帳號:guest(3.128.201.40)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊子慶
作者(外文):Yang, Tsu-Ching
論文名稱(中文):熱電模組接點的Co(Ni)/In/Cu界面反應與相關材料系統相平衡探討
論文名稱(外文):Co(Ni)/In/Cu interfacial reactions at the thermoelectric module joints and phase diagrams of their related material systems
指導教授(中文):陳信文
指導教授(外文):Chen, Sinn Wen
口試委員(中文):張道智
王朝弘
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:104032525
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:109
中文關鍵詞:熱電模組過渡液相連接界面反應計算相圖等溫橫截面
外文關鍵詞:Thermoelectric modulestransient liquid phase bondinginterfacial reactionsCo-In-Cu and Ni-In-Cu ternary phase diagramCALPHAD
相關次數:
  • 推薦推薦:0
  • 點閱點閱:577
  • 評分評分:*****
  • 下載下載:29
  • 收藏收藏:0
熱電模組能夠將熱能轉換成電能,在廢熱的回收上具有好的應用潛力。熱電模組具有許多接點,由於過高的銲接溫度會影響熱電材料的性質,進而降低熱電模組的可靠度,因此低熔點的銲料具有應用價值。過渡液相連接是選擇一種熔點較低的銲料,並在高於銲料熔點且低於基材熔點的溫度下進行接合。銲料會先被融化成液體,並與基材發生液固反應,經過一段時間後,銲料可能與基材反應形成熔點較高的介金屬化合物,或是擴散至基材當中,當反應完全後,液相消失且接點僅存在熔點較高的介金屬相,因此,銦的低熔點特性與良好的機械性質成為主要的研究對象。為了避免熱電模組與銲料直接接觸產生擴散並破壞熱電材料的結構,通常會於銲料和熱電材料之間引入一層Ni或Co作為擴散阻障層,並利用導電性與導熱性佳的Cu作為基板,提升熱電模組的可靠度。因此,本實驗將以Co/In/Cu及Ni/In/Cu的三明治結構作為主要探討的對象,並以熱電材料的應用溫度做為實驗溫度點的依據,包含低溫熱電Bi2Te3(200oC)、中溫熱電AgSb2(350oC)與CoSb3(500oC),其目的是要了解In/Co、In/Cu、In/Ni、Co/In/Cu以及Ni/In/Cu在200oC、350oC、500oC的界面反應及擴散行為,並針對界面反應速率、液相消失速率、生成相隨時間的演進,以及相生成的種類進行系統性的研究,此外,相圖是基礎的材料知識,對於界面反應十分重要,因此,將會建立Co-In-Cu與Ni-In-Cu的等溫橫截面圖做為材料分析主要的依據。首先,從Co/In/Cu在200oC、350oC與500oC下的界面反應結果中發現,當熱處理溫度為200與500oC時,其二元與三元的界面反應結果在相生成順序並無明顯的差異,且無三元相生成,並在200oC觀察到CoIn3、Cu11In9與Cu11In9+In-rich兩相區,而在500oC觀察到CoIn2、η’-Cu2In、δ-Cu7In3相;然而,在350oC的Co/In/Cu界面反應中發現有一Co2In11Cu7三元相生成,並在350oC的界面反應中觀察到CoIn3、η’-Cu2In、δ-Cu7In3相。接著進行Ni/In/Cu在200oC下的界面反應,發現在二元與三元之間的界面反應在相生成順序也無明顯的差異,僅觀察到Ni3In7、Cu11In9與Cu11In9+In-rich兩相區。然而,繼續探討Ni/In/Cu在350oC下的界面反應,一開始其生成相順序為Ni3In7、Cu11In9與Cu11In9+In-rich兩相區,隨著反應時間拉長,且界面反應發生均質化,其生成相順序轉變為Ni3In7、Cu11In9相與’-(Cu,Ni)2In相。此外,繼續探討Ni/In/Cu在500oC下的界面反應,發現該實驗結果隨著時間有明顯的變化,從一開始的NiIn、Ni5In21Cu24、Ni2In3、η’-(Cu,Ni)2In和δ-Cu7In3相的生成,當反應時間增長,Ni2In3相的消失,並於界面形成Ni5In21Cu24相和η’-(Cu,Ni)2In相的共析結構,當熱處理時間繼續增長,最後得到共析結構的消失且η’-(Cu,Ni)2In及δ-Cu7In3相以堆疊狀的表面形態生成。此外,藉由合併二元參數並繪製三元相圖,在Co-In-Cu系統中,於200oC下的計算結果可得六個三相區;於350oC下的計算結果可得六個三相區;於500oC下的計算結果可得四個三相區,並利用實驗的方法加以確認, 於Co-In-Cu 200oC下的等溫橫截面圖獲得兩個三相區,包含Co+Cu+-Cu7In3與Co+-Cu2In+Cu11In9;於Co-In-Cu於350oC下的等溫橫截面圖獲得兩個三相區,包含Co+Cu+-Cu7In3與Co+-Cu2In+Co2In11Cu7,其中發現有一Co2In11Cu7三元相存在;於Co-In-Cu於500oC下的等溫橫截面圖獲得兩個三相區,包含Co+Cu+-Cu7In3與Co+'-Cu2In+-Cu7In3。在Ni-In-Cu系統中,於200oC下的計算結果可得10個三相區;於350oC下的計算結果可得六個三相區;於500oC下的計算結果可得8個三相區。
There are about sixty percent of energies consumed as waste heat in the process of energy conversion. Therefore, recycling of waste heat is now considered as an important issue of energy. Thermoelectric module can convert heat into electricity directly. The reliability of thermoelectric materials depends on the working temperature of soldering. During heat treatment, intermetallic compound forms and it may affect mechanical property of the joint. In this research, low-melting-point metals are chosen as solder. We observe what intermetallic compound forms at the interface while doing the process of transient liquid phase bonding.
