帳號:guest(18.227.107.104)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):詹繕源
作者(外文):Chan, Shan-Yuan
論文名稱(中文):應用於氧氣還原反應之磷摻雜石墨烯的合成與鑑定
論文名稱(外文):Synthesis and Characterization of Phosphorus-doped Reduced Graphene Oxide for the Oxygen Reduction Reaction Applications
指導教授(中文):胡啟章
指導教授(外文):Hu, Chi-Chang
口試委員(中文):馬振基
劉英麟
口試委員(外文):Ma, Chen-Chi
Liu, Ying-Ling
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:104032530
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:165
中文關鍵詞:磷摻雜石墨烯氧氣還原反應過氧化氫生成
外文關鍵詞:Phosporus-doped reduced graphene oxide (P-rGO)Oxygen reduction reactionH2O2 generation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:50
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究利用氧化石墨烯(Graphene oxide, GO)與三苯基磷(Triphenylphosphine, TPP)透過水熱法及高溫爐還原形成磷摻雜石墨烯(PG),將之應用於氧氣還原反應(Oxygen reduction reaction, ORR)的研究。並利用旋轉環-盤電極(Rotating ring-disk electrode, RRDE)計算電子轉移數,藉此了解ORR的機制。
研究分為兩部分。第一部分陡升陡降途徑實驗 (PSA/D)中,控制(A).三苯基磷(TPP)比例,(C).微波功率,(E).燒結溫度,(F).CNT,有效控制電子轉移數從 3.91至2.88,並命名為PG(3.91)、PG(3.75)、PG(3.51)、PG(3.13)、PG(2.88)。在材料鑑定上,以 XPS 分析磷參雜結構,及透過 SEM觀察形態,並藉由拉曼光譜及XRD分析 P-rGO的缺陷程度,且藉由BET(比表面積儀)證實PG(3.91)擁有最高的表面積453.2 m2/g,證明比表面積的提升與電子轉移數有正相關。
第二部分利用PG(3.91)作為鋅空氣電池之應用,其最大功率密度118.67mW cm-2出現在電流密度221 mA cm-2,其表現比起許多先前的文獻都還要優異。本研究也利用PG(2.88)在0V (vs. RHE) 最高效率操作電位下一小時,產生H2O2濃度(29.4 mg L-1)。上述結果證明了P-rGO可成為鋅空氣電池陰極及產生過氧化氫反應的催化劑。
This thesis mainly focuses on the microwave and annealing synthesis and fabrication of Phosphorus-doped reduced graphene oxide (P-rGO) and its application on oxygen reduction reaction (ORR). The rotating ring-disk electrode (RRDE) voltammetry was applied to calculate electron transfer numbers to study ORR.
In the first part, 26-2 factorial design of experiments and path of steepest ascent/descent (PSA/PSD) experiments were applied , six factors including: (A). triphenylphosphine ratio, (B). annealing temperature(°C), (C). microwave power(W) ,(D) microwave time(min), (E). annealing temperature and (F). CNT concentration were controlled in order to obtain the optimal values of electron transfer number for ORR. The highest electron transfer number was 3.91, whereas the lowest one was near 2.88. The samples were assigned as PG(3.91), PG(3.75), PG(3.51), PG(3.13), PG(2.88).
The structures and distributions of phosphorus doped onto r-GO were examined by the x-ray photoelectron spectroscopic (XPS) and EDX analysis. The layer-by-layer morphology and the high degree of defects of P-rGO were characterized by scanning electron microscopy (SEM) , and Raman spectroscopy.
In the second part, PG (3.91) was utilized for zinc air battery. The maxium power density (118.67mW cm-2) occurs at current density (221 mA cm-2). Moreover, PG (2.88) was used for H2O2 generation. The maxium H2O2 concentration (29.4 mg L-1) appears at 0V (vs. RHE) operating for 1hr. These results confirm P-rGO can be the excellent catalyst for zinc air battery and H2O2 generation.
目錄
誌謝 1
中文摘要 2
Abstract 3
目錄 5
圖目錄 10
表目錄 19
第一章 緒論與文獻回顧 21
1-1 電化學原理 21
1-1-1 電化學反應系統 21
1-1-2 影響電化學系統之因素 24
1-2 鋅空氣電池 26
1-2-1 前言 26
1-2-2 鋅空氣電池簡介 27
1-2-3 鋅空氣電池之演進及產業概況 28
1-3 鋅空氣電池陰極氧氣還原反應之基本原理 29
1-3-1 前言 29
1-3-2 白金催化劑於氧氣還原反應之機制 31
1-3-3 旋轉圓盤電極之基本原理 33
1-3-4 旋轉環-盤電極之基本原理 37
1-4 實驗設計法 (DOE, design of experiments) 40
1-4-1 前言 40
1-5 石墨烯發展近況及其延伸應用 46
1-5-1 石墨烯之歷史與發展 46
1-5-2 石墨烯之電性質 47
1-5-3 石墨烯之製備 48
1-5-4 石墨及玻碳電極於氧氣還原反應之機制 57
1-6 異原子(氮、磷、硫)摻雜石墨烯之結構與其應用 59
1-6-1 異原子(氮、磷、硫)摻雜石墨烯之結構 59
1-6-2 製備磷摻雜碳材之種類 62
1-6-3 磷摻雜石墨烯於氧氣還原反應(ORR)之機制探討 63
1-7 研究目的與論文大綱 66
第二章 實驗方法與儀器藥品 67
2-1 實驗儀器與藥品 67
2-1-1 實驗儀器 67
2-1-2藥品 68
2-2 前驅溶液:氧化石墨烯溶液配製 69
2-3 以微波輔助水熱法合成磷摻雜石墨烯 70
2-4 以高溫還原法合成磷摻雜石墨烯 71
2-5 電化學分析實驗 72
2-5-1 旋轉環盤電極(RRDE)前處理與分析 72
2-5-2 循環伏安法(Cyclic Voltammetry, CV) 74
2-5-3 線性伏安掃描(Linear Sweep Voltammetry, LSV) 75
2-5-4 空氣電池陰極之塗布與前處理 76
2-5-5 鋅空氣電池之量測分析 78
2-5-6 以紫外光-可見光(UV-visible)檢測過氧化氫濃度 79
2-5-7 紫外光-可見光吸收光譜 80
2-5-8 電化學降解 Orange G 82
2-6 磷摻雜石墨烯之材料分析儀器 84
2-6-1 掃描電子顯微鏡(SEM) 84
2-6-2 X光繞射儀(XRD) 85
2-6-3 拉曼光譜儀(Raman) 86
2-6-4 電子能譜儀(XPS) 88
2-6-5 傅立葉轉換紅外線光譜(FTIR) 89
2-6-6 比表面積測試 (BET analsis) 90
第三章 磷摻雜石墨烯之合成與鑑定 97
3-1 利用旋轉環-盤電極量測氧氣還原反應 97
3-1-1 前言 97
3-2 磷摻雜石墨烯之材料分析 99
3-2-1 磷摻雜石墨烯之結構組成分析(XPS) 99
3-2-2 磷摻雜石墨烯之結晶性分析(Raman) 102
3-2-3 材料分析之總結討論 105
3-3 磷摻雜石墨烯之電化學分析 106
3-3-1 磷摻雜材料對氧氣還原反應的影響 106
3-3-2 磷摻雜材料對電子轉移數之影響 109
3-4 26-2部分因素實驗設計(Fractional Factorial Design, FFD) 111
3-5 變異數分析(Variance analysis) 117
3-6 陡升/陡降途徑實驗(Path of steepest ascent/descent, PSA/D) 122
3-7 陡升/陡降途徑實驗之材料分析 125
3-7-1 表面形貌及微結構分析與元素分布分析(SEM) 125
3-7-2 元素結構組成分析(XPS) 127
3-7-3 比表面積分析(BET) 129
3-7-4 材料分析之結果討論 132
第四章 陡升陡降途徑實驗延伸應用 134
4-1 陡升途徑實驗應用 134
4-1-1 鋅空氣電池放電測試 134
4-1-2 鋅空氣電池放電效能 137
4-1-3 燃料電池甲醇毒化測試 142
4-2 陡降途徑實驗應用:電化學產生過氧化氫 144
4-2-1 陡降途徑實驗於 pH=3 環境之過氧化氫濃度量測 144
4-2-2 陡降途徑實驗於不同定電位之過氧化氫濃度量測 146
4-2-3 樣品P-rGO(2.88)於電化學降解橙黃G之表現 147
第五章 總結與未來展望 150
5-1 總結 150
5-1-1 磷摻雜對氧氣還原反應(Oxygen reduction reaction, ORR)的影響 150
5-1-2 實驗設計法鑑定磷摻雜石墨烯於氧氣還原反應 (Oxygen reduction reaction, ORR) 之應用 151
5-1-3 磷摻雜石墨烯於鋅空氣電池與H2O2生成之應用 152
5-2 未來展望 154
參考文獻 156

參考文獻
[1] D. Pletcher, A first course in electrode processes, Royal Society of Chemistry, 2009.
[2] D.R. Crow, Principles and applications of electrochemistry, CRC Press, 1994.
[3] A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications, Wiley New York, 1980.
[4] 胡啟章, 電化學原理與方法, 五南圖書出版股份有限公司, 2002.
[5] D. Pletcher, F.C. Walsh, Industrial electrochemistry, Springer, 1990.
[6] D. Galizzioli, F. Tantardini, S. Trasatti, Journal of Applied Electrochemistry, 5 (1975) 203-214.
[7] A.M. Couper, D. Pletcher, F.C. Walsh, Chemical Reviews, 90 (1990) 837-865.
[8] Power one: Hearing Aid Batteries. Powerone-batteries.com. Retrieved on 2012-09-30.
[9] Battery types. thermoanalytics. Retrieved on 2012-09-30.
[10]何為空氣電池? | 綠能趨勢網EnergyTrendhttp://www.energytrend.com.tw/knowledge/20150623-11533.html
[11] Schröder, D., Krewer, U, International Congress on Energy (2011)
[12]產業價值鏈資訊平台> 能源元件產業鏈簡介 http://ic.tpex.org.tw/introduce.php?ic=E000
[13] 特斯拉成功申请多项專利 金屬空氣電池能否终结“續行焦慮”? http://www.feelcars.com/67267.html
[14] 鋅空氣電池和下一代矽鋰電池研究應用
https://kknews.cc/zh-tw/news/ov88em.html
[15]鋅空氣電池概念迎利好http://news.sina.com.tw/article/20140821/13167160.html
[16]太平洋瓦斯電力公司計劃測試飛輪、鋅空氣電池能源儲存http://www.taiwanbattery.org.tw/News/More?id=4728
[17] E.P. Ambrosio, C. Francia, C. Gerbaldi, N. Penazzi, P. Spinelli, M. Manzoli, G. Ghiotti, Journal of Applied Electrochemistry, 38 (2008) 1019-1027.
[18] J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough, Y. Shao-Horn, Nat Chem, 3 (2011) 546-550.
[19] P.-C. Li, C.-C. Hu, T.-C. Lee, W.-S. Chang, T.H. Wang, Journal of Power Sources, 269 (2014) 88-97.
[20] E. Peralta, R. Natividad, G. Roa, R. Marin, R. Romero, T. Pavon, Sustain. Environ. Res., 23 (2013) 259-266.
[21] N. Guillet, L. Roué, S. Marcotte, D. Villers, J.P. Dodelet, N. Chhim,S.T. Vin, Journal of Applied Electrochemistry, 36 (2006) 863-870.
[22] C.E. La Rotta, E. D'elia, E.P. Bon, Electronic Journal of Biotechnology, 10 (2007) 24-36.
[23] S.-H. Cho, A. Jang, P.L. Bishop, S.-H. Moon, Journal of Hazardous Materials, 175 (2010) 253-257.
[24] M.H.M.T. Assumpção, R.F.B. De Souza, D.C. Rascio, J.C.M. Silva, M.L. Calegaro, I. Gaubeur, T.R.L.C. Paixão, P. Hammer, M.R.V. Lanza, M.C. Santos, Carbon, 49 (2011) 2842-2851.

[25] C. Song, J. Zhang, Electrocatalytic Oxygen Reduction Reaction, in: J. Zhang (Ed.) PEM Fuel Cell Electrocatalysts and Catalyst Layers, Springer London, 2008, pp. 89-134.
[26] Z. Peng, H. Yang, Nano Today, 4 (2009) 143-164.
[27] Bayram, E., G. Yilmaz, and S. Mukerjee, A solution-based procedure for synthesis of nitrogen doped graphene as an efficient electrocatalyst for oxygen reduction reactions in acidic and alkaline electrolytes. Applied Catalysis B: Environmental, 2016. 192: p. 26-34.
[28] Some, S., et al., Highly air-stable phosphorus-doped n-type graphene field-effect transistors. Adv Mater, 2012. 24(40): p. 5481-6.
[29] Wen, Y., et al., Synthesis of phosphorus-doped graphene and its wide potential window in aqueous supercapacitors. Chemistry, 2015. 21(1): p. 80-5.
[30] Xiao, Z., et al., Edge-selectively phosphorus-doped few-layer graphene as an efficient metal-free electrocatalyst for the oxygen evolution reaction. Chem Commun (Camb), 2016. 52(88): p. 13008-13011.
[31] Zhang, C., et al., Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv Mater, 2013. 25(35): p. 4932-7.
[32] Zhang, X., et al., The mechanisms of oxygen reduction reaction on phosphorus doped graphene: A first-principles study. Journal of Power Sources, 2015. 276: p. 222-229.
[33] Xu, G., et al., Porous nitrogen and phosphorus co-doped carbon nanofiber networks for high performance electrical double layer capacitors. J. Mater. Chem. A, 2015. 3(46): p. 23268-23273.
[34] https://angstronmaterials.com/
[35] B. Wang, Journal of Power Sources, 152 (2005) 1-15
[36] K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, science, 306 (2004) 666-669.
[37] S.J. Lee, S.I. Pyun, S.K. Lee, S.J.L. Kang, Isr. J. Chem., 48 (2008) 215-228.
[38] O. Antoine, R. Durand, Journal of Applied Electrochemistry, 30 (2000) 839-844.
[39] G. Box, W. Hunter, J. Hunter, John Willey, New York, (1978).
[40] http://www.minitab.com.tw/product/minitab/features_doe.php#實驗設計定義
[41] D.C. Montgomery, Design and Analysis of Experiments, 8th Edition, John Wiley & Sons, Incorporated, 2012.
[42] A.K. Geim et al.,The rise of graphene. Nat Mater,2007. 6(3): p. 183-191.
[43] 馬振基,奈米材料科技原理與應用, 全華圖書股份有限公司, 2016
[44] Wallace,P.R.,The Band Theory of Graphite. Physical Review,1947. 71(9): p. 622-634.
[45] McClure,J.W.,Diamagnetism of Graphite. Physical Review,1956. 104(3): p. 666-671.
[46] K.-H. Chang, Y.-F. Lee, C.-C. Hu, C.-I. Chang, C.-L. Liu, Y.-L.Yang, Chem. Commun., 46 (2010) 7957-7959.
[47] S.-M. Paek, E. Yoo, I. Honma, Nano letters, 9 (2008) 72-75.

[48] C. Lee et al.,Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science,2008. 321: p. 38.
[49] Wallace,P.R.,The Band Theory of Graphite. Physical Review,1947. 71(9): p. 622-634.
[50] W.A de Heer et al.,Epitaxial graphene. Solid State Communications,2007. 143(1-2): p. 92-100.
[51] Li,X. et al.,Highly conducting graphene sheets and Langmuir Blodgett films. Nat Nano,2008. 3(9): p. 538-542.
[52] L.Z. Gomez et al.,Synthesis,Synthesis,Transfer,and Devices of Single- and Few-Layer Graphene by Chemical Vapor Deposition. IEEE Trans. Nanotechnol.,2008. 8: p. 135-138.
[53] D.R. Dreyer et al.,The chemistry of graphene oxide,Chem. Soc. Rev.,2010. 39. p 228-240
[54] S. Stankovich et al.,Graphene-based composites materials,NATURE. 2006. 442. p 282-286
[55] H.A. Becerril et al.,Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano,2008. 2(3): p. 463-470.
[56] Comptom et al.,Electrically Conductive ‘‘Alkylated’’ Graphene Paper via Chemical Reduction of Amine-Functionalized Graphene Oxide Paper. Adv. Mater. 2009. 21. p 1-5
[57] F. Xiaobin et al.,Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation,Adv. Mater. 2008. 20. p 4490-4493
[58] Yao,N. and V. Lordi,Young's modulus of single-walled carbon nanotubes. Journal of Applied Physics,1998. 84(4): p. 1939-1943.
[59] Treacy,M.M.J.,T.W. Ebbesen,and J.M. Gibson,Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature,1996. 381(6584): p. 678-680.
[60] A.K. Geim et al.,Electric Field Effect in Atomically Thin Carbon Films. Science,2004. 306(5696): p. 666-669.
[61] I. Morcos, E. Yeager, Electrochimica Acta, 15 (1970) 953-975.
[62] Zhang, X., et al., The mechanisms of oxygen reduction reaction on phosphorus doped graphene: A first-principles study. Journal of Power Sources, 2015. 276: p. 222-229.
[63] Xiao, Z., et al., Edge-selectively phosphorus-doped few-layer graphene as an efficient metal-free electrocatalyst for the oxygen evolution reaction. Chem Commun (Camb), 2016. 52(88): p. 13008-13011.
[64] Shumba, M. and T. Nyokong, Development of nanocomposites of phosphorus-nitrogen co-doped graphene oxide nanosheets and nanosized cobalt phthalocyanines for electrocatalysis. Electrochimica Acta, 2016. 213: p. 529-539.
[65] Li, Y., et al., Polypyrrole-modified graphene sheet nanocomposites as new efficient materials for supercapacitors. Carbon, 2016. 105: p. 510-520.
[66] Bayram, E., G. Yilmaz, and S. Mukerjee, A solution-based procedure for synthesis of nitrogen doped graphene as an efficient electrocatalyst for oxygen reduction reactions in acidic and alkaline electrolytes. Applied Catalysis B: Environmental, 2016. 192: p. 26-34.

[67] Zhang, J., et al., A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol, 2015. 10(5): p. 444-52.
[68] Yang, Z., et al., Preparation of 3D graphene-based architectures and their applications in supercapacitors. Progress in Natural Science: Materials International, 2015. 25(6): p. 554-562.
[69] Xu, G., et al., Porous nitrogen and phosphorus co-doped carbon nanofiber networks for high performance electrical double layer capacitors. J. Mater. Chem. A, 2015. 3(46): p. 23268-23273.
[70] Wu, J., et al., Ternary doping of phosphorus, nitrogen, and sulfur into porous carbon for enhancing electrocatalytic oxygen reduction. Carbon, 2015. 92: p. 327-338.
[71] Wu, J., et al., Synthesis of phosphorus-doped carbon hollow spheres as efficient metal-free electrocatalysts for oxygen reduction. Carbon, 2015. 82: p. 562-571.
[72] Wen, Y., et al., Synthesis of phosphorus-doped graphene and its wide potential window in aqueous supercapacitors. Chemistry, 2015. 21(1): p. 80-5.
[73] Liu, Y., et al., The high-performance and mechanism of P-doped activated carbon as a catalyst for air-cathode microbial fuel cells. J. Mater. Chem. A, 2015. 3(42): p. 21149-21158.
[74] Li, R., Z. Wei, and X. Gou, Nitrogen and Phosphorus Dual-Doped Graphene/Carbon Nanosheets as Bifunctional Electrocatalysts for Oxygen Reduction and Evolution. ACS Catalysis, 2015. 5(7): p. 4133-4142.

[75] Hu, C.C., et al., Anodic composite deposition of RuO(2)/reduced graphene oxide/carbon nanotube for advanced supercapacitors. Nanotechnology, 2015. 26(27): p. 274004.
[76] Duan, X., et al., Effects of nitrogen-, boron-, and phosphorus-doping or codoping on metal-free graphene catalysis. Catalysis Today, 2015. 249: p. 184-191.
[77] Zhang, C., et al., Synthesis of Phosphorus-Doped Graphene and its Multifunctional Applications for Oxygen Reduction Reaction and Lithium Ion Batteries. Adv. Mater.2013, 25, 4932−4937.
[78] Poh, H., et al., Concurrent Phosphorus Doping and Reduction of Graphene Oxide. Eur. J.2014, 20, 4284−4291.
[79] Duan, J., et al., Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. ACS Catalysis, 2015. 5(9): p. 5207-5234.
[80] Yang, D.-S., et al., Highly efficient metal-free phosphorus-doped platelet ordered mesoporous carbon for electrocatalytic oxygen reduction. Carbon, 2014. 67: p. 736-743.
[81] Wang, Z., et al., Phosphorus-doped reduced graphene oxide as an electrocatalyst counter electrode in dye-sensitized solar cells. Journal of Power Sources, 2014. 263: p. 246-251.
[82] Yang, D.S., et al., Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. J Am Chem Soc, 2012. 134(39): p. 16127-30.
[83] Liu, Z.W., et al., Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angew Chem Int Ed Engl, 2011. 50(14): p. 3257-61.
[84] Liu, Z., et al., Novel phosphorus-doped multiwalled nanotubes with high electrocatalytic activity for O2 reduction in alkaline medium. Catalysis Communications, 2011. 16(1): p. 35-38.
[85] Chang, C.-M. and Y.-L. Liu, Functionalization of multi-walled carbon nanotubes with furan and maleimide compounds through Diels–Alder cycloaddition. Carbon, 2009. 47(13): p. 3041-3049.
[86] A. Pandolfo, A. Hollenkamp, Journal of power sources, 157 (2006) 11-27.
[87] Y. Shao, S. Zhang, M.H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu,I.A. Aksay, Y. Lin, Journal of Materials Chemistry, 20 (2010) 7491-7496.
[88] L. Qu, Y. Liu, J.-B. Baek, L. Dai, ACS nano, 4 (2010) 1321-1326.
[89] Xiaowan B., et al., Theoretical insights on the reaction pathways for oxygen reduction reaction on phosphorus doped graphene. Carbon, (2016) 214-223
[90] H. Wendt, Electrochimica Acta, 29 (1984) 1513-1525.
[91] http://www.mse.nthu.edu.tw/equip2/property.php?Sn=94
[92] Xiaowan B., et al., Theoretical insights on the reaction pathways for oxygen reduction reaction on phosphorus doped graphene. Carbon, (2016) 214-223
[93] C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Angewandte Chemie International Edition, 48 (2009) 7752-7777.
[94] http://www.nscric.nthu.edu.tw/
[95] C.L. Liu, C.C. Hu, S.H. Wu, T.H. Wu, Journal of the Electrochemical Society, 160 (2013) H547-H552.
[96] G.E.P. Box, W.G. Hunter, J. Roy, Statist. Soc., B13(1951).
[97] 溫添進, 林世民, 化工 37 卷 2 期 (1990) 23-33.
[98] A.C. Ferrari, Solid State Communications, 143 (2007) 47-57.
[99] 李仕明.馬振基(2014), 氮摻雜石墨烯應用於超高電容器與生物感測器之電極材料的製備與性質研究.
[100] https://zh.wikipedia.org/wiki/%E7%94%B2%E5%9F%BA%E8%97
[101] IUPAC. “Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry”, Pure Appl. Chem., vol. 31,1972,pp.578
[102] Li, P. C.; Hu, C. C.; Lee, T. C.; Chang, W. S.; Wang, T. H. J. Power Sources (2014) 269, 88– 97
[103] Z.Y. Chen, Y.N. Li, L.L. Lei, S.J. Bao, M.Q. Wang, H.L. Z.L. Zhao, and Mao-wen Xu ,CatalysisScience & Technology (2017)
[104] T.F. Wu, W.C. Lin, Y.C. Hsiao, C.H. Su, C.C. Hu, C.P. Huang, R. Muniyandi, Journal of the Electrochemical Society, 161 (2014)
H762-H769.
[105] Y.B. Xie, X.Z. Li, Materials Chemistry and Physics, 95 (2006) 39-50.
[106] Mekan O., et al., Chemical Vapor Deposition of Phosphorus- and Boron-Doped Graphene Using Phenyl-Containing Molecules. J Nanosci Nanotechnol. 2015 Jul;15(7):4883-6.
[107] Li X., et al., Three Dimensional P-doped Graphene Synthesized by Eco-Friendly Chemical Vapor Deposition for Oxygen Reduction Reactions. J Nanosci Nanotechnol. 2016 Jun;16(6):6216-22.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *