|
[1] 台灣經濟部能源綱領, https://web3.moeaboe.gov.tw/ECW/populace/content/SubMenu.aspx?menu_id=48. [2] L. L. N. L, Estimated U. S. Energy Consumption in 2016, (2016). [3] G. J. Snyder, E. S. Toberer, Complex thermoelectric materials, Nature Materials, 7 (2008) 105-114. [4] T. M. Tritt, Thermoelectric materials: principles, structure, properties, and applications, Encyclopedia of Materials: Science and Technology, (2002) 1-11. [5] A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects, Energy & Environmental Science, 2 (2009) 466-479. [6] M. S. El-Genk, H. H. Saber, T. Caillat, Efficient segmented thermoelectric unicouples for space power applications, Energy Conversion and Management, 44 (2003) 1755-1772. [7] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 413 (2001) 597-602. [8] Z. H. Dughaish, Lead telluride as a thermoelectric material for thermoelectric power generation, Physica B: Condensed Matter, 322 (2002) 205-223. [9] Y. Gelbstein, Z. Dashevsky, M. P. Dariel, High performance n-type PbTe-based materials for thermoelectric applications, Physica B: Condensed Matter, 363 (2005) 196-205. [10] C. Chubilleau, B. Lenoir, P. Masschelein, A. Dauscher, C. Candolfi, E. Guilmeau, C. Godart, High temperature thermoelectric properties of CoSb3 skutterudites with PbTe inclusions, Journal of Materials Science, 48 (2013) 2761-2766. [11] A. J. Zhou, T. J. Zhu, X. B. Zhao, S. H. Yang, T. Dasgupta, C. Stiewe, R. Hassdorf, E. Mueller, Improved thermoelectric performance of higher manganese silicides with Ge additions, Journal of Electronic Materials, 39 (2010) 2002-2007. [12] 中國鋼鐵節能環保主題網頁, http://www.csc.com.tw/csc/hr/green4.htm. [13] R. E. Reed-Hill, R. Abbaschian, L. Abbaschian, Physical metallurgy principles 4th ed., Boston, Cengage Learing, (2008). [14] J. T. Jarman, E. E. Khalil, E. Khalaf, Energy analyses of thermoelectric renewable energy sources, Open Journal of Energy Efficiency, 2 (2013) 11. [15] M. Sona, K. N. Prabhu, Review on microstructure evolution in Sn–Ag–Cu solders and its effect on mechanical integrity of solder joints, Journal of Materials Science: Materials in Electronics, 24 (2013) 3149-3169. [16] J. Glazer, Microstructure and mechanical properties of Pb-free solder alloys for low-cost electronic assembly: a review, Journal of Electronic Materials, 23 (1994) 693-700. [17] E. Efzan, A. Marini, A review of solder evolution in electronic application, International Journal of Engineering and Applied Sciences, 1 (2012) 2305-8269. [18] G. Zeng, S. Xue, L. Zhang, L. Gao, W. Dai, J. Luo, A review on the interfacial intermetallic compounds between Sn–Ag–Cu based solders and substrates, Journal of Materials Science: Materials in Electronics, 21 (2010) 421-440. [19] N. S. Bosco, F. W. Zok, Critical interlayer thickness for transient liquid phase bonding in the Cu–Sn system, Acta Materialia, 52 (2004) 2965-2972. [20] W. F. Gale, E. R. Wallach, Microstructural development in transient liquid-phase bonding, Metallurgical Transactions A, 22 (1991) 2451-2457. [21] W. D. MacDonald, T. W. Eagar, Transient liquid phase bonding, Annual Review of Materials Science, 22 (1992) 23-46. [22] I. Tuah-Poku, M. Dollar, T. B. Massalski, A study of the transient liquid phase bonding process applied to a Ag/Cu/Ag sandwich joint, Metallurgical Transactions A, 19 (1988) 675-686. [23] C. Deppisch, T. Fitzgerald, A. Raman, F. Hua, C. Zhang, P. Liu, M. Miller, The material optimization and reliability characterization of an indium-solder thermal interface material for CPU packaging, Jom, 58 (2006) 67-74. [24] G. Humpston, Cobalt: a universal barrier metal for solderable under bump metallisations, Journal of Materials Science: Materials in Electronics, 21 (2010) 584-588. [25] D. R. F. West, Ternary equilibrium diagrams 2nd., Methuen, Chapman and Hall, (1982). [26] F. N. Rhines, Phase diagrams in metallurgy: their development and application 1st ed., New York, McGraw-Hill Book Company, (1956). [27] U. Hashimoto, The equilibrium diagram of the Co–Cu system, Journal of the Japan Institute of Metals and Materials, 1 (1937) 19-26. [28] T. Nishizawa, K. Ishida, The Co− Cu (Cobalt-Copper) system, Journal of Phase Equilibria, 5 (1984) 161-165. [29] M. Palumbo, S. Curiotto, L. Battezzati, Thermodynamic analysis of the stable and metastable Co–Cu and Co–Cu–Fe phase diagrams, Calphad, 30 (2006) 171-178. [30] H. Okamoto, The Co-In (Cobalt-Indium) system, Bulletin of Alloy Phase Diagrams, 11 (1990) 137-139. [31] H. Okamoto, Co-In(cobalt-indium), Journal of Phase Equilibria, 18 (1997) 315. [32] J. P. Bros, M. Gaune-Escard, D. El Allam, R. Haddad, E. Hayer, The cobalt-indium system: enthalpy of formation and phase diagram, Journal of Alloys and Compounds, 233 (1996) 264-271. [33] D. Boa, B. K. Dongui, I. Ansara, Thermodynamic evaluation of the Co-In system, Calphad, 25 (2001) 645-650. [34] T. Muschik, T. Hehenkamp, Solid-Liquid-Equilibria on the copper-side of the Cu-In system, Zeitschrift Für Metallkunde, 78 (1987) 358-361. [35] A. Bolcavage, S. W. Chen, C. R. Kao, Y. A. Chang, A. Romig, Phase equilibria of the Cu-In system I: experimental investigation, Journal of Phase Equilibria, 14 (1993) 14-21. [36] H. S. Liu, X. J. Liu, Y. Cui, C. P. Wang, I. Ohnuma, R. Kainuma, Z. P. Jin, K. Ishida, Thermodynamic assessment of the Cu-In binary system, Journal of Phase Equilibria, 23 (2002) 409-415. [37] T. B. Massalski, H. Okamoto, P. R. Subramanian, L Kacprzak, Binary alloy phase diagrams 2nd ed., Materials Park, ASM International, (1990). [38] F. Weibke, H. Eggers, Das Zustandsdiagramm des Systems Kupfer‐Indium, Zeitschrift Für Anorganische und Allgemeine Chemie, 220 (1934) 273-292. [39] J. Betterton, W. Hume-Rothery, J. Reynolds, The factors affecting the formation of 21/13 electron compounds in alloys of copper and of silver, Journal of the Institute of Metals, 80 (1951) 609-616. [40] T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak, Binary alloy phase diagrams. vol. 3, Materials Park, ASM International, (1990) 1485. [41] A. Taylor, Lattice parameters of binary nickel cobalt alloys, Journal of the Institute of Metals, 77 (1950) 585-594. [42] F. Lihl, E. Buhl, Alloys of cadmium with cobalt, iron and nickel, Zeitschrift Für Metallkunde, 46 (1955) 787-791. [43] S. U. Jen, Y. R. Huang, Magnetization and transport properties of Co‐Ni‐Pd alloys, Journal of Applied Physics, 69 (1991) 4674-4676. [44] P. Nash, Phase diagrams of binary nickel alloys, Materials Park, ASM International, (1991) 394. [45] J. L. Meijering, Calculation of the nickel-chromium-copper phase diagram from binary data, Acta Metallurgica, 5 (1957) 257-264. [46] R. D. Doherty, E. A. Feest, The Cu-Ni equilibrium phase diagram, Journal of the Institute of Metals, 99 (1971) 102-103. [47] B. Predel, R. Mohs, Thermodynamische untersuchung flussiger nickel-kupfer legierungen, Arch Eisenhut, 42 (1971) 575-579. [48] E. Schurmann, E. Schultz, Untersuchengen zum verlauf der liquidus und solidus linien in den systemen kupfer-mangan und kupfer-nickel, Zeitschrift fuer Metallkunde, 62 (1971) 758-762. [49] B. D. Bastow, D. H. Kirkwood, Solid/liquid equilibrium in the copper-nickel-tin system determined by microprobe analysis, Journal of the Institute of Metals, 99 (1971) 277-283. [50] D. J. Chakrabarti, D. E. Laughlin, S. W. Chen, Y. A. Chang, Binary alloy phase diagrams, Materials Park, ASM International, (1990). [51] M. Hansen, K. Anderko, H. W. Saizberg, Constitution of binary alloys, Journal of The Electrochemical Society, 105 (1958) 260-261. [52] Ph. Durussel, G. Burri, P. Feschotte, The binary system Ni-In, Journal of Alloys and Compounds, 257 (1997) 253-258. [53] C. E. Deluque. Toro, S. Ramos de Debiaggi, A. M. Monti, Study of cohesive, electronic and magnetic properties of the Ni–In intermetallic system, Physica B: Condensed Matter, 407 (2012) 3236-3239. [54] D. Minić, M. Premović, V. Ćosović, D. Manasijević, L. Nedeljkovic, D. Živković, Experimental investigation and thermodynamic calculations of the Cu–In–Ni phase diagram, Journal of Alloys and Compounds, 617 (2014) 379-388. [55] S. K. Lin, Y. H. Wang, H. C. Kuo, Strong coupling effects during Cu/In/Ni interfacial reactions at 280° C, Intermetallics, 58 (2015) 91-97. [56] C. L. Yu, S. S. Wang, T. H. Chuang, Intermetallic compounds formed at the interface between liquid indium and copper substrates, Journal of Electronic Materials, 31 (2002) 488-493. [57] D. G. Kim, C. Y. Lee, S. B. Jung, Interfacial reactions and intermetallic compound growth between indium and copper, Journal of Materials Science: Materials in Electronics, 15 (2004) 95-98. [58] S. Sommadossi, W. Gust, E. J. Mittemeijer, Phase characterisation and kinetic behaviour of diffusion soldered Cu/In/Cu interconnections, Materials Science and Technology, 19 (2003) 528-534. [59] Y. H. Tseng, M. S. Yeh, T. H. Chuang, Interfacial reactions between liquid indium and nickel substrate, Journal of Electronic Materials, 28 (1999) 105-108. [60] D. Gur, M. Bamberger, Reactive isothermal solidification in the Ni–Sn system, Acta Materialia, 46 (1998) 4917-4923. [61] M. L. Huang, T. Loeher, A. Ostmann, H. Reichl, Role of Cu in dissolution kinetics of Cu metallization in molten Sn-based solders, Applied Physics Letters, 86 (2005) 181908. [62] H. Xia, F. Drymiotis, C. L. Chen, A. Wu, G. J. Snyder, Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications, Journal of Materials Science, 49 (2014) 1716-1723. [63] N. S. Bosco,, and F. W. Zok., Critical interlayer thickness for transient liquid phase bonding in the Cu–Sn system, Acta Materialia, 52.10 (2004) 2965-2972.
|