帳號:guest(18.220.251.163)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許雯鈞
作者(外文):Hsu, Wen-Chun
論文名稱(中文):掌性效應對含聚環己烷基乙交酯雙嵌段共聚物於自組裝行為之影響
論文名稱(外文):Chirality Effect on Self-Assembly of Poly(cyclohexylglycolide)-Containing Chiral Block Copolymers
指導教授(中文):何榮銘
指導教授(外文):Ho, Rong-Ming
口試委員(中文):蔡敬誠
蔣酉旺
莊偉綜
口試委員(外文):Tsai, Jing-Cherng
Chiang, Yeo-Wan
Chuang, Wei-Tsung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:104032526
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:77
中文關鍵詞:掌性嵌段共聚物自組裝圓二色光譜螺旋相
外文關鍵詞:ChiralityBlock copolymerSelf-assemblyCircular dichroismHelical phase
相關次數:
  • 推薦推薦:0
  • 點閱點閱:138
  • 評分評分:*****
  • 下載下載:17
  • 收藏收藏:0
為了研究掌性效應影響掌性嵌段共聚物其自組裝的普遍相行為,故設計並合成含聚環己烷基乙交酯之新型掌性嵌段共聚物(聚甲基丙烯酸苄-聚右旋環己烷基乙交酯)。分子層級與鏈層級的掌性可分別由圓二色光譜及振動圓二色光譜來驗證,且含聚環己烷基乙交酯的掌性嵌段共聚物利用掌性嵌段之分子內作用力可得到單一旋性的聚環己烷基乙交酯,其分子內作用力可藉由在振動圓二色光譜中羰基的耦合作用來驗證。利用掌性嵌段之分子間作用力,含聚環己烷基乙交酯之掌性嵌段共聚物可自組裝形成螺旋結構,顯示掌性效應於嵌段共聚物中在自組裝行為上的影響。在此值得注意的是,因掌性聚環己烷基乙交酯具有較大的螺旋旋轉能力,螺旋結構的介穩定性會受到顯著之影響,故含掌性聚環己烷基乙交酯之嵌段共聚物可自組裝形成較聚苯乙烯-聚左旋乳酸系統更穩定的螺旋態。在含掌性聚環己烷基乙交酯之嵌段共聚物中所觀察到之相行為可與定向自洽場理論模擬之結果相符合。此外,根據理論預測掌性聚環己烷基乙交酯可能具有類似液晶的行為表現,分子鏈間具有特定取向之排列,可藉由醚基在振動圓二色光譜的吸收波段之訊號來驗證。上述結果皆可與定向自洽場理論之模擬結果相互呼應。
Here, we aim to investigate the universal behaviors of the chirality effect on the self-assembly of chiral block copolymers (BCPs*). A new type of chiral block polymer (BCP*), poly(cyclohexylglycolide) (PCG)-containing block copolymer (BCP) (i.e., poly(benzyl methacrylate)-b-poly(D-cyclohexylglycolide) (PBnMA-PDCG)), are designed and synthesized. On the basis of the molecular chirality and conformational chirality of the chiral PCGs identified by circular dichroism and vibrational circular dichroism spectra, respectively, exclusively handedness of PCG polymer chains in the enantiomeric BCPs* can be found due to intramolecular chiral interaction of chiral entities as evidenced by coupling of carbonyl group (C=O) in VCD spectra. By taking advantage of intermolecular chiral interaction which could be observed by vibration of C-O-C in VCD spectra, the self-assembly of the PCG-containing BCP* gives the formation of helical phase (H*), suggesting the chirality effect on BCP self-assembly. Most interestingly, with the high twisting power, the metastability of forming H* can be significantly affected, resulting in the tendency to give H* with higher thermodynamic stability. The observed phase behaviors of the PCG-containing BCP*s are in line with theoretical prediction based on chiral orientational self-consistent field theory. Also, the self-assembly of chiral orientational self-consistent field theory at which the chiral PCG behaves like mesogenic liquid crystal, giving the nematic texture with specific twisting direction as evidenced by the mirror-imaged VCD signals of C-O-C vibration.
摘要..................................................................I
Abstract.............................................................II
致謝................................................................III
Contents.............................................................IV
Figures Captions.....................................................VI
Tables Captions.....................................................XII
Chapter 1 Introduction................................................1
1.1 Self-Assembly and Supramolecular Chemistry........................1
1.2 Self-Assembly of Block Copolymers (BCPs) .........................5
1.3 Chirality ........................................................6
1.4 New Phases in Chiral Block Copolymers (BCPs*).....................8
1.5 Circular Dichroism and Vibrational Circular Dichroism............14
1.6 Circular Dichroism and Vibrational Circular Dichroism for Chiral Polymers and Block Copolymers........................................20
1.7 Chirality in Liquid Crystal..............................................................26
1.8 Orientational Self-Consistent Field Theory.......................28
Chapter 2 Objectives.................................................32
Chapter 3 Experimental Section.......................................34
3.1 Materials........................................................34
3.2 Preparation of Bulk Samples......................................36
3.3 Preparation of Polymer Thin-film Sample..........................36
3.4 Characterization and Instrumentation.............................36
Chapter 4 Results and Discussion.....................................40
4.1 Synthesis and characterization of Poly(cyclohexylglycolide)-Containing Homopolymers and Block Copolymers.........................40
4.2 Configurational and Conformaitonal Chirality in Poly(cyclohexyl glycolide) Homopolymers and Poly(cyclohexylglycolide)-Containing Block Copolymers...........................................................47
4.3 Universal Behaviors of Chirality Effect on BCP Self-Assembly..52
4.4 Intermolecular Chiral Interaction of Chiral PCGs.................60
Chapter 5 Conclusions and Prospective................................68
Chapter 6 References.................................................70
[1] J. M. Lehn. Supramolecular chemistry: receptors, catalysts, and carriers. Science. 1985, 227, 849.
[2] G. M. Whitesides, B.Grzybowski. Self-assembly at all scales. Science, 2002, 295, 2418.
[3] G. M. Whitesides, M. Boncheva. Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci. USA 2002, 99, 4769.
[4] G. A. Petsko, D. Ringe, Protein Structure and Function. London: New Science Press Ltd, 2004.
[5] E. L. Thomas, D. M. Anderson, C. S. Henkee, D. Hoffman. Periodic area-minimizing surfaces in block copolymers. Nature 1988, 334, 598.
[6] F. S. Bates, G. H. Fredrickson. Block Copolymer Thermodynamics: Theory and Experiment. Annu. Rev. Phys. Chem. 1990, 41, 525.
[7] F. S. Bates, G. H. Fredrickson. Block Copolymers—Designer Soft Materials. Phys. Today 1999, 52, 32.
[8] R. M.Ho, Y. W. Chiang, C. C. Tsai, C. C. Lin, B. T. Ko, B. H. Huang. Three-Dimensionally Packed Nanohelical Phase in Chiral Block Copolymers. J. Am. Chem. Soc. 2004, 126, 2704.
[9] W. H. Tseng, C. K. Chen, Y. W. Chiang, R. M. Ho. Helical Nanocomposites from Chiral Block Copolymer Templates. J. Am. Chem. Soc. 2009, 131, 1356.
[10] R. M. Ho, Y. W. Chiang, C. K. Chen, H. W. Wang, H. Hasegawa, S. Akasaka, E. L. Thomas, C. Burger, B. S. Hsiao. Block Copolymers with a Twist. J. Am. Chem. Soc. 2009, 131, 18533.
[11] T. M. Chung; H. F. Wang; T. Lin; Y. W. Chiang; Y. C. Chen; B. T. Ko; R. M. Ho. Helical Phase Driven by Solvent Evaporation in Self-Assembly of Poly(4-vinylpyridine)-block-poly(l-lactide) Chiral Block Copolymers. Macromolecules, 2012, 45, 9727.
[12] R. M. Ho, C. K. Chen, Y. W. Chiang. Tubular Nanostructures from Degradable Core–Shell Cylinder Microstructures in Chiral Diblock CopolymersAdv Mater 2006, 18, 2355.
[13] a) Hajduk, D. A.; Takenouchi, H; Hillmyer, M. A.; Bates, F. S.; Vigild, M. E.; Almdal, K., Stability of the Perforated Layer (PL) Phase in Diblock Copolymer Melts. Macromolecules, 1997, 30, 3788;
b) Hajduk, D. A.; Ho, R.-M.; Hillmyer, M. A.; Bates, F. S.; Almdal, K. , Transition Mechanisms for Complex Ordered Phases in Block Copolymer Melts. J. Phys. Chem. B, 1998, 102, 1356.
[14] Jinnai, H.; Hasegawa, H.; Nishikawa, Y.; Sevink, G. J. A.; Braunfeld, M. B.; Agard, D. A.; Spontak, R. J., You have full text access to this content3D Nanometer-Scale Study of Coexisting Bicontinuous Morphologies in a Block Copolymer/Homopolymer Blend. Macromol. Rapid Commun., 2006, 27, 1424.
[15] a) Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K., Epitaxial Relationship for Hexagonal-to-Cubic Phase Transition in a Book Copolymer Mixture Phys. Rev. Lett., 1994, 73, 86;
b) Forster S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W., Complex Phase Behavior of Polyisoprene-Polystyrene Diblock Copolymers Near the Order-Disorder Transition Macromolecules, 1994, 27, 6922;
c) Wang, C. Y.; Lodge, T. P., Kinetics and Mechanisms for the Cylinder-to-Gyroid Transition in a Block Copolymer Solution Macromolecules, 2002, 35, 6997;
d) Wang, C.Y.; Lodge, T. P., Macromol. Rapid Commun., Unexpected Intermediate State for the Cylinder-to-Gyroid Transition in a Block Copolymer Solution. 2002, 23, 49.
[16] a) Sakurai, S.; Umeda, H.; Furukawa, C.; Irie, H.; Nomura, S.; Lee, H. H.; Kim, J. K. J., Thermally induced morphological transiton from lamellae to gyroid in a binary blend of diblock copolymers. J. Chem. Phys., 1998, 108, 4333;
b) Hamley, I. W., Fairclough, J. P. A.; Ryan, A. J.; Mai, S.-M.; Booth, C., Lamellar-to-gyroid transition in a poly(oxyethylene)–poly(oxybutylene) diblock copolymer melt. Phys. Chem. Chem. Phys., 1999, 1, 2097
[17] a) Kim, G.; Libera, M., Morphological Development in Solvent-Cast Polystyrene−Polybutadiene−Polystyrene (SBS) Triblock Copolymer Thin Films. Macromolecules, 1998, 31, 2569;
b) Zhang, Q.; Tsui, O. K. C.; Du, B.; Zhang, F.; Tang, T.; He, T., Observation of Inverted Phases in Poly(styrene-b-butadiene-b-styrene) Triblock Copolymer by Solvent-Induced Order−Disorder Phase TransitionMacromolecules, 2000, 33, 9561.
[18] R. M. Ho; Y. W. Chiang; C. K. Chen; H. W. Wang; H. Hasegawa, S. Akasaka, E. L. Thomas, C. Burger, B. S. Hsiao. Block Copolymer with a Twist. J. Am. Chem. Soc. 2009, 131, 18533.
[19] Rodger, A.; Nordén, B. Circualr dichroism and linear dichroism, Oxford University Pres., 2011.
[20] Solomon, I. E., Inorganic electronic structure and spectroscopy. Wiley-Interscience., 2011.
[21] Nakamishi, K.; Berova, N.; Woody, R. W., Circualr dichroism Principles and Applications. 1994.
[22] Harada, N.; Nakanishi, K., Circular Dichroic Spectroscopy. Exciton Coupling in Organic Stereochemistry. University Science Books, 1983.
[23] Berova, N.; Nakanishi, K.; Woody, R. W.; Circualr dichroism: Principles and Applications. Wiley-VCH, 2000.
[24] Gawronski, J., Determination of absolute and relative configuration by chiroptical methods. In: Houben-Weyl, Methods of Organic Chemstry, 1995, 21, 499.
[25] Fischbeck, A.;; Humpf, H. U. New Applications of the CD Exciton Chirality Method. Stereochemical Assignment of Organic Compounds Containing Carboxylic Acid Groups. Monatshefte fur Chemie, 2005, 136, 397.4
[26] T. Wen; H. F. Wang; M. C. Li; R. M. Ho. Homochiral Evolution in Self-Assembled Chiral Polymers and Block Copolymers. Acc. Chem. Res., 2017, 50, 1011.
[27] J. Cymerman Craig; S. K. Roy. Optival rotatory dispersion and absolute configuration-I: α-amino acids. Tetrahedron. 1965, 21, 391.
[28] J. Cymerman Craig; S. K. Roy. Optival rotatory dispersion and absolute configuration-IV:α-Substituted alcohols and their derivatives. Tetrahedron. 1965, 21, 1847.
[29] M. M. Green, N. C. Peterson, T. Sato, A. Teramoto, R. Cook, S. Lifson. A Helical Polymer with a Cooperative Response to Chiral Information. Science. 1995, 268, 1860.
[30] E. Schwartz; S. R. Domingos; A. Vdovin; M. Koepf; W. J. Buma; J. J. L. M. Cornelissen; A. E. Rowan; R. J. M. Nolte; S. Woutersen. Direct Access to Polyisocyanide Screw Sense Using Vibrational Circular Dichroism. Macromolecules. 2010, 43, 7931.
[31] L. A. Nafie; T. A. Keiderling; P. J. Stephens. Vibrational circular dichroism. J. Am. Chem. Soc. 1976, 98, 2715.
[32] L. A. Nafie; M. Diem. Optical Activity in Vibrational Trantitions: Vibrational Circular Dichroism and Raman Optical Activity. Acc. Chem. Res. 1979, 12, 296.
[33] H.-Z. Tang; B. M. Novak; J. He; P. L. Polavarapu. A Thermal and Solvocontrollable Cylindrical Nanoshutter Based on a Single Screw-Sense Helical Polyguanidine. Angew. Chem., Int. Ed. 2005, 44, 7298.
[34] Y. Hase; K. Nagai; H. Iida; K. Maeda; N. Ochi; K. Sawabe; K. Sakajiri; K. Okoshi; E. Yashima. Mechanism of Helix Induction in Poly(4-carboxyphenyl isocyanide) with Chiral Amines and Memory of the Macromolecular Helicity and Its Helical Structures. J. Am. Chem. Soc. Int. Ed. 2009, 131, 10719.

[35] T. Hongen; T. Taniguchi; S. Nomura; J.-i. Kadokawa; K. Monde. In Depth Study on Solution-State Structure of Poly(lactic acid) by Vibrational Circular Dichroism. Macromocules. 2014, 47, 5313.
[36] G. Holzwarth; I. Chabay. Optical Activity of Vibrational Transitions: A Coupled Oscillator Model. J. Chem. Phys. 1972, 57, 1632.
[37] P. Pan; B. Zhu; W. Kai; T. Dong; Y. Inoue. Polymorphic Transition in Disordered Poly(L-lactide) Crystals Induced by Annealing at Elevated Temperatures. Macromocules. 2008, 41, 4296.
[38] J. Zhang; H. Tsuji; I. Noda; Y. Ozaki. Structural Changes and Crystallization Dynamics of Poly(L-lactide) during the Cold-Crystallization Process Investigated by Infrared and Two-Dimensional Infrared Correlation Spectroscopy. Macromocules. 2004, 37, 6433.
[39] J. W. Goodby. Handbook of Liquid Crystals; Eds: D. Demus; J. W. Goodby; G. W. Gray; H.-W. Spiess; V. Vill; Wiley-VCH, Weinhein. 1998; vol. 1.
[40] H.-S. Kitzerou; C. Bahr. Chirality in Liquid Crystals; VCH: Springer, New York, 2001.
[41] Z. Wei; Russell T. P.; Grason, G. M. Chirality in Block Copolymer Melts: Mesoscopic Helicity from Intersegment Twist. Phys. Rev. Lett., 2013, 110, 058301.
[42] Grason, G. M. Chirality Transfer in Block Copolymer Melts: Emerging Concepts. ACS Macro Lett., 2015, 4, 526.
[43] M. S. Newman; E. Kilbourn. Synthesis and some properties of 2,2,6,6-tetramethyl-1,4,8-trioxaspiro[2.5]octane, and epoxy ketene ketal. J. Org. Chem., 1970, 35, 3186.
[44] F. Jing; M. R. Smith; G. L. Baker. Cyclohexyl-Substituted Polyglycolides with High Glass Transition Temperatures. Macromolecules, 2007, 49, 9304.
[45] R. M. Ho, Y. W. Chiang, S. C. Lin C. K. Chen. Helical architectures from self-assembly of chiral polymers and block copolymers. Prog. Polym. Sci. 2011, 36, 376.
[46] Green, M. M.; Peterson, N. C.; Sato, T.; Teramoto, A.; Cook, R.; Lifson, S. A helical polymer with a cooperative response to chiral information. Science 1995, 268, 1860.
[47] Green, M. M.; Park, J. W.; Sato, T.; Teramoto, A.; Lifson, S.; Selinger, R. L. B.; Selinger, J. V. The Macromolecular Route to Chiral Amplification. Angew. Chem., Int. Ed. 1999, 38, 3138.
[48] Gu, H.; Nakamura, Y.; Sato, T.; Teramoto, A.; Green, M. M.; Andreola, C.; Peterson, N. C.; Lifson, S. Molecular-Weight Dependence of the Optical Rotation of Poly((R)-2-deuterio-n-hexyl isocyanate). Macromolecules 1995, 28, 1016.
[49] J. W. Huang, R. M. Ho. ”ntramolecular and Intermolecular Chiral Interactions in Chiral Polylactides” National Tsing Hua U., 2012.
[50] C. H. Chiang, R. M. Ho. “Helical Morphologies of Enantiomeric Polylactides in Crystalline Phases with Homochiral Evolution” National Tsing Hua U., 2014.
[51] G. Kister; G. Cassanas; M. Vert. Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer. 1998, 39, 267.
[52] R. Kuroda; T. Harada; Y. Shindo. A Solid-State Dedicated Circular Dichioism Spectrophotometer: Development and Application. Rev. Sci. Instrum. 2001, 72, 3802.
[53] T. Buffeteau; F. Langugne-Labarthet; C. Sourisseau. Vibrational Circular Dichioism in General Anisotropic Thin Solid Films: Measurement and Theoretical Approach. Appl. Spectrosc. 2005, 59, 732.
[54] T. Hongen; T. Taniguchi; S. Nomura; J. Kadokawa; K. Monde. In Depth Study on Solution-State Structure of Poly(lactic acid) by Vibrational Circular Dichroism. Macromolecules. 2014, 47, 5313.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *