, H.; Caux, C.; Levy, R. Intratumoral Immunization: A New Paradigm for Cancer Therapy. Clin. Cancer Res. 2014, 20, 1747–56. [17] Michelsen, K. S.; Aicher, A.; Mohaupt, M.; Hartung, T.; Dimmeler, S.; Kirschning, C. J.; Schumann, R. R. The Role of Toll-Like Receptors (TLRs) in Bacteria-Induced Maturation of Murine Dendritic Cells (DCS). Peptidoglycan and Lipoteichoic Acid are Inducers of DC Maturation and Require TLR2. J. Biol. Chem. 2001, 276, 25680–6. [18] Mi, Y.; Hagan, C. T. t.; Vincent, B. G.; Wang, A. Z., Emerging Nano-/Microapproaches for Cancer Immunotherapy. Adv. Sci. 2019, 6 (6), 1801847. [19] Van Hoeven, N.; Fox, C. B.; Granger, B.; Evers, T.; Joshi, S. W.; Nana, G. I.; Evans, S. C.; Lin, S.; Liang, H.; Liang, L.; Nakajima, R.; Felgner, P. L.; Bowen, R. A.; Marlenee, N.; Hartwig, A.; Baldwin, S. L.; Coler, R. N.; Tomai, M.; Elvecrog, J.; Reed, S. G.; Carter, D., A Formulated TLR7/8 Agonist is a Flexible, Highly Potent and Effective Adjuvant for Pandemic Influenza Vaccines. Sci. Rep. 2017, 7. [20] Lynn, G. M.; Laga, R.; Darrah, P. A.; Ishizuka, A. S.; Balaci, A. J.; Dulcey, A. E.; Pechar, M.; Pola, R.; Gerner, M. Y.; Yamamoto, A.; Buechler, C. R.; Quinn, K. M.; Smelkinson, M. G.; Vanek, O.; Cawood, R.; Hills, T.; Vasalatiy, O.; Kastenmuller, K.; Francica, J. R.; Stutts, L.; Tom, J. K.; Ryu, K. A.; Esser-Kahn, A. P.; Etrych, T.; Fisher, K. D.; Seymour, L. W.; Seder, R. A., In Vivo Characterization of the Physicochemical Properties of Polymer-Linked TLR Agonists that Enhance Vaccine Immunogenicity. Nat. Biotechnol. 2015, 33 (11), 1201–10. [21] Li, D.; Huang, J. X.; Kaner, R. B. Polyaniline Nanofibers: A Unique Polymer Nanostructure for Versatile Applications. Accounts Chem. Res. 2009, 42, 135–145. [22] Yhee, J. Y.; Son, S.; Kim, S. H.; Park, K.; Choi, K.; Kwon, I. C. Self-Assembled Glycol Chitosan Nanoparticles for Disease-Specific Theranostics. J. Controlled Release 2014, 193, 202–13. [23] Song, S.; Vuai, M. S.; Zhong, M., The Role of Bacteria in Cancer Therapy - Enemies in the Past, but Allies at Present. Infect. Agents and Cancer 2018, 13, 9. [24] Phan, T. X.; Nguyen, V. H.; Duong, M. T. Q.; Hong, Y.; Choy, H. E.; Min, J. J., Activation of Inflammasome by Attenuated Salmonella Typhimurium in Bacteria-Mediated Cancer Therapy. Microbiol. Immunol. 2015, 59 (11), 664–675. [25] Mellman, I.; Coukos, G.; Dranoff, G., Cancer Immunotherapy Comes of Age. Nature 2011, 480 (7378), 480–9. [26] Forbes, N. S., Engineering the Perfect (Bacterial) Cancer Therapy. Nat. Rev. Cancer 2010, 10 (11), 785–94. [27] Dang, L. H.; Bettegowda, C.; Huso, D. L.; Kinzler, K. W.; Vogelstein, B., Combination Bacteriolytic Therapy for the Treatment of Experimental Tumors. Proc. Natl. Acad. Sci. USA 2001, 98 (26), 15155–15160. [28] Lu, K.; Aung, T.; Guo, N.; Weichselbaum, R.; Lin, W., Nanoscale Metal-Organic Frameworks for Therapeutic, Imaging, and Sensing Applications. Adv. Mater. 2018, 30 (37), e1707634. [29] Wang, S.; McGuirk, C. M.; d'Aquino, A.; Mason, J. A.; Mirkin, C. A., Metal-Organic Framework Nanoparticles. Adv. Mater. 2018, 30 (37), e1800202. [30] De Gregorio, E.; Tritto, E.; Rappuoli, R., Alum Adjuvanticity: Unraveling a Century Old Mystery. Eur. J. Immunol. 2008, 38 (8), 2068–2071. [31] Huang, X. Q.; Chen, G. J.; Pan, J. L.; Chen, X.; Huang, N.; Wang, X.; Liu, J., Effective PDT/PTT Dual-Modal Phototherapeutic Killing of Pathogenic Bacteria by Using Ruthenium Nanoparticles. J. Mater. Chem. B 2016, 4 (37), 6258–6270. [32] Wang, W. L.; Guo, Z. X.; Lu, Y.; Shen, X. C.; Chen, T.; Huang, R. T.; Zhou, B.; Wen, C. C.; Liang, H.; Jiang, B. P., Receptor-Mediated and Tumor-Microenvironment Combination Responsive Ru Nanoaggregates for Enhanced Cancer Phototheranostics. ACS Appl. Mater. Inter. 2019, 11 (19), 17294–17305. [33] Sakuishi, K.; Apetoh, L.; Sullivan, J. M.; Blazar, B. R.; Kuchroo, V. K.; Anderson, A. C., Targeting Tim-3 and PD-1 Pathways to Reverse T Cell Exhaustion and Restore Anti-Tumor Immunity. J. Exp. Med. 2010, 207 (10), 2187–2194. [34] Chen, W. F.; Guo, Z. F.; Zhu, Y. N.; Qiao, N.; Zhang, Z. R.; Sun, X., Combination of Bacterial-Photothermal Therapy with an Anti-PD-1 Peptide Depot for Enhanced Immunity against Advanced Cancer. Adv. Funct. Mater. 2020, 30 (1) , 1906623. [35] Pizarro-Cerda, J.; Cossart, P., Bacterial Adhesion and Entry into Host Cells. Cell 2006, 124 (4), 715–727. [36] Edlund, A. F.; Swanson, R.; Preuss, D., Pollen and Stigma Structure and Function: The Role of Diversity in Pollination. Plant Cell 2004, 16 Suppl, S84–97. [37] Atwe, S. U.; Ma, Y.; Gill, H. S., Pollen Grains for Oral Vaccination. J. Control. Release 2014, 194, 45–52. [38] Akyuz, L.; Sargin, I.; Kaya, M.; Ceter, T.; Akata, I., A New Pollen-Derived Microcarrier for Pantoprazole Delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 937–942. [39] Mundargi, R. C.; Potroz, M. G.; Park, S.; Shirahama, H.; Lee, J. H.; Seo, J.; Cho, N. J., Natural Sunflower Pollen as a Drug Delivery Vehicle. Small 2016, 12 (9), 1167–73. [40] Park, J. H.; Seo, J.; Jackman, J. A.; Cho, N. J., Inflated Sporopollenin Exine Capsules Obtained from Thin-Walled Pollen. Sci. Rep. 2016, 6, 28017. [41] Miao, Y. B.; Pan, W. Y.; Chen, K. H.; Wei, H. J.; Mi, F. L.; Lu, M. Y.; Chang, Y.; Sung, H. W., Engineering a Nanoscale Al-MOF-Armored Antigen Carried by a "Trojan Horse"-Like Platform for Oral Vaccination to Induce Potent and Long-Lasting Immunity. Adv. Funct. Mater. 2019, 29 (43), 1904828. [42] Butterfield, L. H. Cancer Vaccines. BMJ. 2015, 350, h988. [43] Romero, P.; Banchereau, J.; Bhardwaj, N.; Cockett, M.; Disis, M. L.; Dranoff, G.; Gilboa, E.; Hammond, S. A.; Hershberg, R.; Korman, A. J.; Kvistborg, P.; Melief, C.; Mellman, I.; Palucka, A. K.; Redchenko, I.; Robins, H.; Sallusto, F.; Schenkelberg, T.; Schoenberger, S.; Sosman, J.; Tureci, O.; Van den Eynde, B.; Koff, W.; Coukos, G. The Human Vaccines Project: A Roadmap for Cancer Vaccine Development. Sci. Transl. Med. 2016, 8, 334ps9. [44] Keenan, B. P.; Jaffee, E. M. Whole Cell Vaccines-Past Progress and Future Strategies. Semin. Oncol. 2012, 39, 276–86. [45] Melero, I.; Gaudernack, G.; Gerritsen, W.; Huber, C.; Parmiani, G.; Scholl, S.; Thatcher, N.; Wagstaff, J.; Zielinski, C.; Faulkner, I.; Mellstedt, H. Therapeutic Vaccines for Cancer: An Overview of Clinical Trials. Nat. Rev. Clin. Oncol. 2014, 11, 509–24. [46] Chiang, C. L.; Benencia, F.; Coukos, G. Whole Tumor Antigen Vaccines. Semin. Immunol. 2010, 22, 132–43. [47] Gubin, M. M.; Artyomov, M. N.; Mardis, E. R.; Schreiber, R. D. Tumor Neoantigens: Building a Framework for Personalized Cancer Immunotherapy. J. Clin. Invest. 2015, 125, 3413–21. [48] Kadiyala, P.; Li, D.; Nunez, F. M.; Altshuler, D.; Doherty, R.; Kuai, R.; Yu, M.; Kamran, N.; Edwards, M.; Moon, J. J.; Lowenstein, P. R.; Castro, M. G.; Schwendeman, A. High-Density Lipoprotein-Mimicking Nanodiscs for Chemo-Immunotherapy against Glioblastoma Multiforme. ACS Nano 2019, 13, 1365–1384. [49] Min, Y.; Roche, K. C.; Tian, S.; Eblan, M. J.; McKinnon, K. P.; Caster, J. M.; Chai, S.; Herring, L. E.; Zhang, L.; Zhang, T.; DeSimone, J. M.; Tepper, J. E.; Vincent, B. G.; Serody, J. S.; Wang, A. Z. Antigen-Capturing Nanoparticles Improve the Abscopal Effect and Cancer Immunotherapy. Nat. Nanotechnol. 2017, 12, 877–882. [50] Ye, Y.; Wang, C.; Zhang, X.; Hu, Q.; Zhang, Y.; Liu, Q.; Wen, D.; Milligan, J.; Bellotti, A.; Huang, L.; Dotti, G.; Gu, Z. A Melanin-Mediated Cancer Immunotherapy Patch. Sci. Immunol. 2017, 2, eaan5692. [51] Yang, Y.; Zhu, W.; Dong, Z.; Chao, Y.; Xu, L.; Chen, M.; Liu, Z., 1D Coordination Polymer Nanofibers for Low-Temperature Photothermal Therapy. Adv. Mater. 2017, 29 (40), 1703588. [52] Ju, E. G.; Dong, K.; Liu, Z.; Pu, F.; Ren, J. S.; Qu, X. G. Tumor Microenvironment Activated Photothermal Strategy for Precisely Controlled Ablation of Solid Tumors upon NIR Irradiation. Adv. Funct. Mater. 2015, 25, 1574–1580. [53] Lee, S.; Koo, H.; Na, J. H.; Han, S. J.; Min, H. S.; Lee, S. J.; Kim, S. H.; Yun, S. H.; Jeong, S. Y.; Kwon, I. C.; Choi, K.; Kim, K. Chemical Tumor-Targeting of Nanoparticles Based on Metabolic Glycoengineering and Click Chemistry. ACS Nano 2014, 8, 2048–63. [54] Korupalli, C.; Huang, C. C.; Lin, W. C.; Pan, W. Y.; Lin, P. Y.; Wan, W. L.; Li, M. J.; Chang, Y.; Sung, H. W. Acidity-Triggered Charge-Convertible Nanoparticles that Can Cause Bacterium-Specific Aggregation In Situ to Enhance Photothermal Ablation of Focal Infection. Biomaterials 2017, 116, 1–9. [55] Miller, T.; van Colen, G.; Sander, B.; Golas, M. M.; Uezguen, S.; Weigandt, M.; Goepferich, A. Drug Loading of Polymeric Micelles. Pharm. Res. 2013, 30, 584–595. [56] Cardone, R. A.; Casavola, V.; Reshkin, S. J. The Role of Disturbed pH Dynamics and the Na+/H+ Exchanger in Metastasis. Nat. Rev. Cancer 2005, 5, 786–95. [57] Yang, J.; Choi, J.; Bang, D.; Kim, E.; Lim, E. K.; Park, H.; Suh, J. S.; Lee, K.; Yoo, K. H.; Kim, E. K.; Huh, Y. M.; Haam, S. Convertible Organic Nanoparticles for Near-Infrared Photothermal Ablation of Cancer Cells. Angew. Chem., Int. Ed. 2011, 50, 441–4. [58] Marcasuzaa, P.; Reynaud, S.; Ehrenfeld, F.; Khoukh, A.; Desbrieres, J. Chitosan-Graft-Polyaniline-Based Hydrogels: Elaboration and Properties. Biomacromolecules 2010, 11, 1684–91. [59] Weissleder, R.; Ntziachristos, V. Shedding Light onto Live Molecular Targets. Nat. Med. 2003, 9, 123–8. [60] Hsiao, C. W.; Chuang, E. Y.; Chen, H. L.; Wan, D. H.; Korupalli, C.; Liao, Z. X.; Chiu, Y. L.; Chia, W. T.; Lin, K. J.; Sung, H. W. Photothermal Tumor Ablation in Mice with Repeated Therapy Sessions Using NIR-Absorbing Micellar Hydrogels Formed In Situ. Biomaterials 2015, 56, 26–35. [61] Kim, N. W.; Kim, S. Y.; Lee, J. E.; Yin, Y.; Lee, J. H.; Lim, S. Y.; Kim, E. S.; Duong, H. T. T.; Kim, H. K.; Kim, S.; Kim, J. E.; Lee, D. S.; Kim, J.; Lee, M. S.; Lim, Y. T.; Jeong, J. H. Enhanced Cancer Vaccination by In Situ Nanomicelle-Generating Dissolving Microneedles. ACS Nano 2018, 12, 9702–9713. [62] Banchereau, J.; Steinman, R. M. Dendritic Cells and the Control of Immunity. Nature 1998, 392, 245–52. [63] Liang, R.; Xie, J.; Li, J.; Wang, K.; Liu, L.; Gao, Y.; Hussain, M.; Shen, G.; Zhu, J.; Tao, J., Liposomes-Coated Gold Nanocages with Antigens and Adjuvants Targeted Delivery to Dendritic Cells for Enhancing Antitumor Immune Response. Biomaterials 2017, 149, 41–50. [64] Kuai, R.; Ochyl, L. J.; Bahjat, K. S.; Schwendeman, A.; Moon, J. J. Designer Vaccine Nanodiscs for Personalized Cancer Immunotherapy. Nat. Mater. 2017, 16, 489–496. [65] Nam, H. Y.; Kwon, S. M.; Chung, H.; Lee, S. Y.; Kwon, S. H.; Jeon, H.; Kim, Y.; Park, J. H.; Kim, J.; Her, S.; Oh, Y. K.; Kwon, I. C.; Kim, K.; Jeong, S. Y. Cellular Uptake Mechanism and Intracellular Fate of Hydrophobically Modified Glycol Chitosan Nanoparticles. J. Controlled Release 2009, 135, 259–67. [66] Zhao, F.; Zhao, Y.; Liu, Y.; Chang, X.; Chen, C.; Zhao, Y. Cellular Uptake, Intracellular Trafficking, and Cytotoxicity of Nanomaterials. Small 2011, 7, 1322–37. [67] Geurtsen, W.; Lehmann, F.; Spahl, W.; Leyhausen, G. Cytotoxicity of 35 Dental Resin Composite Monomers/Additives in Permanent 3T3 and Three Human Primary Fibroblast Cultures. J. Biomed. Mater. Res. 1998, 41, 474–80. [68] Carroll, E. C.; Jin, L.; Mori, A.; Munoz-Wolf, N.; Oleszycka, E.; Moran, H. B. T.; Mansouri, S.; McEntee, C. P.; Lambe, E.; Agger, E. M.; Andersen, P.; Cunningham, C.; Hertzog, P.; Fitzgerald, K. A.; Bowie, A. G.; Lavelle, E. C. The Vaccine Adjuvant Chitosan Promotes Cellular Immunity via DNA Sensor cGAS-STING-Dependent Induction of Type I Interferons. Immunity 2016, 44, 597–608. [69] Moran, H. B. T.; Turley, J. L.; Andersson, M.; Lavelle, E. C., Immunomodulatory Properties of Chitosan Polymers. Biomaterials 2018, 184, 1–9. [70] Jung, H. S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J. L.; Kim, J. S. Organic Molecule-Based Photothermal Agents: An Expanding Photothermal Therapy Universe. Chem. Soc. Rev. 2018, 47, 2280–2297. [71] Ayala-Orozco, C.; Urban, C.; Bishnoi, S.; Urban, A.; Charron, H.; Mitchell, T.; Shea, M.; Nanda, S.; Schiff, R.; Halas, N.; Joshi, A. Sub-100 nm Gold Nanomatryoshkas Improve Photo-Thermal Therapy Efficacy in Large and Highly Aggressive Triple Negative Breast Tumors. J. Controlled Release 2014, 191, 90–97. [72] Chen, W. R.; Adams, R. L.; Higgins, A. K.; Bartels, K. E.; Nordquist, R. E. Photothermal Effects on Murine Mammary Tumors Using Indocyanine Green and an 808-nm Diode Laser: An In Vivo Efficacy Study. Cancer Lett. 1996, 98, 169–173. [73] Russell, J. H.; Ley, T. J. Lymphocyte-Mediated Cytotoxicity. Annu. Rev. Immunol. 2002, 20, 323–70. [74] Engblom, C.; Pfirschke, C.; Pittet, M. J. The Role of Myeloid Cells in Cancer Therapies. Nat. Rev. Cancer 2016, 16, 447–62. [75] Spinetti, T.; Spagnuolo, L.; Mottas, I.; Secondini, C.; Treinies, M.; Ruegg, C.; Hotz, C.; Bourquin, C., TLR7-Based Cancer Immunotherapy Decreases Intratumoral Myeloid-Derived Suppressor Cells and Blocks Their Immunosuppressive Function. Oncoimmunology 2016, 5 (11), e1230578. [76] El Costa, H.; Quillay, H.; Marlin, R.; Cannou, C.; Duriez, M.; Benjelloun, F.; de Truchis, C.; Rahmati, M.; Ighil, J.; Barre-Sinoussi, F.; Nugeyre, M. T.; Menu, E., The Local Environment Orchestrates Mucosal Decidual Macrophage Differentiation and Substantially Inhibits HIV-1 Replication. Mucosal Immunol. 2016, 9 (3), 634–646. [77] Crusz, S. M.; Balkwill, F. R. Inflammation and Cancer: Advances and New Agents. Nat. Rev. Clin. Oncol. 2015, 12, 584–96. [78] Fisher, D. T.; Appenheimer, M. M.; Evans, S. S. The Two Faces of IL-6 in the Tumor Microenvironment. Semin. Immunol. 2014, 26, 38–47. [79] Sato, T.; Terai, M.; Tamura, Y.; Alexeev, V.; Mastrangelo, M. J.; Selvan, S. R. Interleukin 10 in the Tumor Microenvironment: A Target for Anticancer Immunotherapy. Immunol. Res. 2011, 51, 170–82. [80] Wesierska-Gadek, J.; Gueorguieva, M.; Ranftler, C.; Zerza-Schnitzhofer, G. A New Multiplex Assay Allowing Simultaneous Detection of the Inhibition of Cell Proliferation and Induction of Cell Death. J. Cell Biochem. 2005, 96, 1–7. [81] Lutz, M. B.; Kukutsch, N.; Ogilvie, A. L.; Rossner, S.; Koch, F.; Romani, N.; Schuler, G. An Advanced Culture Method for Generating Large Quantities of Highly Pure Dendritic Cells from Mouse Bone Marrow. J. Immunol. Methods 1999, 223, 77–92. [82] Pan, W. Y.; Lin, K. J.; Huang, C. C.; Chiang, W. L.; Lin, Y. J.; Lin, W. C.; Chuang, E. Y.; Chang, Y.; Sung, H. W. Localized Sequence-Specific Release of a Chemopreventive Agent and an Anticancer Drug in a Time-Controllable Manner to Enhance Therapeutic Efficacy. Biomaterials 2016, 101, 241–50. [83] Kaimala, S.; Al-Sbiei, A.; Cabral-Marques, O.; Fernandez-Cabezudo, M. J.; Al-Ramadi, B. K., Attenuated Bacteria as Immunotherapeutic Tools for Cancer Treatment. Front. Oncol. 2018, 8, 136. [84] Karki, R.; Man, S. M.; Kanneganti, T. D., Inflammasomes and Cancer. Cancer Immuno.l Res. 2017, 5 (2), 94–99. [85] Stern, C.; Kasnitz, N.; Kocijancic, D.; Trittel, S.; Riese, P.; Guzman, C. A.; Leschner, S.; Weiss, S., Induction of CD4+ and CD8+ Anti-Tumor Effector T cell Responses by Bacteria Mediated Tumor Therapy. Int. J. Cancer 2015, 137 (8), 2019–2028. [86] Millar, D. G.; Garza, K. M.; Odermatt, B.; Elford, A. R.; Ono, N.; Li, Z.; Ohashi, P. S., Hsp70 Promotes Antigen-Presenting Cell Function and Converts T-cell Tolerance to Autoimmunity In Vivo. Nat. Med. 2003, 9 (12), 1469–1476. [87] Sedighi, M.; Bialvaei, A. Z.; Hamblin, M. R.; Ohadi, E.; Asadi, A.; Halajzadeh, M.; Lohrasbi, V.; Mohammadzadeh, N.; Amiriani, T.; Krutova, M.; Amini, A.; Kouhsari, E., Therapeutic Bacteria to Combat Cancer; Current Advances, Challenges, and Opportunities. Cancer Med. 2019, 8 (6), 3167–3181. [88] Fitzgerald, K. A.; Kagan, J. C., Toll-like Receptors and the Control of Immunity. Cell 2020, 180 (6), 1044–1066. [89] Della Rocca, J.; Liu, D. M.; Lin, W. B., Nanoscale Metal-Organic Frameworks for Biomedical Imaging and Drug Delivery. Accounts Chem. Res. 2011, 44 (10), 957–968. [90] Huang, Y. B.; Liang, J.; Wang, X. S.; Cao, R., Multifunctional Metal-Organic Framework Catalysts: Synergistic Catalysis and Tandem Reactions. Chem. Soc. Rev. 2017, 46 (1), 126–157. [91] Shang, W. T.; Zeng, C. T.; Du, Y.; Hui, H.; Liang, X.; Chi, C. W.; Wang, K.; Wang, Z. L.; Tian, J., Core-Shell Gold Nanorod@Metal-Organic Framework Nanoprobes for Multimodality Diagnosis of Glioma. Adv. Mater. 2017, 29 (3), 1604381. [92] Lu, K. D.; He, C. B.; Lin, W. B., A Chlorin-Based Nanoscale Metal-Organic Framework for Photodynamic Therapy of Colon Cancers. J. Am. Chem. Soc. 2015, 137 (24), 7600–7603. [93] Wu, M. X.; Yang, Y. W., Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Adv. Mater. 2017, 29 (23), 1606134. [94] Lebre, F.; Hearnden, C. H.; Lavelle, E. C., Modulation of Immune Responses by Particulate Materials. Adv. Mater. 2016, 28 (27), 5525–5541. [95] Zhong, X. F.; Zhang, Y. T.; Tan, L.; Zheng, T.; Hou, Y. Y.; Hong, X. Y.; Du, G. S.; Chen, X. Y.; Zhang, Y. D.; Sun, X., An Aluminum Adjuvant-Integrated Nano-MOF as Antigen Delivery System to Induce Strong Humoral and Cellular Immune Responses. J. Control. Release 2019, 300, 81–92. [96] Chen, Q.; Xu, L. G.; Liang, C.; Wang, C.; Peng, R.; Liu, Z., Photothermal Therapy with Immune-Adjuvant Nanoparticles Together with Checkpoint Blockade for Effective Cancer Immunotherapy. Nat. Commun. 2016, 7, 13193. [97] Chen, P. M.; Pan, W. Y.; Wu, C. Y.; Yeh, C. Y.; Korupalli, C.; Luo, P. K.; Chou, C. J.; Chia, W. T.; Sung, H. W., Modulation of Tumor Microenvironment Using a TLR-7/8 Agonist-Loaded Nanoparticle System that Exerts Low-Temperature Hyperthermia and Immunotherapy for In Situ Cancer Vaccination. Biomaterials 2020, 230, 119629. [98] Chu, K. F.; Dupuy, D. E., Thermal Ablation of Tumours: Biological Mechanisms and Advances in Therapy. Nat. Rev. Cancer 2014, 14 (3), 199–208. [99] Schueller, G.; Kettenbach, J.; Sedivy, R.; Stift, A.; Friedl, J.; Gnant, M.; Lammer, J., Heat Shock Protein Expression Induced by Percutaneous Radiofrequency Ablation of Hepatocellular Carcinoma In Vivo. Int. J. Oncol. 2004, 24 (3), 609–613. [100] Calderwood, S. K.; Gong, J. L.; Murshid, A., Extracellular HSPs: The Complicated Roles of Extracellular HSPs in Immunity. Front. Immunol. 2016, 7. [101] Duraiswamy, J.; Kaluza, K. M.; Freeman, G. J.; Coukos, G., Dual Blockade of PD-1 and CTLA-4 Combined with Tumor Vaccine Effectively Restores T-Cell Rejection Function in Tumors. Cancer Res. 2013, 73 (12), 3591–3603. [102] Ni, K. Y.; Lan, G. X.; Chan, C.; Quigley, B.; Lu, K. D.; Aung, T.; Guo, N. N.; La Riviere, P.; Weichselbaum, R. R.; Lin, W. B., Nanoscale Metal-Organic Frameworks Enhance Radiotherapy to Potentiate Checkpoint Blockade Immunotherapy. Nat. Commun. 2018, 9. [103] Mazhorova, A.; Markov, A.; Ng, A.; Chinnappan, R.; Skorobogata, O.; Zourob, M.; Skorobogatiy, M., Label-Free Bacteria Detection Using Evanescent Mode of a Suspended Core Terahertz Fiber. Opt. Express 2012, 20 (5), 5344–5355. [104] Ahmed, M.; Brace, C. L.; Lee, F. T.; Goldberg, S. N., Principles of and Advances in Percutaneous Ablation. Radiology 2011, 258 (2), 351–369. [105] Zhang, K.; Meng, X. D.; Cao, Y.; Yang, Z.; Dong, H. F.; Zhang, Y. D.; Lu, H. T.; Shi, Z. J.; Zhang, X. J., Metal-Organic Framework Nanoshuttle for Synergistic Photodynamic and Low-Temperature Photothermal Therapy. Adv. Funct. Mater. 2018, 28 (42), 1804634. [106] Gong, J. L.; Zhang, Y. F.; Durfee, J.; Weng, D. S.; Liu, C. L.; Koido, S.; Song, B. Z.; Apostolopoulos, V.; Calderwood, S. K., A Heat Shock Protein 70-Based Vaccine with Enhanced Immunogenicity for Clinical Use. J. Immunol. 2010, 184 (1), 488–496. [107] Fujiwara, N.; Kobayashi, K., Macrophages in Inflammation. Curr. Drug Targets Inflamm. Allergy 2005, 4 (3), 281–6. [108] Kumar, S.; Anselmo, A. C.; Banerjee, A.; Zakrewsky, M.; Mitragotri, S., Shape and Size-Dependent Immune Response to Antigen-Carrying Nanoparticles. J. Control. Release 2015, 220, 141–148. [109] Benne, N.; van Duijn, J.; Kuiper, J.; Jiskoot, W.; Slutter, B., Orchestrating Immune Responses: How Size, Shape and Rigidity Affect the Immunogenicity of Particulate Vaccines. J. Control. Release 2016, 234, 124–134. [110] Champion, J. A.; Walker, A.; Mitragotri, S., Role of Particle Size in Phagocytosis of Polymeric Microspheres. Pharm. Res. 2008, 25 (8), 1815–1821. [111] Ghiringhelli, F.; Apetoh, L.; Tesniere, A.; Aymeric, L.; Ma, Y. T.; Ortiz, C.; Vermaelen, K.; Panaretakis, T.; Mignot, G.; Ullrich, E.; Perfettini, J. L.; Schlemmer, F.; Tasdemir, E.; Uhl, M.; Genin, P.; Civas, A.; Ryffel, B.; Kanellopoulos, J.; Tschopp, J.; Andre, F.; Lidereau, R.; McLaughlin, N. M.; Haynes, N. M.; Smyth, M. J.; Kroemer, G.; Zitvogel, L., Activation of the NLRP3 Inflammasome in Dendritic Cells Induces IL-1 Beta-Dependent Adaptive Immunity Against Tumors. Nat. Med. 2009, 15 (10), 1170–1199. [112] Zhou, F. F.; Wu, S.; Song, S.; Chen, W. R.; Resasco, D. E.; Xing, D., Antitumor Immunologically Modified Carbon Nanotubes for Photothermal Therapy. Biomaterials 2012, 33 (11), 3235–3242. [113] Li, X.; Lachmanski, L.; Safi, S.; Sene, S.; Serre, C.; Greneche, J. M.; Zhang, J.; Gref, R., New Insights into the Degradation Mechanism of Metal-Organic Frameworks Drug Carriers. Sci. Rep. 2017, 7, 131142. [114] Champion, J. A.; Mitragotri, S., Role of Target Geometry in Phagocytosis. Proc. Natl. Acad. Sci. USA 2006, 103 (13), 4930–4934. [115] Gallud, A.; Bondarenko, O.; Feliu, N.; Kupferschmidt, N.; Atluri, R.; Garcia-Bennett, A.; Fadeel, B., Macrophage Activation Status Determines the Internalization of Mesoporous Silica Particles of Different Sizes: Exploring the Role of Different Pattern Recognition Receptors. Biomaterials 2017, 121, 28–40. [116] Keller, S.; Berghoff, K.; Kress, H., Phagosomal Transport Depends Strongly on Phagosome Size. Sci. Rep. 2017, 7, 17068. [117] Zappasodi, R.; Merghoub, T.; Wolchok, J. D., Emerging Concepts for Immune Checkpoint Blockade-Based Combination Therapies. Cancer Cell 2018, 33 (4), 581–598. [118] Khalil, D. N.; Suek, N.; Campesato, L. F.; Budhu, S.; Redmond, D.; Samstein, R. M.; Krishna, C.; Panageas, K. S.; Capanu, M.; Houghton, S.; Hirschhorn, D.; Zappasodi, R.; Giese, R.; Gasmi, B.; Schneider, M.; Gupta, A.; Harding, J. J.; Moral, J. A.; Balachandran, V. P.; Wolchok, J. D.; Merghoub, T., In Situ Vaccination with Defined Factors Overcomes T cell Exhaustion in Distant Tumors. J. Clin. Invest. 2019, 129 (8), 3435–3447. [119] Betts, M. R.; Brenchley, J. M.; Price, D. A.; De Rosa, S. C.; Douek, D. C.; Roederer, M.; Koup, R. A., Sensitive and Viable Identification of Antigen-Specific CD8+ T Cells by a Flow Cytometric Assay for Degranulation. J. Immunol. Methods 2003, 281 (1-2), 65–78. [120] He, T.; Xu, X. B.; Ni, B.; Lin, H. F.; Li, C. Z.; Hu, W. P.; Wang, X., Metal-Organic Framework Based Microcapsules. Angew. Chem. Int. Edit. 2018, 57 (32), 10148-10152. [121] Zhou, J.; Kroll, A. V.; Holay, M.; Fang, R. H.; Zhang, L., Biomimetic Nanotechnology toward Personalized Vaccines. Adv. Mater. 2020, 32 (13), e1901255. [122] Sahdev, P.; Ochyl, L. J.; Moon, J. J., Biomaterials for Nanoparticle Vaccine Delivery Systems. Pharm. Res. 2014, 31 (10), 2563–82. [123] Gause, K. T.; Wheatley, A. K.; Cui, J. W.; Yan, Y.; Kent, S. J.; Caruso, F., Immunological Principles Guiding the Rational Design of Particles for Vaccine Delivery. ACS Nano 2017, 11 (1), 54–68. [124] Akyuz, L.; Sargin, I.; Kaya, M.; Ceter, T.; Akata, I., A New Pollen-Derived Microcarrier for Pantoprazole Delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 937–942. [125] Vigh-Conrad, K. A.; Conrad, D. F.; Preuss, D., A Protein Allergen Microarray Detects Specific IgE to Pollen Surface, Cytoplasmic, and Commercial Allergen Extracts. PLoS One 2010, 5 (4), e10174.f [126] Focke-Tejkl, M.; Weber, M.; Niespodziana, K.; Neubauer, A.; Huber, H.; Henning, R.; Stegfellner, G.; Maderegger, B.; Hauer, M.; Stolz, F.; Niederberger, V.; Marth, K.; Eckl-Dorna, J.; Weiss, R.; Thalhamer, J.; Blatt, K.; Valent, P.; Valenta, R., Development and Characterization of a Recombinant, Hypoallergenic, Peptide-Based Vaccine for Grass Pollen Allergy. J. Allergy Clin. Immunol. 2015, 135 (5), 1207-7 e1–11. [127] Zinkl, G. M.; Zwiebel, B. I.; Grier, D. G.; Preuss, D., Pollen-Stigma Adhesion in Arabidopsis: A Species-Specific Interaction Mediated by Lipophilic Molcules in the Pollen Exine. Development 1999, 126 (23), 5431–40. [128] Lu, K.; Aung, T.; Guo, N.; Weichselbaum, R.; Lin, W., Nanoscale Metal-Organic Frameworks for Therapeutic, Imaging, and Sensing Applications. Adv. Mater. 2018, 30 (37), e1707634. [129] Wang, S.; McGuirk, C. M.; d'Aquino, A.; Mason, J. A.; Mirkin, C. A., Metal-Organic Framework Nanoparticles. Adv. Mater. 2018, 30 (37), e1800202. [130] He, P.; Zou, Y.; Hu, Z., Advances in Aluminum Hydroxide-Based Adjuvant Rsearch and its Mechanism. Hum. Vaccin. Immunother. 2015, 11 (2), 477–88. [131] Hogenesch, H., Mechanism of Immunopotentiation and Safety of Aluminum Adjuvants. Front. Immunol. 2012, 3, 406. [132] Hutter, E.; Boridy, S.; Labrecque, S.; Lalancette-Hebert, M.; Kriz, J.; Winnik, F. M.; Maysinger, D., Microglial Response to Gold Nanoparticles. ACS Nano 2010, 4 (5), 2595–606. [133] Vaine, C. A.; Patel, M. K.; Zhu, J.; Lee, E.; Finberg, R. W.; Hayward, R. C.; Kurt-Jones, E. A., Tuning Innate Immune Activation by Surface Texturing of Polymer Microparticles: the Role of Shape in Inflammasome Activation. J. Immunol. 2013, 190 (7), 3525–32. [134] Wang, W.; Yang, G.; Cui, H.; Meng, J.; Wang, S.; Jiang, L., Bioinspired Pollen-Like Hierarchical Surface for Efficient Recognition of Target Cancer Cells. Adv. Healthc. Mater. 2017, 6 (15), 1700003. [135] Umemura, A.; Diring, S.; Furukawa, S.; Uehara, H.; Tsuruoka, T.; Kitagawa, S., Morphology Design of Porous Coordination Polymer Crystals by Coordination Modulation. J. Am. Chem. Soc. 2011, 133 (39), 15506–13. [136] Zhang, F.; Mundaca-Uribe, R.; Gong, H.; Esteban-Fernandez de Avila, B.; Beltran-Gastelum, M.; Karshalev, E.; Nourhani, A.; Tong, Y.; Nguyen, B.; Gallot, M.; Zhang, Y.; Zhang, L.; Wang, J., A Macrophage-Magnesium Hybrid Biomotor: Fabrication and Characterization. Adv. Mater. 2019, 31 (27), e1901828. [137] Sharma, G.; Valenta, D. T.; Altman, Y.; Harvey, S.; Xie, H.; Mitragotri, S.; Smith, J. W., Polymer Particle Shape Independently Influences Binding and Internalization by Macrophages. J, Control. Release 2010, 147 (3), 408–12. [138] Zhao, Q.; Chen, X. Y., Development: A New Function of Plant Trichomes. Nat. Plants 2016, 2 (7), 16096. [139] Yang, Y. W.; Nie, D.; Liu, Y.; Yu, M. R.; Gan, Y., Advances in Particle Shape Engineering for Improved Drug Delivery. Drug Discov. Today 2019, 24 (2), 575–583. [140] Niikura, K.; Matsunaga, T.; Suzuki, T.; Kobayashi, S.; Yamaguchi, H.; Orba, Y.; Kawaguchi, A.; Hasegawa, H.; Kajino, K.; Ninomiya, T.; Ijiro, K.; Sawa, H., Gold Nanoparticles as a Vaccine Platform: Influence of Size and Shape on Immunological Responses In Vitro and In Vivo. ACS Nano 2013, 7 (5), 3926–3938. [141] Kinnear, C.; Moore, T. L.; Rodriguez-Lorenzo, L.; Rothen-Rutishauser, B.; Petri-Fink, A., Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine. Chem. Rev. 2017, 117 (17), 11476–11521. [142] Storck, S.; Bretinger, H.; Maier, W. F., Characterization of Micro- and Mesoporous Solids by Physisorption Methods and Pore-Size Analysis. Appl. Catal. A-Gen. 1998, 174 (1–2), 137–146. [143] Smith, P. K.; Krohn, R. I.; Hermanson, G. T.; Mallia, A. K.; Gartner, F. H.; Provenzano, M. D.; Fujimoto, E. K.; Goeke, N. M.; Olson, B. J.; Klenk, D. C., Measurement of Protein using Bicinchoninic Acid. Anal. Biochem. 1985, 150 (1), 76–85. [144] Erickson, H. P., Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy. Biol. Proced. Online 2009, 11, 32–51. [145] Nakae, S.; Asano, M.; Horai, R.; Iwakura, Y., Interleukin-1 Beta, but not Interleukin-1 Alpha, is Required for T-cell-Dependent Antibody Production. Immunology 2001, 104 (4), 402–9. [146] Chen, P. M.; Pan, W. Y.; Miao, Y. B.; Liu, Y. M.; Luo, P. K.; Phung, H. N.; Wu, W. W.; Ting, Y. H.; Yeh, C. Y.; Chiang, M. C.; Chia, W. T.; Sung, H. W., Bioinspired Engineering of a Bacterium-Like Metal-Organic Framework for Cancer Immunotherapy. Adv. Funct. Mater. 2020, 30 (42), 2003764 [147] De Gregorio, E.; Tritto, E.; Rappuoli, R., Alum Adjuvanticity: Unraveling a Century Old Mystery. Eur. J. Immunol. 2008, 38 (8), 2068–71. [148] Fischer, N. O.; Rasley, A.; Corzett, M.; Hwang, M. H.; Hoeprich, P. D.; Blanchette, C. D., Colocalized Delivery of Adjuvant and Antigen Using Nanolipoprotein Particles Enhances the Immune Response to Recombinant Antigens. J. Am. Chem. Soc. 2013, 135 (6), 2044–7. [149] Ilyinskii, P. O.; Roy, C. J.; O'Neil, C. P.; Browning, E. A.; Pittet, L. A.; Altreuter, D. H.; Alexis, F.; Tonti, E.; Shi, J.; Basto, P. A.; Iannacone, M.; Radovic-Moreno, A. F.; Langer, R. S.; Farokhzad, O. C.; von Andrian, U. H.; Johnston, L. P.; Kishimoto, T. K., Adjuvant-Carrying Synthetic Vaccine Particles Augment the Immune Response to Encapsulated Antigen and Exhibit Strong Local Immune Activation without Inducing Systemic Cytokine Release. Vaccine 2014, 32 (24), 2882–95. [150] Korupalli, C.; Pan, W. Y.; Yeh, C. Y.; Chen, P. M.; Mi, F. L.; Tsai, H. W.; Chang, Y.; Wei, H. J.; Sung, H. W., Single-Injecting, Bioinspired Nanocomposite Hydrogel that Can Recruit Host Immune Cells In Situ to Elicit Potent and Long-Lasting Humoral Immune Responses. Biomaterials 2019, 216, 119268.
|