In the research of In/Co interfacial reactions , we only find CoIn3 intermetallic phase formed at 200oC, 350oC and 500oC for 26, 12 and 24 hours, and the thickness of CoIn3 phase are 9 m, 53 m and 80 m, respectively. As we increase the reaction time, the thicknesses of CoIn3 phase is proportional to the square root of reaction time. We can conclude that they are diffusion-controlled. In In/Ni interfacial reactions, Ni3In7 phase is formed at 200oC and 350oC for 24 hours, and its thickness is 31 m and 120 m. Besides, NiIn and Ni2In3 phases are formed at 500oC for 12 hours, and their thickness are 57 m and 39 m, respectively. In In/Ni interfacial reactions at 500oC, the results show that only Ni2In3 phase is formed with shorter reaction time, and NiIn phase is formed when we increase the reaction time above 1 hour. Both of In/Ni interfacial reactions at different temperatures are diffusion-controlled. In In/Cu interfacial reactions, the -Cu7In3 and '-Cu2In are formed at 350oC and 500oC for 24 hours and 12 hours, and Cu11In9 and Cu11In9+In-rich are formed at 200oC. There are the same phases at these temperatures when we changed the reaction time. The thicknesses of reaction layer is proportional to the square root of reaction time.
Compare with binary system interfacial reactions, in Co/In/Cu interfacial reactions, there are CoIn3 phase at In/Co side at 200oC and 350oC. it is similar to binary system, but CoIn2 phase is formed at 500oC because of Cu dissolution. At In/Cu side, there are Cu11In9 and Cu11In9+In-rich phase at 200oC, and -Cu7In3 and '-Cu2In are formed at 350oC and 500oC. In Ni/In/Cu interfacial reactions, at In/Ni side, Ni3In7 are formed at 200oC and 350oC. At In/Cu side, there are Cu11In9 and Cu11In9+In-rich phase at 200oC, but there are Cu11In9+In-rich phase at 350oC. when the temperature increasing to 500oC, the NiIn, Ni5In21Cu24, '-Cu2In, and -Cu7In3 are formed. All of Co/In/Cu and Ni/In/Cu interfacial reactions are diffusion-controlled, and we calculate the liquid Indium consumption rate to manipulate thickness of pieces of Indium.
In addition, series of ternary of Co-In-Cu alloys are designed, fabricated and heat-treated at 200oC, 350oC, and 500oC. And new ternary compound are found at 350oC.
摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 VIII
表目錄 XIII
第一章 前言 1
第二章 文獻回顧 7
2-1 界面反應 7
2-2 材料系統相平衡圖形 8
2-3 Co-Cu二元相圖 10
2-4 Co-In二元相圖 11
2-5 Cu-In二元相圖 12
2-6 Co-Ni二元相圖 13
2-7 Cu-Ni二元相圖 14
2-8 In-Ni二元相圖 15
2-9 Co-In-Cu三元相圖 16
2-10 Ni-In-Cu三元相圖 16
2-11 In/Cu界面反應 18
2-12 Cu/In/Cu三明治結構界面反應 19
2-13 In/Co界面反應 20
2-14 In/Ni界面反應 20
2-15 Ni/In/Cu三明治結構界面反應 21
2-16 Co/In/Cu三明治結構界面反應 23
第三章 實驗方法及步驟 24
第四章 結果與討論 28
4-1 熱處理200oC下之界面反應 28
4-1-1. In/Co二元結構之界面反應 28
4-1-2. In/Cu二元結構之界面反應 29
4-1-3. In/Ni二元結構之界面反應 33
4-1-4. Co/In/Cu三明治結構之界面反應 36
4-1-5. Ni/In/Cu三明治結構之界面反應 39
4-2 熱處理350oC下之界面反應 41
4-2-1. In/Co二元結構之界面反應 41
4-2-2. In/Cu二元結構之界面反應 44
4-2-3. In/Ni二元結構之界面反應 47
4-2-4. Co/In/Cu三明治結構之界面反應 50
4-2-5. Ni/In/Cu三明治結構之界面反應 52
4-3 熱處理500oC下之界面反應 58
4-3-1. In/Co二元結構之界面反應 58
4-3-2. In/Cu二元結構之界面反應 61
4-3-3. In/Ni二元結構之界面反應 64
4-3-4. Co/In/Cu三明治結構之界面反應 67
4-3-5. Ni/In/Cu三明治結構之界面反應 69
4-4 二元系統界面反應比較 78
4-5 三元系統界面反應比較 79
4-6 Co-In-Cu與Ni-In-Cu二元子系統計算相圖 81
4-6-1. Co-Cu二元子系統計算相圖 81
4-6-2. In-Co二元子系統計算相圖 82
4-6-3. In-Cu二元子系統計算相圖 83
4-6-4. In-Ni二元子系統計算相圖 84
4-7 Co-In-Cu三元計算相圖 86
4-8 Co-In-Cu三元實驗相圖 88
4-8-1. Co-In-Cu在200oC的等溫橫截面圖 88
4-8-2. Co-In-Cu在350oC的等溫橫截面圖 91
4-8-3. Co-In-Cu在500oC的等溫橫截面圖 94
4-9 Ni-In-Cu三元計算相圖 97
第五章 結論 100
參考文獻 105
[1] 台灣經濟部能源綱領, https://web3.moeaboe.gov.tw/ECW/populace/content/SubMenu.aspx?menu_id=48.
[2] L. L. N. L, Estimated U. S. Energy Consumption in 2016, (2016).
[3] G. J. Snyder, E. S. Toberer, Complex thermoelectric materials, Nature Materials, 7 (2008) 105-114.
[4] T. M. Tritt, Thermoelectric materials: principles, structure, properties, and applications, Encyclopedia of Materials: Science and Technology, (2002) 1-11.
[5] A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects, Energy & Environmental Science, 2 (2009) 466-479.
[6] M. S. El-Genk, H. H. Saber, T. Caillat, Efficient segmented thermoelectric unicouples for space power applications, Energy Conversion and Management, 44 (2003) 1755-1772.
[7] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 413 (2001) 597-602.
[8] Z. H. Dughaish, Lead telluride as a thermoelectric material for thermoelectric power generation, Physica B: Condensed Matter, 322 (2002) 205-223.
[9] Y. Gelbstein, Z. Dashevsky, M. P. Dariel, High performance n-type PbTe-based materials for thermoelectric applications, Physica B: Condensed Matter, 363 (2005) 196-205.
[10] C. Chubilleau, B. Lenoir, P. Masschelein, A. Dauscher, C. Candolfi, E. Guilmeau, C. Godart, High temperature thermoelectric properties of CoSb3 skutterudites with PbTe inclusions, Journal of Materials Science, 48 (2013) 2761-2766.
[11] A. J. Zhou, T. J. Zhu, X. B. Zhao, S. H. Yang, T. Dasgupta, C. Stiewe, R. Hassdorf, E. Mueller, Improved thermoelectric performance of higher manganese silicides with Ge additions, Journal of Electronic Materials, 39 (2010) 2002-2007.
[12] 中國鋼鐵節能環保主題網頁, http://www.csc.com.tw/csc/hr/green4.htm.
[13] R. E. Reed-Hill, R. Abbaschian, L. Abbaschian, Physical metallurgy principles 4th ed., Boston, Cengage Learing, (2008).
[14] J. T. Jarman, E. E. Khalil, E. Khalaf, Energy analyses of thermoelectric renewable energy sources, Open Journal of Energy Efficiency, 2 (2013) 11.
[15] M. Sona, K. N. Prabhu, Review on microstructure evolution in Sn–Ag–Cu solders and its effect on mechanical integrity of solder joints, Journal of Materials Science: Materials in Electronics, 24 (2013) 3149-3169.
[16] J. Glazer, Microstructure and mechanical properties of Pb-free solder alloys for low-cost electronic assembly: a review, Journal of Electronic Materials, 23 (1994) 693-700.
[17] E. Efzan, A. Marini, A review of solder evolution in electronic application, International Journal of Engineering and Applied Sciences, 1 (2012) 2305-8269.
[18] G. Zeng, S. Xue, L. Zhang, L. Gao, W. Dai, J. Luo, A review on the interfacial intermetallic compounds between Sn–Ag–Cu based solders and substrates, Journal of Materials Science: Materials in Electronics, 21 (2010) 421-440.
[19] N. S. Bosco, F. W. Zok, Critical interlayer thickness for transient liquid phase bonding in the Cu–Sn system, Acta Materialia, 52 (2004) 2965-2972.
[20] W. F. Gale, E. R. Wallach, Microstructural development in transient liquid-phase bonding, Metallurgical Transactions A, 22 (1991) 2451-2457.
[21] W. D. MacDonald, T. W. Eagar, Transient liquid phase bonding, Annual Review of Materials Science, 22 (1992) 23-46.
[22] I. Tuah-Poku, M. Dollar, T. B. Massalski, A study of the transient liquid phase bonding process applied to a Ag/Cu/Ag sandwich joint, Metallurgical Transactions A, 19 (1988) 675-686.
[23] C. Deppisch, T. Fitzgerald, A. Raman, F. Hua, C. Zhang, P. Liu, M. Miller, The material optimization and reliability characterization of an indium-solder thermal interface material for CPU packaging, Jom, 58 (2006) 67-74.
[24] G. Humpston, Cobalt: a universal barrier metal for solderable under bump metallisations, Journal of Materials Science: Materials in Electronics, 21 (2010) 584-588.
[25] D. R. F. West, Ternary equilibrium diagrams 2nd., Methuen, Chapman and Hall, (1982).
[26] F. N. Rhines, Phase diagrams in metallurgy: their development and application 1st ed., New York, McGraw-Hill Book Company, (1956).
[27] U. Hashimoto, The equilibrium diagram of the Co–Cu system, Journal of the Japan Institute of Metals and Materials, 1 (1937) 19-26.
[28] T. Nishizawa, K. Ishida, The Co− Cu (Cobalt-Copper) system, Journal of Phase Equilibria, 5 (1984) 161-165.
[29] M. Palumbo, S. Curiotto, L. Battezzati, Thermodynamic analysis of the stable and metastable Co–Cu and Co–Cu–Fe phase diagrams, Calphad, 30 (2006) 171-178.
[30] H. Okamoto, The Co-In (Cobalt-Indium) system, Bulletin of Alloy Phase Diagrams, 11 (1990) 137-139.
[31] H. Okamoto, Co-In(cobalt-indium), Journal of Phase Equilibria, 18 (1997) 315.
[32] J. P. Bros, M. Gaune-Escard, D. El Allam, R. Haddad, E. Hayer, The cobalt-indium system: enthalpy of formation and phase diagram, Journal of Alloys and Compounds, 233 (1996) 264-271.
[33] D. Boa, B. K. Dongui, I. Ansara, Thermodynamic evaluation of the Co-In system, Calphad, 25 (2001) 645-650.
[34] T. Muschik, T. Hehenkamp, Solid-Liquid-Equilibria on the copper-side of the Cu-In system, Zeitschrift Für Metallkunde, 78 (1987) 358-361.
[35] A. Bolcavage, S. W. Chen, C. R. Kao, Y. A. Chang, A. Romig, Phase equilibria of the Cu-In system I: experimental investigation, Journal of Phase Equilibria, 14 (1993) 14-21.
[36] H. S. Liu, X. J. Liu, Y. Cui, C. P. Wang, I. Ohnuma, R. Kainuma, Z. P. Jin, K. Ishida, Thermodynamic assessment of the Cu-In binary system, Journal of Phase Equilibria, 23 (2002) 409-415.
[37] T. B. Massalski, H. Okamoto, P. R. Subramanian, L Kacprzak, Binary alloy phase diagrams 2nd ed., Materials Park, ASM International, (1990).
[38] F. Weibke, H. Eggers, Das Zustandsdiagramm des Systems Kupfer‐Indium, Zeitschrift Für Anorganische und Allgemeine Chemie, 220 (1934) 273-292.
[39] J. Betterton, W. Hume-Rothery, J. Reynolds, The factors affecting the formation of 21/13 electron compounds in alloys of copper and of silver, Journal of the Institute of Metals, 80 (1951) 609-616.
[40] T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak, Binary alloy phase diagrams. vol. 3, Materials Park, ASM International, (1990) 1485.
[41] A. Taylor, Lattice parameters of binary nickel cobalt alloys, Journal of the Institute of Metals, 77 (1950) 585-594.
[42] F. Lihl, E. Buhl, Alloys of cadmium with cobalt, iron and nickel, Zeitschrift Für Metallkunde, 46 (1955) 787-791.
[43] S. U. Jen, Y. R. Huang, Magnetization and transport properties of Co‐Ni‐Pd alloys, Journal of Applied Physics, 69 (1991) 4674-4676.
[44] P. Nash, Phase diagrams of binary nickel alloys, Materials Park, ASM International, (1991) 394.
[45] J. L. Meijering, Calculation of the nickel-chromium-copper phase diagram from binary data, Acta Metallurgica, 5 (1957) 257-264.
[46] R. D. Doherty, E. A. Feest, The Cu-Ni equilibrium phase diagram, Journal of the Institute of Metals, 99 (1971) 102-103.
[47] B. Predel, R. Mohs, Thermodynamische untersuchung flussiger nickel-kupfer legierungen, Arch Eisenhut, 42 (1971) 575-579.
[48] E. Schurmann, E. Schultz, Untersuchengen zum verlauf der liquidus und solidus linien in den systemen kupfer-mangan und kupfer-nickel, Zeitschrift fuer Metallkunde, 62 (1971) 758-762.
[49] B. D. Bastow, D. H. Kirkwood, Solid/liquid equilibrium in the copper-nickel-tin system determined by microprobe analysis, Journal of the Institute of Metals, 99 (1971) 277-283.
[50] D. J. Chakrabarti, D. E. Laughlin, S. W. Chen, Y. A. Chang, Binary alloy phase diagrams, Materials Park, ASM International, (1990).
[51] M. Hansen, K. Anderko, H. W. Saizberg, Constitution of binary alloys, Journal of The Electrochemical Society, 105 (1958) 260-261.
[52] Ph. Durussel, G. Burri, P. Feschotte, The binary system Ni-In, Journal of Alloys and Compounds, 257 (1997) 253-258.
[53] C. E. Deluque. Toro, S. Ramos de Debiaggi, A. M. Monti, Study of cohesive, electronic and magnetic properties of the Ni–In intermetallic system, Physica B: Condensed Matter, 407 (2012) 3236-3239.
[54] D. Minić, M. Premović, V. Ćosović, D. Manasijević, L. Nedeljkovic, D. Živković, Experimental investigation and thermodynamic calculations of the Cu–In–Ni phase diagram, Journal of Alloys and Compounds, 617 (2014) 379-388.
[55] S. K. Lin, Y. H. Wang, H. C. Kuo, Strong coupling effects during Cu/In/Ni interfacial reactions at 280° C, Intermetallics, 58 (2015) 91-97.
[56] C. L. Yu, S. S. Wang, T. H. Chuang, Intermetallic compounds formed at the interface between liquid indium and copper substrates, Journal of Electronic Materials, 31 (2002) 488-493.
[57] D. G. Kim, C. Y. Lee, S. B. Jung, Interfacial reactions and intermetallic compound growth between indium and copper, Journal of Materials Science: Materials in Electronics, 15 (2004) 95-98.
[58] S. Sommadossi, W. Gust, E. J. Mittemeijer, Phase characterisation and kinetic behaviour of diffusion soldered Cu/In/Cu interconnections, Materials Science and Technology, 19 (2003) 528-534.
[59] Y. H. Tseng, M. S. Yeh, T. H. Chuang, Interfacial reactions between liquid indium and nickel substrate, Journal of Electronic Materials, 28 (1999) 105-108.
[60] D. Gur, M. Bamberger, Reactive isothermal solidification in the Ni–Sn system, Acta Materialia, 46 (1998) 4917-4923.
[61] M. L. Huang, T. Loeher, A. Ostmann, H. Reichl, Role of Cu in dissolution kinetics of Cu metallization in molten Sn-based solders, Applied Physics Letters, 86 (2005) 181908.
[62] H. Xia, F. Drymiotis, C. L. Chen, A. Wu, G. J. Snyder, Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications, Journal of Materials Science, 49 (2014) 1716-1723.
[63] N. S. Bosco,, and F. W. Zok., Critical interlayer thickness for transient liquid phase bonding in the Cu–Sn system, Acta Materialia, 52.10 (2004) 2965-2972.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *