帳號:guest(3.144.248.178)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳柏銘
作者(外文):Chen, Po-Ming
論文名稱(中文):具佐劑性質之載體系統做為原位疫苗之應用
論文名稱(外文):Adjuvant-Based Particle Systems for In Situ Vaccination
指導教授(中文):宋信文
指導教授(外文):Sung, Hsing-Wen
口試委員(中文):陳三元
甘霈
許源宏
蘇慕寰
王藹君
賈維焯
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:104032531
出版年(民國):109
畢業學年度:109
語文別:英文
論文頁數:105
中文關鍵詞:癌症疫苗免疫復合治療光熱治療金屬有機框架原位疫苗免疫檢查點阻斷劑奈米尖刺仿生材料
外文關鍵詞:cancer vaccinecombination immunotherapyphotothermal therapymetal–organic frameworkin situ vaccinationcheckpoint blockadenanospikesbiomimetic
相關次數:
  • 推薦推薦:0
  • 點閱點閱:575
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
癌症是目前全球人口的主要死因之一。癌症疫苗是藉由打入腫瘤的抗原來引起長效性的T細胞反應,破壞腫瘤細胞並防止癌症復發的一種治療方式。然而全腫瘤疫苗的製造不僅成本高也很費時,因此近來的研究提出了結合其他傳統治療方式,例如放射線治療、化學治療或是熱治療,直接在患者身上將腫瘤做成原位疫苗引起抗腫瘤免疫反應的新觀點。在第一部分的研究中,我們利用聚苯胺共軛乙二醇幾丁聚醣(polyaniline-conjugated glycol chitosan, PANI-GCS)奈米微粒做為載體包覆一疏水性的免疫佐劑(R848),來進行癌症的光熱及免疫複合治療。疏水性的聚苯胺(PANI)可以經由氧化聚合接枝在親水性的乙二醇幾丁聚醣(GCS)上,形成一個兩性的高分子,並且在水相環境中自組裝行成奈米微粒。當接枝上的聚苯胺照射近遠紅外光雷射時,可以做為一個局部的奈米熱源,破壞腫瘤細胞;同時,我們所包覆的R848可以促使樹突細胞釋放出發炎相關的細胞激素,進而活化下游的專一性T細胞免疫反應。在動物實驗中我們發現,將PANI-GCS奈米微粒以腫瘤內注射的方式打入腫瘤並且照射近遠紅外光雷射後,可以在局部進行升溫進而抑制腫瘤的生長。此外,當我們打入包覆有R848的奈米微粒進行治療時,可以產生一個長效性的系統性抗腫瘤免疫反應,並且能有效防止我們二次接種的腫瘤生長。利用細菌來進行腫瘤治療(bacteria-mediated tumor therapy, BMTT)被認為是一種有效的治療方式,並且已經被研究了數十年。然而由於細菌本身潛在的感染風險,使得此種治療方法在臨床上的應用受到阻礙。為了解決此一問題,在第二部分的研究中我們提出了一種能夠仿造BMTT的功效,但不會引起不良副作用的尖刺狀類細菌金屬有機框架(metal-organic framework, MOF)用於癌症的免疫治療。我們藉由將硫酸鋁、氯化釕水合物和2-氨基對苯二甲酸的溶劑混和後進行熱反應來合成MOFs。取決於反應溫度的不同,它們的表面可能會呈現平滑球狀或是長出許多奈米等級的尖刺,而無論是球狀或是尖刺狀的MOFs都可做為光敏劑將所吸收的光能轉換成局部熱能。由於尖刺狀的MOFs與細胞接觸的表面積比球狀的MOFs更大,所以它們會更容易被巨噬細胞給吞噬,而它們所引起的細胞免疫反應也會更強。儘管單純利用尖刺狀的MOFs來進行光熱治療時可以有效將腫瘤轉化為原位疫苗,若再結合上免疫檢查點阻斷劑aPD-1的施打,它們治療癌症的能力將會再進一步提升,不僅能夠抑制原位腫瘤的生長,還能有效降低癌症復發和轉移的機率。在自然界當中,花粉顆粒的外殼由於具有多變的表面型態,因此能有效的促進其與花柱間的專一性辨認以及吸附作用,此特性也被認為有助於作為疫苗抗原的載體。然而即便透過繁複的化學處理,也無法完全去除花粉中的過敏物質。為了克服此一問題,在第三部分的研究當中我們合成了一種仿花粉型態的鋁MOFs作為抗原遞送的載體,並且吸附上模式抗原-卵清蛋白(Ovalbumin, OVA),使其在作為抗原載體的同時,也具有免疫佐劑的功效。實驗結果顯示具有較長尖刺的鋁MOFs擁有較好的細胞附著能力並且能更快速有效的被巨噬細胞給吞噬,引起更強烈的促發炎細胞激素的分泌,進而能增強抗原特異性的抗體免疫反應。
Cancer is one of the leading causes of death globally. Most cancer vaccines use defined antigens rather than whole tumor cells. Whole tumor cells can generate a strong anti-tumor immunologic memory against multiple tumor antigens but the preparation of whole-tumor vaccines can be costly and time-consuming. Recent studies have demonstrated that a combination of immunotherapy with other conventional treatment modalities can convert a tumor into an in situ vaccine that can reduce cancer metastasis and improve survival. In the first study, an insoluble adjuvant, R848, was encapsulated in polyaniline-conjugated glycol chitosan (PANI-GCS) nanoparticles (R848@NPs) for combination therapy. PANI-GCS NPs, which can absorb near-infrared (NIR) light, are utilized as nano-localized heat sources for tumor ablation, and R848 is used to induce potent inflammatory cytokine secretion by dendritic cells, which may subsequently enhance the T cell responses. In vivo study revealed that an intratumoral injection of R848@NPs generated localized heat upon exposure to NIR and partially suppressed the growth of CT26 tumor cells in a mouse model. Moreover, the injected R848@NPs successfully triggered long-term systemic antitumor immunity and rejected the rechallenged CT26 tumors. Bacteria-mediated tumor therapy (BMTT) is regarded as an effective therapeutic strategy. The injection of patients with bacteria can induce the infiltration of immune cells to exhibit numerous immune-mediated characteristics that modulate the tumor microenvironment. However, the clinical use of this method is inhibited by the risk of accompanying infections. In the second study, a bioinspired bacterium-like, spiky, aluminum (Al)-ruthenium (Ru) metal–organic framework (MOF) is proposed to replicate the function of BMTT without its adverse side-effects. These MOFs are synthesized in a solvothermal reaction of aluminum sulfate, ruthenium chloride hydrate, and 2-aminoterephthalic acid. Experimental results indicate that MOFs that are covered with numerous nanospikes are more easily phagocytosed by macrophages than are their spherical counterparts, improving subsequent immune responses. The checkpoint blockade of aPD-1 has been used in synergy with the in situ vaccination of intratumorally injected bacterium-like MOFs under NIR laser exposure to remove completely primary tumors and protect mice from tumor metastasis and recurrence. In nature, pollen particles have several unique surface morphologies that are thought to be responsible for their efficient recognition and strong adherence to stigma. Inspired by this natural pollination process, an ovalbumin (OVA)-loaded pollen-mimetic Al-MOF (OVA@Al-MOFs) with tunable spike-like nanostructures is proposed in the third study. These OVA@Al-MOFs act as not only an antigen delivery system but also an adjuvant. Analytical results demonstrate that the unique nanospikes on the surfaces of MOFs can cause them to interact effectively with the macrophages, leading to a stronger antigen-specific antibody response.
Abstract-----------------------------------------------------------I
Contents-----------------------------------------------------------V
List of Figures----------------------------------------------------XI
List of Tables-----------------------------------------------------XVII
Chapter 1 Introduction---------------------------------------------1
Chapter 2 Modulation of Tumor Microenvironment Using a TLR-7/8 Agonist-Loaded Nanoparticle System that Exerts Low-Temperature Hyperthermia and Immunotherapy for In Situ Cancer Vaccination
2-1. Introduction--------------------------------------------------6
2-2. Results and discussion----------------------------------------9
2-2.1. Characteristics of R848@NPs---------------------------------9
2-2.2. Cytotoxicity of R848@NPs------------------------------------11
2-2.3. In vitro photothermal ability of R848@NPs-------------------12
2-2.4. Hyperthermia-induced expression of HSP70--------------------13
2-2.5. In vitro immune activation by R848@NPs----------------------15
2-2.6. Thermoablative ability of empty NPs at high temperatures----17
2-2.7. Synergistic effects of low-temperature hyperthermia and immunotherapy------------------------------------------------------19
2-2.8. Systemic memory immunity------------------------------------21
2-2.9. Modulation of tumor microenvironment------------------------24
2-3. Conclusions---------------------------------------------------26
2-4. Materials and methods-----------------------------------------27
2-4.1. Materials---------------------------------------------------27
2-4.2. Preparation and characterization of R848@NPs----------------27
2-4.3. Optical and photothermal properties of R848@NPs-------------28
2-4.4. In vitro cytotoxicity study---------------------------------28
2-4.5. Cellular expression of HSP70--------------------------------29
2-4.6. Animal studies----------------------------------------------29
2-4.7. Uptake of R848@NPs by BMDCs---------------------------------29
2-4.8. Maturation of BMDCs-----------------------------------------30
2-4.9. In vivo photothermal ability of test NPs--------------------31
2-4.10. Anti-tumor treatments--------------------------------------31
2-4.11. Tumor rechallenge------------------------------------------31
2-4.12. ELISPOT assay----------------------------------------------32
2-4.13. Histological examination-----------------------------------32
2-4.14. Analysis of tumor microenvironment-------------------------32
2-4.15. Statistical analysis---------------------------------------33
Chapter 3 Bioinspired Engineering of a Bacterium-Like Metal–Organic Framework for Cancer Immunotherapy
3-1. Introduction--------------------------------------------------35
3-2. Results and discussion----------------------------------------38
3-2.1. Characteristics of MOFs-------------------------------------38
3-2.2. In vitro photothermal ability of MOFs-----------------------39
3-2.3. Cytotoxicity of MOFs----------------------------------------40
3-2.4. Hyperthermia-induced expression of HSP70--------------------42
3-2.5. Uptake of MOFs by macrophages-------------------------------43
3-2.6. In vitro immune activation by MOFs--------------------------43
3-2.7. In vitro degradability of MOFs------------------------------44
3-2.8. In vivo retention of MOFs-----------------------------------46
3-2.9. Synergistic antitumor effects of in situ vaccination and checkpoint blockade------------------------------------------------48
3-2.10. Systemic memory immunity-----------------------------------49
3-2.11. Modulation of tumor microenvironment-----------------------51
3-2.12. In vivo toxicity-------------------------------------------52
3-3. Conclusions---------------------------------------------------54
3-4. Materials and methods-----------------------------------------54
3-4.1. Materials---------------------------------------------------54
3-4.2. Synthesis and characterization of test MOFs-----------------54
3-4.3. Optical and photothermal properties of test MOFs------------55
3-4.4. In vitro cytotoxicity assay---------------------------------55
3-4.5. Cellular expression of HSP70--------------------------------56
3-4.6. Cellular uptake of test MOFs--------------------------------56
3-4.7. In vitro degradability of test MOFs-------------------------56
3-4.8. In vitro activation of macrophages--------------------------57
3-4.9. Experimental animals----------------------------------------57
3-4.10. Intratumoral retention of test MOFs------------------------57
3-4.11. In vivo photothermal effect--------------------------------58
3-4.12. In vivo cellular uptake of test MOFs-----------------------58
3-4.13. In vivo antitumor studies----------------------------------59
3-4.14. IFN-γ-secreting CD8+ T-cell ELISPOT assay-----------------59
3-4.15. Histological analysis--------------------------------------60
3-4.16. Analysis of tumor microenvironment-------------------------60
3-4.17. Blood biochemistry-----------------------------------------61
3-4.18. Statistics-------------------------------------------------61
Chapter 4 Pollen-Mimetic MOFs with Tunable Spike-Like Nanostructures that Promote Cell Interactions to Improve Antigen-Specific Humoral Immunity
4-1. Introduction--------------------------------------------------63
4-2. Results and discussion----------------------------------------65
4-2.1. Characteristics of MOFs-------------------------------------65
4-2.2. Cytotoxicity of MOFs----------------------------------------69
4-2.3. Uptake of MOFs by macrophages-------------------------------69
4-2.4. Characteristics of OVA@MOFs---------------------------------71
4-2.5. Uptake of OVA@MOFs by macrophages---------------------------74
4-2.6. In vitro disintegration of OVA@MOFs-------------------------75
4-2.7. In vitro immune activation by OVA@MOFs----------------------76
4-2.8. In vivo humoral immune response-----------------------------78
4-2.9. Biosafety of OVA@MOFs---------------------------------------78
4-3. Conclusions---------------------------------------------------80
4-4. Materials and methods-----------------------------------------81
4-4.1. Materials---------------------------------------------------81
4-4.2. Preparation and characterization of MOFs--------------------81
4-4.3. Preparation and characterization of OVA@MOFs----------------81
4-4.4. Cell viability assay----------------------------------------82
4-4.5. Attachment of MOFs to macrophages, their uptake and activation---------------------------------------------------------83
4-4.6. Experimental animals----------------------------------------83
4-4.7. In vivo OVA-specific humoral immune responses---------------84
4-4.8. Histological analysis and blood biochemistry----------------84
4-4.9. Statistical analysis----------------------------------------84
Chapter 5 References-----------------------------------------------86
Publications-------------------------------------------------------105
[1] Antoni, S.; Ferlay, J.; Soerjomataram, I.; Znaor, A.; Jemal, A.; Bray, F., Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends. Eur. Urol. 2017, 71 (1), 96–108.
[2] Bertuccio, P.; Turati, F.; Carioli, G.; Rodriguez, T.; La Vecchia, C.; Malvezzi, M.; Negri, E., Global Trends and Predictions in Hepatocellular Carcinoma Mortality. J. Hepatol. 2017, 67 (2), 302–309.
[3] Yang, J. D.; Hainaut, P.; Gores, G. J.; Amadou, A.; Plymoth, A.; Roberts, L. R., A Global View of Hepatocellular Carcinoma: Trends, Risk, Prevention and Management. Nat. Rev. Gastro. Hepat. 2019, 16 (10), 589–604.
[4] Shao, J.; Xie, H.; Huang, H.; Li, Z.; Sun, Z.; Xu, Y.; Xiao, Q.; Yu, X. F.; Zhao, Y.; Zhang, H.; Wang, H.; Chu, P. K. Biodegradable Black Phosphorus-Based Nanospheres for In Vivo Photothermal Cancer Therapy. Nat. Commun. 2016, 7, 12967.
[5] Liu, W.; Li, X.; Li, W.; Zhang, Q.; Bai, H.; Li, J.; Xi, G., Highly Stable Molybdenum Dioxide Nanoparticles with Strong Plasmon Resonance are Promising in Photothermal Cancer Therapy. Biomaterials 2018, 163, 43–54.
[6] Guo, L.; Yan, D. D.; Yang, D.; Li, Y.; Wang, X.; Zalewski, O.; Yan, B.; Lu, W., Combinatorial Photothermal and Immuno Cancer Therapy Using Chitosan-Coated Hollow Copper Sulfide Nanoparticles. ACS Nano 2014, 8 (6), 5670–81.
[7] Chen, Q.; Xu, L.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal Therapy with Immune-Adjuvant Nanoparticles Together with Checkpoint Blockade for Effective Cancer Immunotherapy. Nat. Commun. 2016, 7, 13193.
[8] Ahmed, M.; Brace, C. L.; Lee, F. T., Jr.; Goldberg, S. N. Principles of and Advances in Percutaneous Ablation. Radiology 2011, 258, 351–69.
[9] Rhim, H.; Dodd, G. D.; Chintapalli, K. N.; Wood, B. J.; Dupuy, D. E.; Hvizda, U. L.; Sewell, P. E.; Goldberg, S. N. Radiofrequency Thermal Ablation of Abdominal Tumors: Lessons Learned from Complications. Radiographics 2004, 24, 41–52.
[10] Chu, K. F.; Dupuy, D. E. Thermal Ablation of Tumours: Biological Mechanisms and Advances in Therapy. Nat. Rev. Cancer. 2014, 14, 199–208.
[11] Zhang, L.; Wang, D.; Yang, K.; Sheng, D.; Tan, B.; Wang, Z.; Ran, H.; Yi, H.; Zhong, Y.; Lin, H.; Chen, Y., Mitochondria-Targeted Artificial "Nano-RBCs" for Amplified Synergistic Cancer Phototherapy by a Single NIR Irradiation. Adv. Sci. 2018, 5 (8), 1800049.
[12] Schueller, G.; Kettenbach, J.; Sedivy, R.; Stift, A.; Friedl, J.; Gnant, M.; Lammer, J. Heat Shock Protein Expression Induced by Percutaneous Radiofrequency Ablation of Hepatocellular Carcinoma In Vivo. Int. J. Oncol. 2004, 24, 609–13.
[13] Calderwood, S. K.; Gong, J.; Murshid, A. Extracellular HSPs: The Complicated Roles of Extracellular HSPs in Immunity. Front. Immunol. 2016, 7, 159.
[14] Kawasaki, T.; Kawai, T. Toll-Like Receptor Signaling Pathways. Front. Immunol. 2014, 5, 461.
[15] Lynn, G. M.; Laga, R.; Darrah, P. A.; Ishizuka, A. S.; Balaci, A. J.; Dulcey, A. E.; Pechar, M.; Pola, R.; Gerner, M. Y.; Yamamoto, A.; Buechler, C. R.; Quinn, K. M.; Smelkinson, M. G.; Vanek, O.; Cawood, R.; Hills, T.; Vasalatiy, O.; Kastenmuller, K.; Francica, J. R.; Stutts, L.; Tom, J. K.; Ryu, K. A.; Esser-Kahn, A. P.; Etrych, T.; Fisher, K. D.; Seymour, L. W.; Seder, R. A. In Vivo Characterization of the Physicochemical Properties of Polymer-Linked TLR Agonists that Enhance Vaccine Immunogenicity. Nat. Biotechnol. 2015, 33, 1201–10.
[16] Marabelle, A.; Kohrt, H.; Caux, C.; Levy, R. Intratumoral Immunization: A New Paradigm for Cancer Therapy. Clin. Cancer Res. 2014, 20, 1747–56.
[17] Michelsen, K. S.; Aicher, A.; Mohaupt, M.; Hartung, T.; Dimmeler, S.; Kirschning, C. J.; Schumann, R. R. The Role of Toll-Like Receptors (TLRs) in Bacteria-Induced Maturation of Murine Dendritic Cells (DCS). Peptidoglycan and Lipoteichoic Acid are Inducers of DC Maturation and Require TLR2. J. Biol. Chem. 2001, 276, 25680–6.
[18] Mi, Y.; Hagan, C. T. t.; Vincent, B. G.; Wang, A. Z., Emerging Nano-/Microapproaches for Cancer Immunotherapy. Adv. Sci. 2019, 6 (6), 1801847.
[19] Van Hoeven, N.; Fox, C. B.; Granger, B.; Evers, T.; Joshi, S. W.; Nana, G. I.; Evans, S. C.; Lin, S.; Liang, H.; Liang, L.; Nakajima, R.; Felgner, P. L.; Bowen, R. A.; Marlenee, N.; Hartwig, A.; Baldwin, S. L.; Coler, R. N.; Tomai, M.; Elvecrog, J.; Reed, S. G.; Carter, D., A Formulated TLR7/8 Agonist is a Flexible, Highly Potent and Effective Adjuvant for Pandemic Influenza Vaccines. Sci. Rep. 2017, 7.
[20] Lynn, G. M.; Laga, R.; Darrah, P. A.; Ishizuka, A. S.; Balaci, A. J.; Dulcey, A. E.; Pechar, M.; Pola, R.; Gerner, M. Y.; Yamamoto, A.; Buechler, C. R.; Quinn, K. M.; Smelkinson, M. G.; Vanek, O.; Cawood, R.; Hills, T.; Vasalatiy, O.; Kastenmuller, K.; Francica, J. R.; Stutts, L.; Tom, J. K.; Ryu, K. A.; Esser-Kahn, A. P.; Etrych, T.; Fisher, K. D.; Seymour, L. W.; Seder, R. A., In Vivo Characterization of the Physicochemical Properties of Polymer-Linked TLR Agonists that Enhance Vaccine Immunogenicity. Nat. Biotechnol. 2015, 33 (11), 1201–10.
[21] Li, D.; Huang, J. X.; Kaner, R. B. Polyaniline Nanofibers: A Unique Polymer Nanostructure for Versatile Applications. Accounts Chem. Res. 2009, 42, 135–145.
[22] Yhee, J. Y.; Son, S.; Kim, S. H.; Park, K.; Choi, K.; Kwon, I. C. Self-Assembled Glycol Chitosan Nanoparticles for Disease-Specific Theranostics. J. Controlled Release 2014, 193, 202–13.
[23] Song, S.; Vuai, M. S.; Zhong, M., The Role of Bacteria in Cancer Therapy - Enemies in the Past, but Allies at Present. Infect. Agents and Cancer 2018, 13, 9.
[24] Phan, T. X.; Nguyen, V. H.; Duong, M. T. Q.; Hong, Y.; Choy, H. E.; Min, J. J., Activation of Inflammasome by Attenuated Salmonella Typhimurium in Bacteria-Mediated Cancer Therapy. Microbiol. Immunol. 2015, 59 (11), 664–675.
[25] Mellman, I.; Coukos, G.; Dranoff, G., Cancer Immunotherapy Comes of Age. Nature 2011, 480 (7378), 480–9.
[26] Forbes, N. S., Engineering the Perfect (Bacterial) Cancer Therapy. Nat. Rev. Cancer 2010, 10 (11), 785–94.
[27] Dang, L. H.; Bettegowda, C.; Huso, D. L.; Kinzler, K. W.; Vogelstein, B., Combination Bacteriolytic Therapy for the Treatment of Experimental Tumors. Proc. Natl. Acad. Sci. USA 2001, 98 (26), 15155–15160.
[28] Lu, K.; Aung, T.; Guo, N.; Weichselbaum, R.; Lin, W., Nanoscale Metal-Organic Frameworks for Therapeutic, Imaging, and Sensing Applications. Adv. Mater. 2018, 30 (37), e1707634.
[29] Wang, S.; McGuirk, C. M.; d'Aquino, A.; Mason, J. A.; Mirkin, C. A., Metal-Organic Framework Nanoparticles. Adv. Mater. 2018, 30 (37), e1800202.
[30] De Gregorio, E.; Tritto, E.; Rappuoli, R., Alum Adjuvanticity: Unraveling a Century Old Mystery. Eur. J. Immunol. 2008, 38 (8), 2068–2071.
[31] Huang, X. Q.; Chen, G. J.; Pan, J. L.; Chen, X.; Huang, N.; Wang, X.; Liu, J., Effective PDT/PTT Dual-Modal Phototherapeutic Killing of Pathogenic Bacteria by Using Ruthenium Nanoparticles. J. Mater. Chem. B 2016, 4 (37), 6258–6270.
[32] Wang, W. L.; Guo, Z. X.; Lu, Y.; Shen, X. C.; Chen, T.; Huang, R. T.; Zhou, B.; Wen, C. C.; Liang, H.; Jiang, B. P., Receptor-Mediated and Tumor-Microenvironment Combination Responsive Ru Nanoaggregates for Enhanced Cancer Phototheranostics. ACS Appl. Mater. Inter. 2019, 11 (19), 17294–17305.
[33] Sakuishi, K.; Apetoh, L.; Sullivan, J. M.; Blazar, B. R.; Kuchroo, V. K.; Anderson, A. C., Targeting Tim-3 and PD-1 Pathways to Reverse T Cell Exhaustion and Restore Anti-Tumor Immunity. J. Exp. Med. 2010, 207 (10), 2187–2194.
[34] Chen, W. F.; Guo, Z. F.; Zhu, Y. N.; Qiao, N.; Zhang, Z. R.; Sun, X., Combination of Bacterial-Photothermal Therapy with an Anti-PD-1 Peptide Depot for Enhanced Immunity against Advanced Cancer. Adv. Funct. Mater. 2020, 30 (1) , 1906623.
[35] Pizarro-Cerda, J.; Cossart, P., Bacterial Adhesion and Entry into Host Cells. Cell 2006, 124 (4), 715–727.
[36] Edlund, A. F.; Swanson, R.; Preuss, D., Pollen and Stigma Structure and Function: The Role of Diversity in Pollination. Plant Cell 2004, 16 Suppl, S84–97.
[37] Atwe, S. U.; Ma, Y.; Gill, H. S., Pollen Grains for Oral Vaccination. J. Control. Release 2014, 194, 45–52.
[38] Akyuz, L.; Sargin, I.; Kaya, M.; Ceter, T.; Akata, I., A New Pollen-Derived Microcarrier for Pantoprazole Delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 937–942.
[39] Mundargi, R. C.; Potroz, M. G.; Park, S.; Shirahama, H.; Lee, J. H.; Seo, J.; Cho, N. J., Natural Sunflower Pollen as a Drug Delivery Vehicle. Small 2016, 12 (9), 1167–73.
[40] Park, J. H.; Seo, J.; Jackman, J. A.; Cho, N. J., Inflated Sporopollenin Exine Capsules Obtained from Thin-Walled Pollen. Sci. Rep. 2016, 6, 28017.
[41] Miao, Y. B.; Pan, W. Y.; Chen, K. H.; Wei, H. J.; Mi, F. L.; Lu, M. Y.; Chang, Y.; Sung, H. W., Engineering a Nanoscale Al-MOF-Armored Antigen Carried by a "Trojan Horse"-Like Platform for Oral Vaccination to Induce Potent and Long-Lasting Immunity. Adv. Funct. Mater. 2019, 29 (43), 1904828.
[42] Butterfield, L. H. Cancer Vaccines. BMJ. 2015, 350, h988.
[43] Romero, P.; Banchereau, J.; Bhardwaj, N.; Cockett, M.; Disis, M. L.; Dranoff, G.; Gilboa, E.; Hammond, S. A.; Hershberg, R.; Korman, A. J.; Kvistborg, P.; Melief, C.; Mellman, I.; Palucka, A. K.; Redchenko, I.; Robins, H.; Sallusto, F.; Schenkelberg, T.; Schoenberger, S.; Sosman, J.; Tureci, O.; Van den Eynde, B.; Koff, W.; Coukos, G. The Human Vaccines Project: A Roadmap for Cancer Vaccine Development. Sci. Transl. Med. 2016, 8, 334ps9.
[44] Keenan, B. P.; Jaffee, E. M. Whole Cell Vaccines-Past Progress and Future Strategies. Semin. Oncol. 2012, 39, 276–86.
[45] Melero, I.; Gaudernack, G.; Gerritsen, W.; Huber, C.; Parmiani, G.; Scholl, S.; Thatcher, N.; Wagstaff, J.; Zielinski, C.; Faulkner, I.; Mellstedt, H. Therapeutic Vaccines for Cancer: An Overview of Clinical Trials. Nat. Rev. Clin. Oncol. 2014, 11, 509–24.
[46] Chiang, C. L.; Benencia, F.; Coukos, G. Whole Tumor Antigen Vaccines. Semin. Immunol. 2010, 22, 132–43.
[47] Gubin, M. M.; Artyomov, M. N.; Mardis, E. R.; Schreiber, R. D. Tumor Neoantigens: Building a Framework for Personalized Cancer Immunotherapy. J. Clin. Invest. 2015, 125, 3413–21.
[48] Kadiyala, P.; Li, D.; Nunez, F. M.; Altshuler, D.; Doherty, R.; Kuai, R.; Yu, M.; Kamran, N.; Edwards, M.; Moon, J. J.; Lowenstein, P. R.; Castro, M. G.; Schwendeman, A. High-Density Lipoprotein-Mimicking Nanodiscs for Chemo-Immunotherapy against Glioblastoma Multiforme. ACS Nano 2019, 13, 1365–1384.
[49] Min, Y.; Roche, K. C.; Tian, S.; Eblan, M. J.; McKinnon, K. P.; Caster, J. M.; Chai, S.; Herring, L. E.; Zhang, L.; Zhang, T.; DeSimone, J. M.; Tepper, J. E.; Vincent, B. G.; Serody, J. S.; Wang, A. Z. Antigen-Capturing Nanoparticles Improve the Abscopal Effect and Cancer Immunotherapy. Nat. Nanotechnol. 2017, 12, 877–882.
[50] Ye, Y.; Wang, C.; Zhang, X.; Hu, Q.; Zhang, Y.; Liu, Q.; Wen, D.; Milligan, J.; Bellotti, A.; Huang, L.; Dotti, G.; Gu, Z. A Melanin-Mediated Cancer Immunotherapy Patch. Sci. Immunol. 2017, 2, eaan5692.
[51] Yang, Y.; Zhu, W.; Dong, Z.; Chao, Y.; Xu, L.; Chen, M.; Liu, Z., 1D Coordination Polymer Nanofibers for Low-Temperature Photothermal Therapy. Adv. Mater. 2017, 29 (40), 1703588.
[52] Ju, E. G.; Dong, K.; Liu, Z.; Pu, F.; Ren, J. S.; Qu, X. G. Tumor Microenvironment Activated Photothermal Strategy for Precisely Controlled Ablation of Solid Tumors upon NIR Irradiation. Adv. Funct. Mater. 2015, 25, 1574–1580.
[53] Lee, S.; Koo, H.; Na, J. H.; Han, S. J.; Min, H. S.; Lee, S. J.; Kim, S. H.; Yun, S. H.; Jeong, S. Y.; Kwon, I. C.; Choi, K.; Kim, K. Chemical Tumor-Targeting of Nanoparticles Based on Metabolic Glycoengineering and Click Chemistry. ACS Nano 2014, 8, 2048–63.
[54] Korupalli, C.; Huang, C. C.; Lin, W. C.; Pan, W. Y.; Lin, P. Y.; Wan, W. L.; Li, M. J.; Chang, Y.; Sung, H. W. Acidity-Triggered Charge-Convertible Nanoparticles that Can Cause Bacterium-Specific Aggregation In Situ to Enhance Photothermal Ablation of Focal Infection. Biomaterials 2017, 116, 1–9.
[55] Miller, T.; van Colen, G.; Sander, B.; Golas, M. M.; Uezguen, S.; Weigandt, M.; Goepferich, A. Drug Loading of Polymeric Micelles. Pharm. Res. 2013, 30, 584–595.
[56] Cardone, R. A.; Casavola, V.; Reshkin, S. J. The Role of Disturbed pH Dynamics and the Na+/H+ Exchanger in Metastasis. Nat. Rev. Cancer 2005, 5, 786–95.
[57] Yang, J.; Choi, J.; Bang, D.; Kim, E.; Lim, E. K.; Park, H.; Suh, J. S.; Lee, K.; Yoo, K. H.; Kim, E. K.; Huh, Y. M.; Haam, S. Convertible Organic Nanoparticles for Near-Infrared Photothermal Ablation of Cancer Cells. Angew. Chem., Int. Ed. 2011, 50, 441–4.
[58] Marcasuzaa, P.; Reynaud, S.; Ehrenfeld, F.; Khoukh, A.; Desbrieres, J. Chitosan-Graft-Polyaniline-Based Hydrogels: Elaboration and Properties. Biomacromolecules 2010, 11, 1684–91.
[59] Weissleder, R.; Ntziachristos, V. Shedding Light onto Live Molecular Targets. Nat. Med. 2003, 9, 123–8.
[60] Hsiao, C. W.; Chuang, E. Y.; Chen, H. L.; Wan, D. H.; Korupalli, C.; Liao, Z. X.; Chiu, Y. L.; Chia, W. T.; Lin, K. J.; Sung, H. W. Photothermal Tumor Ablation in Mice with Repeated Therapy Sessions Using NIR-Absorbing Micellar Hydrogels Formed In Situ. Biomaterials 2015, 56, 26–35.
[61] Kim, N. W.; Kim, S. Y.; Lee, J. E.; Yin, Y.; Lee, J. H.; Lim, S. Y.; Kim, E. S.; Duong, H. T. T.; Kim, H. K.; Kim, S.; Kim, J. E.; Lee, D. S.; Kim, J.; Lee, M. S.; Lim, Y. T.; Jeong, J. H. Enhanced Cancer Vaccination by In Situ Nanomicelle-Generating Dissolving Microneedles. ACS Nano 2018, 12, 9702–9713.
[62] Banchereau, J.; Steinman, R. M. Dendritic Cells and the Control of Immunity. Nature 1998, 392, 245–52.
[63] Liang, R.; Xie, J.; Li, J.; Wang, K.; Liu, L.; Gao, Y.; Hussain, M.; Shen, G.; Zhu, J.; Tao, J., Liposomes-Coated Gold Nanocages with Antigens and Adjuvants Targeted Delivery to Dendritic Cells for Enhancing Antitumor Immune Response. Biomaterials 2017, 149, 41–50.
[64] Kuai, R.; Ochyl, L. J.; Bahjat, K. S.; Schwendeman, A.; Moon, J. J. Designer Vaccine Nanodiscs for Personalized Cancer Immunotherapy. Nat. Mater. 2017, 16, 489–496.
[65] Nam, H. Y.; Kwon, S. M.; Chung, H.; Lee, S. Y.; Kwon, S. H.; Jeon, H.; Kim, Y.; Park, J. H.; Kim, J.; Her, S.; Oh, Y. K.; Kwon, I. C.; Kim, K.; Jeong, S. Y. Cellular Uptake Mechanism and Intracellular Fate of Hydrophobically Modified Glycol Chitosan Nanoparticles. J. Controlled Release 2009, 135, 259–67.
[66] Zhao, F.; Zhao, Y.; Liu, Y.; Chang, X.; Chen, C.; Zhao, Y. Cellular Uptake, Intracellular Trafficking, and Cytotoxicity of Nanomaterials. Small 2011, 7, 1322–37.
[67] Geurtsen, W.; Lehmann, F.; Spahl, W.; Leyhausen, G. Cytotoxicity of 35 Dental Resin Composite Monomers/Additives in Permanent 3T3 and Three Human Primary Fibroblast Cultures. J. Biomed. Mater. Res. 1998, 41, 474–80.
[68] Carroll, E. C.; Jin, L.; Mori, A.; Munoz-Wolf, N.; Oleszycka, E.; Moran, H. B. T.; Mansouri, S.; McEntee, C. P.; Lambe, E.; Agger, E. M.; Andersen, P.; Cunningham, C.; Hertzog, P.; Fitzgerald, K. A.; Bowie, A. G.; Lavelle, E. C. The Vaccine Adjuvant Chitosan Promotes Cellular Immunity via DNA Sensor cGAS-STING-Dependent Induction of Type I Interferons. Immunity 2016, 44, 597–608.
[69] Moran, H. B. T.; Turley, J. L.; Andersson, M.; Lavelle, E. C., Immunomodulatory Properties of Chitosan Polymers. Biomaterials 2018, 184, 1–9.
[70] Jung, H. S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J. L.; Kim, J. S. Organic Molecule-Based Photothermal Agents: An Expanding Photothermal Therapy Universe. Chem. Soc. Rev. 2018, 47, 2280–2297.
[71] Ayala-Orozco, C.; Urban, C.; Bishnoi, S.; Urban, A.; Charron, H.; Mitchell, T.; Shea, M.; Nanda, S.; Schiff, R.; Halas, N.; Joshi, A. Sub-100 nm Gold Nanomatryoshkas Improve Photo-Thermal Therapy Efficacy in Large and Highly Aggressive Triple Negative Breast Tumors. J. Controlled Release 2014, 191, 90–97.
[72] Chen, W. R.; Adams, R. L.; Higgins, A. K.; Bartels, K. E.; Nordquist, R. E. Photothermal Effects on Murine Mammary Tumors Using Indocyanine Green and an 808-nm Diode Laser: An In Vivo Efficacy Study. Cancer Lett. 1996, 98, 169–173.
[73] Russell, J. H.; Ley, T. J. Lymphocyte-Mediated Cytotoxicity. Annu. Rev. Immunol. 2002, 20, 323–70.
[74] Engblom, C.; Pfirschke, C.; Pittet, M. J. The Role of Myeloid Cells in Cancer Therapies. Nat. Rev. Cancer 2016, 16, 447–62.
[75] Spinetti, T.; Spagnuolo, L.; Mottas, I.; Secondini, C.; Treinies, M.; Ruegg, C.; Hotz, C.; Bourquin, C., TLR7-Based Cancer Immunotherapy Decreases Intratumoral Myeloid-Derived Suppressor Cells and Blocks Their Immunosuppressive Function. Oncoimmunology 2016, 5 (11), e1230578.
[76] El Costa, H.; Quillay, H.; Marlin, R.; Cannou, C.; Duriez, M.; Benjelloun, F.; de Truchis, C.; Rahmati, M.; Ighil, J.; Barre-Sinoussi, F.; Nugeyre, M. T.; Menu, E., The Local Environment Orchestrates Mucosal Decidual Macrophage Differentiation and Substantially Inhibits HIV-1 Replication. Mucosal Immunol. 2016, 9 (3), 634–646.
[77] Crusz, S. M.; Balkwill, F. R. Inflammation and Cancer: Advances and New Agents. Nat. Rev. Clin. Oncol. 2015, 12, 584–96.
[78] Fisher, D. T.; Appenheimer, M. M.; Evans, S. S. The Two Faces of IL-6 in the Tumor Microenvironment. Semin. Immunol. 2014, 26, 38–47.
[79] Sato, T.; Terai, M.; Tamura, Y.; Alexeev, V.; Mastrangelo, M. J.; Selvan, S. R. Interleukin 10 in the Tumor Microenvironment: A Target for Anticancer Immunotherapy. Immunol. Res. 2011, 51, 170–82.
[80] Wesierska-Gadek, J.; Gueorguieva, M.; Ranftler, C.; Zerza-Schnitzhofer, G. A New Multiplex Assay Allowing Simultaneous Detection of the Inhibition of Cell Proliferation and Induction of Cell Death. J. Cell Biochem. 2005, 96, 1–7.
[81] Lutz, M. B.; Kukutsch, N.; Ogilvie, A. L.; Rossner, S.; Koch, F.; Romani, N.; Schuler, G. An Advanced Culture Method for Generating Large Quantities of Highly Pure Dendritic Cells from Mouse Bone Marrow. J. Immunol. Methods 1999, 223, 77–92.
[82] Pan, W. Y.; Lin, K. J.; Huang, C. C.; Chiang, W. L.; Lin, Y. J.; Lin, W. C.; Chuang, E. Y.; Chang, Y.; Sung, H. W. Localized Sequence-Specific Release of a Chemopreventive Agent and an Anticancer Drug in a Time-Controllable Manner to Enhance Therapeutic Efficacy. Biomaterials 2016, 101, 241–50.
[83] Kaimala, S.; Al-Sbiei, A.; Cabral-Marques, O.; Fernandez-Cabezudo, M. J.; Al-Ramadi, B. K., Attenuated Bacteria as Immunotherapeutic Tools for Cancer Treatment. Front. Oncol. 2018, 8, 136.
[84] Karki, R.; Man, S. M.; Kanneganti, T. D., Inflammasomes and Cancer. Cancer Immuno.l Res. 2017, 5 (2), 94–99.
[85] Stern, C.; Kasnitz, N.; Kocijancic, D.; Trittel, S.; Riese, P.; Guzman, C. A.; Leschner, S.; Weiss, S., Induction of CD4+ and CD8+ Anti-Tumor Effector T cell Responses by Bacteria Mediated Tumor Therapy. Int. J. Cancer 2015, 137 (8), 2019–2028.
[86] Millar, D. G.; Garza, K. M.; Odermatt, B.; Elford, A. R.; Ono, N.; Li, Z.; Ohashi, P. S., Hsp70 Promotes Antigen-Presenting Cell Function and Converts T-cell Tolerance to Autoimmunity In Vivo. Nat. Med. 2003, 9 (12), 1469–1476.
[87] Sedighi, M.; Bialvaei, A. Z.; Hamblin, M. R.; Ohadi, E.; Asadi, A.; Halajzadeh, M.; Lohrasbi, V.; Mohammadzadeh, N.; Amiriani, T.; Krutova, M.; Amini, A.; Kouhsari, E., Therapeutic Bacteria to Combat Cancer; Current Advances, Challenges, and Opportunities. Cancer Med. 2019, 8 (6), 3167–3181.
[88] Fitzgerald, K. A.; Kagan, J. C., Toll-like Receptors and the Control of Immunity. Cell 2020, 180 (6), 1044–1066.
[89] Della Rocca, J.; Liu, D. M.; Lin, W. B., Nanoscale Metal-Organic Frameworks for Biomedical Imaging and Drug Delivery. Accounts Chem. Res. 2011, 44 (10), 957–968.
[90] Huang, Y. B.; Liang, J.; Wang, X. S.; Cao, R., Multifunctional Metal-Organic Framework Catalysts: Synergistic Catalysis and Tandem Reactions. Chem. Soc. Rev. 2017, 46 (1), 126–157.
[91] Shang, W. T.; Zeng, C. T.; Du, Y.; Hui, H.; Liang, X.; Chi, C. W.; Wang, K.; Wang, Z. L.; Tian, J., Core-Shell Gold Nanorod@Metal-Organic Framework Nanoprobes for Multimodality Diagnosis of Glioma. Adv. Mater. 2017, 29 (3), 1604381.
[92] Lu, K. D.; He, C. B.; Lin, W. B., A Chlorin-Based Nanoscale Metal-Organic Framework for Photodynamic Therapy of Colon Cancers. J. Am. Chem. Soc. 2015, 137 (24), 7600–7603.
[93] Wu, M. X.; Yang, Y. W., Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Adv. Mater. 2017, 29 (23), 1606134.
[94] Lebre, F.; Hearnden, C. H.; Lavelle, E. C., Modulation of Immune Responses by Particulate Materials. Adv. Mater. 2016, 28 (27), 5525–5541.
[95] Zhong, X. F.; Zhang, Y. T.; Tan, L.; Zheng, T.; Hou, Y. Y.; Hong, X. Y.; Du, G. S.; Chen, X. Y.; Zhang, Y. D.; Sun, X., An Aluminum Adjuvant-Integrated Nano-MOF as Antigen Delivery System to Induce Strong Humoral and Cellular Immune Responses. J. Control. Release 2019, 300, 81–92.
[96] Chen, Q.; Xu, L. G.; Liang, C.; Wang, C.; Peng, R.; Liu, Z., Photothermal Therapy with Immune-Adjuvant Nanoparticles Together with Checkpoint Blockade for Effective Cancer Immunotherapy. Nat. Commun. 2016, 7, 13193.
[97] Chen, P. M.; Pan, W. Y.; Wu, C. Y.; Yeh, C. Y.; Korupalli, C.; Luo, P. K.; Chou, C. J.; Chia, W. T.; Sung, H. W., Modulation of Tumor Microenvironment Using a TLR-7/8 Agonist-Loaded Nanoparticle System that Exerts Low-Temperature Hyperthermia and Immunotherapy for In Situ Cancer Vaccination. Biomaterials 2020, 230, 119629.
[98] Chu, K. F.; Dupuy, D. E., Thermal Ablation of Tumours: Biological Mechanisms and Advances in Therapy. Nat. Rev. Cancer 2014, 14 (3), 199–208.
[99] Schueller, G.; Kettenbach, J.; Sedivy, R.; Stift, A.; Friedl, J.; Gnant, M.; Lammer, J., Heat Shock Protein Expression Induced by Percutaneous Radiofrequency Ablation of Hepatocellular Carcinoma In Vivo. Int. J. Oncol. 2004, 24 (3), 609–613.
[100] Calderwood, S. K.; Gong, J. L.; Murshid, A., Extracellular HSPs: The Complicated Roles of Extracellular HSPs in Immunity. Front. Immunol. 2016, 7.
[101] Duraiswamy, J.; Kaluza, K. M.; Freeman, G. J.; Coukos, G., Dual Blockade of PD-1 and CTLA-4 Combined with Tumor Vaccine Effectively Restores T-Cell Rejection Function in Tumors. Cancer Res. 2013, 73 (12), 3591–3603.
[102] Ni, K. Y.; Lan, G. X.; Chan, C.; Quigley, B.; Lu, K. D.; Aung, T.; Guo, N. N.; La Riviere, P.; Weichselbaum, R. R.; Lin, W. B., Nanoscale Metal-Organic Frameworks Enhance Radiotherapy to Potentiate Checkpoint Blockade Immunotherapy. Nat. Commun. 2018, 9.
[103] Mazhorova, A.; Markov, A.; Ng, A.; Chinnappan, R.; Skorobogata, O.; Zourob, M.; Skorobogatiy, M., Label-Free Bacteria Detection Using Evanescent Mode of a Suspended Core Terahertz Fiber. Opt. Express 2012, 20 (5), 5344–5355.
[104] Ahmed, M.; Brace, C. L.; Lee, F. T.; Goldberg, S. N., Principles of and Advances in Percutaneous Ablation. Radiology 2011, 258 (2), 351–369.
[105] Zhang, K.; Meng, X. D.; Cao, Y.; Yang, Z.; Dong, H. F.; Zhang, Y. D.; Lu, H. T.; Shi, Z. J.; Zhang, X. J., Metal-Organic Framework Nanoshuttle for Synergistic Photodynamic and Low-Temperature Photothermal Therapy. Adv. Funct. Mater. 2018, 28 (42), 1804634.
[106] Gong, J. L.; Zhang, Y. F.; Durfee, J.; Weng, D. S.; Liu, C. L.; Koido, S.; Song, B. Z.; Apostolopoulos, V.; Calderwood, S. K., A Heat Shock Protein 70-Based Vaccine with Enhanced Immunogenicity for Clinical Use. J. Immunol. 2010, 184 (1), 488–496.
[107] Fujiwara, N.; Kobayashi, K., Macrophages in Inflammation. Curr. Drug Targets Inflamm. Allergy 2005, 4 (3), 281–6.
[108] Kumar, S.; Anselmo, A. C.; Banerjee, A.; Zakrewsky, M.; Mitragotri, S., Shape and Size-Dependent Immune Response to Antigen-Carrying Nanoparticles. J. Control. Release 2015, 220, 141–148.
[109] Benne, N.; van Duijn, J.; Kuiper, J.; Jiskoot, W.; Slutter, B., Orchestrating Immune Responses: How Size, Shape and Rigidity Affect the Immunogenicity of Particulate Vaccines. J. Control. Release 2016, 234, 124–134.
[110] Champion, J. A.; Walker, A.; Mitragotri, S., Role of Particle Size in Phagocytosis of Polymeric Microspheres. Pharm. Res. 2008, 25 (8), 1815–1821.
[111] Ghiringhelli, F.; Apetoh, L.; Tesniere, A.; Aymeric, L.; Ma, Y. T.; Ortiz, C.; Vermaelen, K.; Panaretakis, T.; Mignot, G.; Ullrich, E.; Perfettini, J. L.; Schlemmer, F.; Tasdemir, E.; Uhl, M.; Genin, P.; Civas, A.; Ryffel, B.; Kanellopoulos, J.; Tschopp, J.; Andre, F.; Lidereau, R.; McLaughlin, N. M.; Haynes, N. M.; Smyth, M. J.; Kroemer, G.; Zitvogel, L., Activation of the NLRP3 Inflammasome in Dendritic Cells Induces IL-1 Beta-Dependent Adaptive Immunity Against Tumors. Nat. Med. 2009, 15 (10), 1170–1199.
[112] Zhou, F. F.; Wu, S.; Song, S.; Chen, W. R.; Resasco, D. E.; Xing, D., Antitumor Immunologically Modified Carbon Nanotubes for Photothermal Therapy. Biomaterials 2012, 33 (11), 3235–3242.
[113] Li, X.; Lachmanski, L.; Safi, S.; Sene, S.; Serre, C.; Greneche, J. M.; Zhang, J.; Gref, R., New Insights into the Degradation Mechanism of Metal-Organic Frameworks Drug Carriers. Sci. Rep. 2017, 7, 131142.
[114] Champion, J. A.; Mitragotri, S., Role of Target Geometry in Phagocytosis. Proc. Natl. Acad. Sci. USA 2006, 103 (13), 4930–4934.
[115] Gallud, A.; Bondarenko, O.; Feliu, N.; Kupferschmidt, N.; Atluri, R.; Garcia-Bennett, A.; Fadeel, B., Macrophage Activation Status Determines the Internalization of Mesoporous Silica Particles of Different Sizes: Exploring the Role of Different Pattern Recognition Receptors. Biomaterials 2017, 121, 28–40.
[116] Keller, S.; Berghoff, K.; Kress, H., Phagosomal Transport Depends Strongly on Phagosome Size. Sci. Rep. 2017, 7, 17068.
[117] Zappasodi, R.; Merghoub, T.; Wolchok, J. D., Emerging Concepts for Immune Checkpoint Blockade-Based Combination Therapies. Cancer Cell 2018, 33 (4), 581–598.
[118] Khalil, D. N.; Suek, N.; Campesato, L. F.; Budhu, S.; Redmond, D.; Samstein, R. M.; Krishna, C.; Panageas, K. S.; Capanu, M.; Houghton, S.; Hirschhorn, D.; Zappasodi, R.; Giese, R.; Gasmi, B.; Schneider, M.; Gupta, A.; Harding, J. J.; Moral, J. A.; Balachandran, V. P.; Wolchok, J. D.; Merghoub, T., In Situ Vaccination with Defined Factors Overcomes T cell Exhaustion in Distant Tumors. J. Clin. Invest. 2019, 129 (8), 3435–3447.
[119] Betts, M. R.; Brenchley, J. M.; Price, D. A.; De Rosa, S. C.; Douek, D. C.; Roederer, M.; Koup, R. A., Sensitive and Viable Identification of Antigen-Specific CD8+ T Cells by a Flow Cytometric Assay for Degranulation. J. Immunol. Methods 2003, 281 (1-2), 65–78.
[120] He, T.; Xu, X. B.; Ni, B.; Lin, H. F.; Li, C. Z.; Hu, W. P.; Wang, X., Metal-Organic Framework Based Microcapsules. Angew. Chem. Int. Edit. 2018, 57 (32), 10148-10152.
[121] Zhou, J.; Kroll, A. V.; Holay, M.; Fang, R. H.; Zhang, L., Biomimetic Nanotechnology toward Personalized Vaccines. Adv. Mater. 2020, 32 (13), e1901255.
[122] Sahdev, P.; Ochyl, L. J.; Moon, J. J., Biomaterials for Nanoparticle Vaccine Delivery Systems. Pharm. Res. 2014, 31 (10), 2563–82.
[123] Gause, K. T.; Wheatley, A. K.; Cui, J. W.; Yan, Y.; Kent, S. J.; Caruso, F., Immunological Principles Guiding the Rational Design of Particles for Vaccine Delivery. ACS Nano 2017, 11 (1), 54–68.
[124] Akyuz, L.; Sargin, I.; Kaya, M.; Ceter, T.; Akata, I., A New Pollen-Derived Microcarrier for Pantoprazole Delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 937–942.
[125] Vigh-Conrad, K. A.; Conrad, D. F.; Preuss, D., A Protein Allergen Microarray Detects Specific IgE to Pollen Surface, Cytoplasmic, and Commercial Allergen Extracts. PLoS One 2010, 5 (4), e10174.f
[126] Focke-Tejkl, M.; Weber, M.; Niespodziana, K.; Neubauer, A.; Huber, H.; Henning, R.; Stegfellner, G.; Maderegger, B.; Hauer, M.; Stolz, F.; Niederberger, V.; Marth, K.; Eckl-Dorna, J.; Weiss, R.; Thalhamer, J.; Blatt, K.; Valent, P.; Valenta, R., Development and Characterization of a Recombinant, Hypoallergenic, Peptide-Based Vaccine for Grass Pollen Allergy. J. Allergy Clin. Immunol. 2015, 135 (5), 1207-7 e1–11.
[127] Zinkl, G. M.; Zwiebel, B. I.; Grier, D. G.; Preuss, D., Pollen-Stigma Adhesion in Arabidopsis: A Species-Specific Interaction Mediated by Lipophilic Molcules in the Pollen Exine. Development 1999, 126 (23), 5431–40.
[128] Lu, K.; Aung, T.; Guo, N.; Weichselbaum, R.; Lin, W., Nanoscale Metal-Organic Frameworks for Therapeutic, Imaging, and Sensing Applications. Adv. Mater. 2018, 30 (37), e1707634.
[129] Wang, S.; McGuirk, C. M.; d'Aquino, A.; Mason, J. A.; Mirkin, C. A., Metal-Organic Framework Nanoparticles. Adv. Mater. 2018, 30 (37), e1800202.
[130] He, P.; Zou, Y.; Hu, Z., Advances in Aluminum Hydroxide-Based Adjuvant Rsearch and its Mechanism. Hum. Vaccin. Immunother. 2015, 11 (2), 477–88.
[131] Hogenesch, H., Mechanism of Immunopotentiation and Safety of Aluminum Adjuvants. Front. Immunol. 2012, 3, 406.
[132] Hutter, E.; Boridy, S.; Labrecque, S.; Lalancette-Hebert, M.; Kriz, J.; Winnik, F. M.; Maysinger, D., Microglial Response to Gold Nanoparticles. ACS Nano 2010, 4 (5), 2595–606.
[133] Vaine, C. A.; Patel, M. K.; Zhu, J.; Lee, E.; Finberg, R. W.; Hayward, R. C.; Kurt-Jones, E. A., Tuning Innate Immune Activation by Surface Texturing of Polymer Microparticles: the Role of Shape in Inflammasome Activation. J. Immunol. 2013, 190 (7), 3525–32.
[134] Wang, W.; Yang, G.; Cui, H.; Meng, J.; Wang, S.; Jiang, L., Bioinspired Pollen-Like Hierarchical Surface for Efficient Recognition of Target Cancer Cells. Adv. Healthc. Mater. 2017, 6 (15), 1700003.
[135] Umemura, A.; Diring, S.; Furukawa, S.; Uehara, H.; Tsuruoka, T.; Kitagawa, S., Morphology Design of Porous Coordination Polymer Crystals by Coordination Modulation. J. Am. Chem. Soc. 2011, 133 (39), 15506–13.
[136] Zhang, F.; Mundaca-Uribe, R.; Gong, H.; Esteban-Fernandez de Avila, B.; Beltran-Gastelum, M.; Karshalev, E.; Nourhani, A.; Tong, Y.; Nguyen, B.; Gallot, M.; Zhang, Y.; Zhang, L.; Wang, J., A Macrophage-Magnesium Hybrid Biomotor: Fabrication and Characterization. Adv. Mater. 2019, 31 (27), e1901828.
[137] Sharma, G.; Valenta, D. T.; Altman, Y.; Harvey, S.; Xie, H.; Mitragotri, S.; Smith, J. W., Polymer Particle Shape Independently Influences Binding and Internalization by Macrophages. J, Control. Release 2010, 147 (3), 408–12.
[138] Zhao, Q.; Chen, X. Y., Development: A New Function of Plant Trichomes. Nat. Plants 2016, 2 (7), 16096.
[139] Yang, Y. W.; Nie, D.; Liu, Y.; Yu, M. R.; Gan, Y., Advances in Particle Shape Engineering for Improved Drug Delivery. Drug Discov. Today 2019, 24 (2), 575–583.
[140] Niikura, K.; Matsunaga, T.; Suzuki, T.; Kobayashi, S.; Yamaguchi, H.; Orba, Y.; Kawaguchi, A.; Hasegawa, H.; Kajino, K.; Ninomiya, T.; Ijiro, K.; Sawa, H., Gold Nanoparticles as a Vaccine Platform: Influence of Size and Shape on Immunological Responses In Vitro and In Vivo. ACS Nano 2013, 7 (5), 3926–3938.
[141] Kinnear, C.; Moore, T. L.; Rodriguez-Lorenzo, L.; Rothen-Rutishauser, B.; Petri-Fink, A., Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine. Chem. Rev. 2017, 117 (17), 11476–11521.
[142] Storck, S.; Bretinger, H.; Maier, W. F., Characterization of Micro- and Mesoporous Solids by Physisorption Methods and Pore-Size Analysis. Appl. Catal. A-Gen. 1998, 174 (1–2), 137–146.
[143] Smith, P. K.; Krohn, R. I.; Hermanson, G. T.; Mallia, A. K.; Gartner, F. H.; Provenzano, M. D.; Fujimoto, E. K.; Goeke, N. M.; Olson, B. J.; Klenk, D. C., Measurement of Protein using Bicinchoninic Acid. Anal. Biochem. 1985, 150 (1), 76–85.
[144] Erickson, H. P., Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy. Biol. Proced. Online 2009, 11, 32–51.
[145] Nakae, S.; Asano, M.; Horai, R.; Iwakura, Y., Interleukin-1 Beta, but not Interleukin-1 Alpha, is Required for T-cell-Dependent Antibody Production. Immunology 2001, 104 (4), 402–9.
[146] Chen, P. M.; Pan, W. Y.; Miao, Y. B.; Liu, Y. M.; Luo, P. K.; Phung, H. N.; Wu, W. W.; Ting, Y. H.; Yeh, C. Y.; Chiang, M. C.; Chia, W. T.; Sung, H. W., Bioinspired Engineering of a Bacterium-Like Metal-Organic Framework for Cancer Immunotherapy. Adv. Funct. Mater. 2020, 30 (42), 2003764
[147] De Gregorio, E.; Tritto, E.; Rappuoli, R., Alum Adjuvanticity: Unraveling a Century Old Mystery. Eur. J. Immunol. 2008, 38 (8), 2068–71.
[148] Fischer, N. O.; Rasley, A.; Corzett, M.; Hwang, M. H.; Hoeprich, P. D.; Blanchette, C. D., Colocalized Delivery of Adjuvant and Antigen Using Nanolipoprotein Particles Enhances the Immune Response to Recombinant Antigens. J. Am. Chem. Soc. 2013, 135 (6), 2044–7.
[149] Ilyinskii, P. O.; Roy, C. J.; O'Neil, C. P.; Browning, E. A.; Pittet, L. A.; Altreuter, D. H.; Alexis, F.; Tonti, E.; Shi, J.; Basto, P. A.; Iannacone, M.; Radovic-Moreno, A. F.; Langer, R. S.; Farokhzad, O. C.; von Andrian, U. H.; Johnston, L. P.; Kishimoto, T. K., Adjuvant-Carrying Synthetic Vaccine Particles Augment the Immune Response to Encapsulated Antigen and Exhibit Strong Local Immune Activation without Inducing Systemic Cytokine Release. Vaccine 2014, 32 (24), 2882–95.
[150] Korupalli, C.; Pan, W. Y.; Yeh, C. Y.; Chen, P. M.; Mi, F. L.; Tsai, H. W.; Chang, Y.; Wei, H. J.; Sung, H. W., Single-Injecting, Bioinspired Nanocomposite Hydrogel that Can Recruit Host Immune Cells In Situ to Elicit Potent and Long-Lasting Humoral Immune Responses. Biomaterials 2019, 216, 119268.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *