帳號:guest(18.116.38.243)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳俊廷
作者(外文):Wu, Chun-Ting
論文名稱(中文):以電泳估計金屬氧化物表面反應平衡速率常數與子彈形奈米通道內之離子輸送
論文名稱(外文):Estimating the Thermodynamic Equilibrium Constant of Metal Oxide by Electrophoresis and Ionic Transport in Bullet-shaped Nanopore
指導教授(中文):汪上曉
指導教授(外文):Wong, David Shan-Hill
口試委員(中文):徐治平
曾琇瑱
張有義
林志原
口試委員(外文):Hsu, Jyh-Ping
Tseng, Shio-Jenn
Chang, You-Im
Lin, Chih-Yuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:104032524
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:67
中文關鍵詞:基礎電泳理論金屬氧化物粒子表面官能基密度熱力學平衡常數子彈形奈米通道改質立體障礙效應電滲透流
外文關鍵詞:General electrophoresis modelMetal oxide particlesSurface functional groups densityThermodynamic equilibrium constantsBullet-shaped nanoporesModified surface layerSteric effectElectroosmotic flow
相關次數:
  • 推薦推薦:0
  • 點閱點閱:529
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
第一章之目標是透過電泳理論模型以及電泳測量提出了一種方便且快速的程序來估計金屬氧化物顆粒的表面離解/締合反應的平衡常數。在模型當中考慮了更符合實際粒子在溶液當中運動的相關因素。平衡常數通常是透過較繁瑣的電位酸鹼滴定法做實驗上的估算,且在其所使用的理論架構中,需要假設多個條件,因此所獲得的結果可能較不可靠,尤其是當離解反應的平衡常數與締合反應的平衡常數之間的差異較小時。此外,本篇另一貢獻是當未知粒子表面解離/締合官能基密度時,也能夠估計其平衡常數,因此它比以往的方法更加方便和準確。由本方法應用於分散在NaCl水溶液中的SiO2和TiO2奈米粒子的情況,做為檢驗本方法的適用性。
第二章是探討可改質的子彈形奈米孔道之電動力學現象。本篇重點是透過數值模擬方式驗證了其改質層的立體障礙效應。在模型當中,奈米孔道壁面上包含來自原薄膜基材的表面官能基之表面電荷,及在改質層的厚度中的空間電荷。由數值模擬結果得知改質層的空間效應將影響奈米孔的離子傳輸行為,且因施加偏壓會造成電滲流(EOF),會通過該層影響離子分佈,其影響程度取決於該層的柔軟性。由於子彈形的表面法向量會沿軸向變化,使EOF的影響程度不同,進而促使改質層內部的離子分佈更為均勻;而圓錐形奈米孔,表面法向量恆定,因此未產生與子彈形相同之現象。這些現象對於奈米孔道之應用極為關鍵,例如: 模擬生物薄膜和金屬離子檢測。
In chapter 1, we propose an efficient and convenient procedure for estimating the thermodynamic equilibrium constants of the surface dissociation/association reactions of metal oxide particles through electrophoresis measurements and a general electrophoresis model, which takes account of essentially all the relevant factors. These constants are usually experimentally estimated through a tedious potentiometric acid-base titration procedure. In addition, since several assumptions need be made, the results obtained can be unreliable, especially when the difference between the equilibrium constant of the dissociation reaction and that of the association reaction is small. Another merit of the procedure proposed is that the site density of the surface dissociation/associations functional groups need not be known in advance so that it becomes much more convenient and efficient than previous procedures. The applicability of the present procedure is examined by applying it to the cases of SiO2 and TiO2 nanoparticles dispersed in an aqueous NaCl solution.
In chapter 2, we examined theoretically the electrokinetic behavior of a bullet-shaped nanopore modified by a functioning layer, focusing on its steric effect. The nanopore contains both fixed surface charge coming from the original bare surface, and space fixed charge from the modified layer. The results of numerical simulation reveal that the steric effect of the modified layer is crucial to the electrokinetic behavior of the nanopore. In particular, the softness of this layer is capable of influencing ionic profiles through electroosmotic flow (EOF). Unlike a conical nanopore where its surface normal vector is constant, that of the present bullet-shaped nanopore varies along the pore axis, thereby affecting the degree of EOF, which in turn, can make the ionic profile inside the modified layer more uniform. This is crucial to the applications of the nanopore, for example, in mimicking biological membranes and sensing metal ions.
誌謝 I
中文摘要 II
Abstract III
Contents V
List of Figures VII
List of Tables X
Chapter 1 Estimating the Thermodynamic Equilibrium Constants of Metal Oxide Particles Through a General Electrophoresis Model 1
1. Introduction 2
2. Modeling 5
3. Estimation of pKa and pKb 6
4. Results and discussion 7
4.1 SiO2 particles 7
4.2 TiO2 particles 10
4.3 Influence of pKa, pKb, and Ntotal 12
5. Conclusions 14
6. Appendix 15
7. References 19
Chapter 2 Electrokinetic Behavior of Bullet-shaped Nanopores Modified by Functional Groups: Steric Effect of Modified Layer 24
1. Introduction 25
2. Modeling 29
3. Results and discussion 33
3.1 Code verification 34
3.2 Influence of modified layer softness 36
3.3 Influence of the modified layer softness on ICR 45
4. Conclusions 50
5. References 52
Supplementary Information 59

[1] S. Wall, The history of electrokinetic phenomena, Current Opinion in Colloid & Interface Science 15(3) (2010) 119-124.
[2] S.W. Thomas, G.D. Joly, T.M. Swager, Chemical sensors based on amplifying fluorescent conjugated polymers, Chemical Reviews 107(4) (2007) 1339-1386.
[3] D. Branton, D.W. Deamer, A. Marziali, H. Bayley, S.A. Benner, T. Butler, M. Di Ventra, S. Garaj, A. Hibbs, X. Huang, S.B. Jovanovich, P.S. Krstic, S. Lindsay, X.S. Ling, C.H. Mastrangelo, A. Meller, J.S. Oliver, Y.V. Pershin, J.M. Ramsey, R. Riehn, G.V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin, J.A. Schloss, The potential and challenges of nanopore sequencing, Nature Biotechnology 26 (2008) 1146-1153.
[4] Y. Lu, M. Ballauff, Thermosensitive core–shell microgels: From colloidal model systems to nanoreactors, Progress in Polymer Science 36(6) (2011) 767-792.
[5] T. Hoare, R. Pelton, Functional group distributions in carboxylic acid containing poly(N-isopropylacrylamide) microgels, Langmuir 20(6) (2004) 2123-2133.
[6] T.M. Squires, S.R. Quake, Microfluidics: Fluid physics at the nanoliter scale, Reviews of Modern Physics 77(3) (2005) 977-1026.
[7] M.V. Smoluchowski, Versuch einer mathematischen theorie der koagulationskinetik kolloider lösungen, Zeitschrift für Physikalische Chemie, (1918) 129.
[8] E. Huckel, Die kataphorese der kugel, Physikalische Zeitschrift 25 (1924) 204-210.
[9] D.C. Henry, A. Lapworth, The cataphoresis of suspended particles. Part I.—The equation of cataphoresis, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 133(821) (1931) 106-129.
[10] C. Hsu, D.J. Lee, J.P. Hsu, N. Wang, S. Tseng, Electrophoresis of pH-regulated particles in the presence of multiple ionic species, AIChE Journal 60(2) (2014) 451-458.
[11] L. Mei, T.H. Chou, Y.S. Cheng, M.J. Huang, L.H. Yeh, S. Qian, Electrophoresis of pH-regulated nanoparticles: Impact of the stern layer, Physical Chemistry Chemical Physics 18(15) (2016) 9927-9934.
[12] D. Kovačević, T. Preočanin, S. Žalac, A. Čop, Equilibria in the electrical interfacial layer revisited, Croatica Chemica Acta 80(3-4) (2007) 287-301.
[13] M. Gouy, Sur la constitution de la charge électrique à la surface d'un électrolyte, Journal de Physique Théorique et Appliquée 9(1) (1910) 457-468.
[14] D.L. Chapman, Li. A contribution to the theory of electrocapillarity, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 25(148) (1913) 475-481.
[15] D.E. Yates, S. Levine, T.W. Healy, Site-binding model of the electrical double layer at the oxide/water interface, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 70(0) (1974) 1807-1818.
[16] R. Sprycha, Surface charge and adsorption of background electrolyte ions at anatase/electrolyte interface, Journal of Colloid and Interface Science 102(1) (1984) 173-185.
[17] T. Preočanin, N. Kallay, Evaluation of surface potential from single crystal electrode potential, Adsorption 19(2-4) (2012) 259-267.
[18] Y.Y. Chen, J.P. Hsu, S. Tseng, Electrophoresis of pH-regulated, zwitterionic particles: Effect of self-induced nonuniform surface charge, Journal of Colloid and Interface Science 421 (2014) 154-159.
[19] W. Rudziński, R. Charmas, W. Piasecki, J.M. Cases, M. François, F. Villieras, L.J. Michot, Calorimetric studies of simple ion adsorption at oxide/electrolyte interface titration experiments and their theoretical analysis based on 2-pK charging mechanism and on the triple layer model, Colloids and Surfaces A: Physicochemical and Engineering Aspects 137(1) (1998) 57-68.
[20] A.G. Ewing, R.A. Wallingford, T.M. Olefirowicz, Capillary electrophoresis, Analytical Chemistry 61(4) (1989) 292A-303A.
[21] P.D. Grossman, J.C. Colburn, Capillary electrophoresis: Theory and practice, Elsevier Science2012.
[22] A. El-Shafey, H.J. Zhong, G. Jones, I.S. Krull, Application of affinity capillary electrophoresis for the determination of binding and thermodynamic constants of enediynes with bovine serum albumin, Electrophoresis 23(6) (2002) 945-950.
[23] A.J. Chetwynd, E.J. Guggenheim, S.M. Briffa, J.A. Thorn, I. Lynch, E. Valsami-Jones, Current application of capillary electrophoresis in nanomaterial characterisation and its potential to characterise the protein and small molecule corona, Nanomaterials (Basel) 8(2) (2018) 99.
[24] M. Zrncic, S. Babic, D.M. Pavlovic, Determination of thermodynamic pKa values of pharmaceuticals from five different groups using capillary electrophoresis, Journal of Separation Science 38(7) (2015) 1232-1239.
[25] S.K. Poole, S. Patel, K. Dehring, H. Workman, C.F. Poole, Determination of acid dissociation constants by capillary electrophoresis, Journal of Chromatography A 1037(1-2) (2004) 445-454.
[26] J.J. Morgan, W. Stumm, Aquatic chemistry-an introduction emphasizing chemical equilibria in natural waters, New York, NY, John Wiley & Sons1981.
[27] C. Lancioni, S. Keunchkarian, C.B. Castells, L.G. Gagliardi, Determination of thermodynamic binding constants by affinity capillary electrophoresis, Talanta 192 (2019) 448-454.
[28] J.P. Hsu, A.M. Spasic, Interfacial electroviscoelasticity and electrophoresis, CRC Press2010.
[29] Y.C. Lai, C.S. Lai, J.T. Tai, T.P. Nguyen, H.L. Wang, C.Y. Lin, T.Y. Tsai, H.C. Ho, P.H. Wang, Y.C. Liao, D.H. Tsai, Understanding ligand–nanoparticle interactions for silica, ceria, and titania nanopowders, Advanced Powder Technology 26(6) (2015) 1676-1686.
[30] J.P. Hsu, Y.H. Tai, Effect of multiple ionic species on the electrophoretic behavior of a charge-regulated particle, Langmuir 26(22) (2010) 16857-16864.
[31] J. Sonnefeld, M. Löbbus, W. Vogelsberger, Determination of electric double layer parameters for spherical silica particles under application of the triple layer model using surface charge density data and results of electrokinetic sonic amplitude measurements, Colloids and Surfaces A: Physicochemical and Engineering Aspects 195(1) (2001) 215-225.
[32] J.P. Holmberg, E. Ahlberg, J. Bergenholtz, M. Hassellov, Z. Abbas, Surface charge and interfacial potential of titanium dioxide nanoparticles: Experimental and theoretical investigations, J Colloid Interface Sci 407 (2013) 168-176.
[33] M.A. Fox, M.T. Dulay, Acceleration of secondary dark reactions of intermediates derived from adsorbed dyes on irradiated TiO2 powders, Journal of Photochemistry and Photobiology A: Chemistry 98(1) (1996) 91-101.
[34] H. Tamura, A. Tanaka, K. Mita, R. Furuichi, Surface hydroxyl site densities on metal oxides as a measure for the ion-exchange capacity, Journal of Colloid and Interface Science 209(1) (1999) 225-231.
[35] T. Preočanin, W. Janusz, N. Kallay, Evaluation of equilibrium parameters of the anatase/aqueous electrolyte solution interface by introducing surface potential data, Colloids and Surfaces A: Physicochemical and Engineering Aspects 297(1-3) (2007) 30-37.
[36] R. Mueller, H.K. Kammler, K. Wegner, S.E. Pratsinis, OH surface density of SiO2 and TiO2 by thermogravimetric analysis, Langmuir 19(1) (2003) 160-165.
[37] Y. Ai, J. Liu, B. Zhang, S. Qian, Field effect regulation of DNA translocation through a nanopore, Analytical Chemistry 82(19) (2010) 8217-8225.
[38] L.H. Yeh, J.P. Hsu, Effects of double-layer polarization and counterion condensation on the electrophoresis of polyelectrolytes, Soft Matter 7(2) (2011) 396-411.
[39] H. Ohshima, Electrophoresis of soft particles, Advances in Colloid and Interface Science 62(2) (1995) 189-235.
[40] M. Zhang, Y. Ai, D.S. Kim, J.H. Jeong, S.W. Joo, S. Qian, Electrophoretic motion of a soft spherical particle in a nanopore, Colloids Surf B Biointerfaces 88(1) (2011) 165-174.
[41] L.H. Yeh, J.P. Hsu, S. Tseng, Electrophoresis of a membrane-coated cylindrical particle positioned eccentrically along the axis of a narrow cylindrical pore, The Journal of Physical Chemistry C 114(39) (2010) 16576-16587.

[1] H.C. Zhang, X. Hou, L. Zeng, F. Yang, L. Li, D.D. Yan, Y. Tian, L. Jiang, Bioinspired artificial single ion pump, Journal of the American Chemical Society 135(43) (2013) 16102-16110.
[2] X.J. Wu, P.R. Rajasekaran, C.R. Martin, An alternating current electroosmotic pump based on conical nanopore membranes, ACS Nano 10(4) (2016) 4637-4643.
[3] Y. Zhang, G.C. Schatz, Conical nanopores for efficient ion pumping and desalination, Journal of Physical Chemistry Letters 8(13) (2017) 2842-2848.
[4] X. Wu, J. Experton, W. Xu, C.R. Martin, Chemoresponsive nanofluidic pump that turns off in the presence of lead ion, Analytical Chemistry 90(12) (2018) 7715-7720.
[5] S.F. Buchsbaum, G. Nguyen, S. Howorka, Z.S. Siwy, DNA-modified polymer pores allow pH- and voltage-gated control of channel flux, Journal of the American Chemical Society 136(28) (2014) 9902-9905.
[6] P. Gao, Q. Ma, D. Ding, D. Wang, X. Lou, T. Zhai, F. Xia, Distinct functional elements for outer-surface anti-interference and inner-wall ion gating of nanochannels, Nature Communication 9(1) (2018) 4557.
[7] Z. Zhang, X.Y. Kong, K. Xiao, G.H. Xie, Q. Liu, Y. Tian, H.C. Zhang, J. Ma, L.P. Wen, L. Jiang, A bioinspired multifunctional heterogeneous membrane with ultrahigh ionic rectification and highly efficient selective ionic gating, Advanced Materials 28(1) (2016) 144-150.
[8] Z.S. Siwy, M.R. Powell, E. Kalman, R.D. Astumian, R.S. Eisenberg, Negative incremental resistance induced by calcium in asymmetric nanopores, Nano Letters 6(3) (2006) 473-477.
[9] M. Ali, S. Nasir, P. Ramirez, J. Cervera, S. Mafe, W. Ensinger, Calcium binding and ionic conduction in single conical nanopores with polyacid chains: Model and experiments, ACS Nano 6(10) (2012) 9247-9257.
[10] C.H. Zhang, G.J. Li, J.H. Wang, Application of nanopore and porous materials for heavy metal ion detection, Chinese Journal of Analytical Chemistry 42(4) (2014) 607-615.
[11] M. Ali, S. Nasir, Q.H. Nguyen, J.K. Sahoo, M.N. Tahir, W. Tremel, W. Ensinger, Metal ion affinity-based biomolecular recognition and conjugation inside synthetic polymer nanopores modified with iron-terpyridine complexes, Journal of the American Chemical Society 133(43) (2011) 17307-17314.
[12] G. Liu, L. Zhang, D. Dong, Y. Liu, J. Li, A label-free DNAzyme-based nanopore biosensor for highly sensitive and selective lead ion detection, Analytical Methods 8(39) (2016) 7040-7046.
[13] Q. Ma, Z. Si, Y. Li, D. Wang, X. Wu, P. Gao, F. Xia, Functional solid-state nanochannels for biochemical sensing, TrAC Trends in Analytical Chemistry 115 (2019) 174-186.
[14] M. Jia, T. Kim, Multiphysics simulation of ion concentration polarization induced by nanoporous membranes in dual channel devices, Analytical Chemistry 86(15) (2014) 7360-7367.
[15] I. Vlassiouk, S. Smirnov, Z. Siwy, Ionic selectivity of single nanochannels, Nano Letters 8(7) (2008) 1978-1985.
[16] Z.S. Siwy, S. Howorka, Engineered voltage-responsive nanopores, Chemical Society Reviews 39(12) (2010) 5067-5067.
[17] D. Ding, P. Gao, Q. Ma, D. Wang, F. Xia, Biomolecule-functionalized solid-state ion nanochannels/nanopores: Features and techniques, Small 15(32) (2019) e1804878.
[18] K. Chuah, Y. Wu, S.R.C. Vivekchand, K. Gaus, P.J. Reece, A.P. Micolich, J.J. Gooding, Nanopore blockade sensors for ultrasensitive detection of proteins in complex biological samples, Nature Communication 10(1) (2019) 2109.
[19] L.J. Mayne, S.D. Christie, M. Platt, A tunable nanopore sensor for the detection of metal ions using translocation velocity and biphasic pulses, Nanoscale 8(45) (2016) 19139-19147.
[20] X.P. Zhao, S.S. Wang, M.R. Younis, X.H. Xia, C. Wang, Asymmetric nanochannel-ionchannel hybrid for ultrasensitive and label-free detection of copper ions in blood, Analytical Chemistry 90(1) (2018) 896-902.
[21] G. Wang, L. Wang, Y. Han, S. Zhou, X. Guan, Nanopore detection of copper ions using a polyhistidine probe, Biosens Bioelectron 53 (2014) 453-458.
[22] L. Wang, F. Yao, X.F. Kang, Nanopore single-molecule analysis of metal ion-chelator chemical reaction, Analytical Chemistry 89(15) (2017) 7958-7965.
[23] G. Perez-Mitta, A.G. Albesa, W. Knoll, C. Trautmann, M.E. Toimil-Molares, O. Azzaroni, Host-guest supramolecular chemistry in solid-state nanopores: Potassium-driven modulation of ionic transport in nanofluidic diodes, Nanoscale 7(38) (2015) 15594-15598.
[24] H.K. Frensdorff, Stability constants of cyclic polyether complexes with univalent cations, Journal of the American Chemical Society 93(3) (1971) 600-606.
[25] D.H. Lin, C.Y. Lin, S. Tseng, J.P. Hsu, Influence of electroosmotic flow on the ionic current rectification in a pH-regulated, conical nanopore, Nanoscale 7(33) (2015) 14023-14031.
[26] J.P. Hsu, Y.C. Chen, C.T. Wu, Detection of the trace level of heavy metal ions by pH-regulated conical nanochannels, Journal of the Taiwan Institute of Chemical Engineers 109 (2020) 145-152.
[27] P.Y. Apel, S.N. Dmitriev, Micro- and nanoporous materials produced using accelerated heavy ion beams, Advances in Natural Sciences: Nanoscience and Nanotechnology 2(1) (2011) 013002.
[28] J.P. Hsu, H.H. Wu, C.Y. Lin, S. Tseng, Ion current rectification behavior of bioinspired nanopores having a pH-tunable zwitterionic surface, Analytical Chemistry 89(7) (2017) 3952-3958.
[29] W. Khalid, M.A. Abbasi, M. Ali, Z. Ali, M. Atif, C. Trautmann, W. Ensinger, Zinc ion driven ionic conduction through single asymmetric nanochannels functionalized with nanocomposites, Electrochimica Acta 337 (2020) 135810.
[30] M. Ali, P. Ramirez, S. Mafe, R. Neumann, W. Ensinger, A pH-tunable nanofluidic diode with a broad range of rectifying properties, ACS Nano 3(3) (2009) 603-608.
[31] M. Ali, P. Ramirez, H.Q. Nguyen, S. Nasir, J. Cervera, S. Mafe, W. Ensinger, Single cigar-shaped nanopores functionalized with amphoteric amino acid chains: Experimental and theoretical characterization, ACS Nano 6(4) (2012) 3631-3640.
[32] J.P. Hsu, H.H. Wu, C.Y. Lin, S. Tseng, Importance of polyelectrolyte modification for rectifying the ionic current in conically shaped nanochannels, Physical Chemistry Chemical Physics 19(7) (2017) 5351-5360.
[33] J.P. Hsu, S.T. Yang, C.Y. Lin, S. Tseng, Voltage-controlled ion transport and selectivity in a conical nanopore functionalized with pH-tunable polyelectrolyte brushes, Journal of Colloid and Interface Science 537 (2019) 496-504.
[34] H. Ohshima, Electrophoresis of soft particles, Advances in Colloid and Interface Science 62(2) (1995) 189-235.
[35] J.Y. Lin, C.Y. Lin, J.P. Hsu, S. Tseng, Ionic current rectification in a pH-tunable polyelectrolyte brushes functionalized conical nanopore: Effect of salt gradient, Analytical Chemistry 88(2) (2016) 1176-1187.
[36] W.J. Lan, M.A. Edwards, L. Luo, R.T. Perera, X.J. Wu, C.R. Martin, H.S. White, Voltage-rectified current and fluid flow in conical nanopores, Accounts of Chemical Research 49(11) (2016) 2605-2613.
[37] J.P. Hsu, S.T. Yang, C.Y. Lin, S. Tseng, Ionic current rectification in a conical nanopore: Influences of electroosmotic flow and type of salt, The Journal of Physical Chemistry C 121(8) (2017) 4576-4582.
[38] C.Y. Lin, F. Chen, L.H. Yeh, J.P. Hsu, Salt gradient driven ion transport in solid-state nanopores: The crucial role of reservoir geometry and size, Physical Chemistry Chemical Physics 18(43) (2016) 30160-30165.
[39] Y. Ai, J. Liu, B. Zhang, S. Qian, Field effect regulation of DNA translocation through a nanopore, Analytical Chemistry 82(19) (2010) 8217-8225.
[40] L.H. Yeh, J.P. Hsu, Effects of double-layer polarization and counterion condensation on the electrophoresis of polyelectrolytes, Soft Matter 7(2) (2011) 396-411.
[41] M. Zhang, Y. Ai, D.S. Kim, J.H. Jeong, S.W. Joo, S. Qian, Electrophoretic motion of a soft spherical particle in a nanopore, Colloids and Surfaces B: Biointerfaces 88(1) (2011) 165-174.
[42] L.H. Yeh, J.P. Hsu, S. Tseng, Electrophoresis of a membrane-coated cylindrical particle positioned eccentrically along the axis of a narrow cylindrical pore, The Journal of Physical Chemistry C 114(39) (2010) 16576-16587.
[43] J.P. Hsu, C.Y. Lin, L.H. Yeh, S.H. Lin, Influence of the shape of a polyelectrolyte on its electrophoretic behavior, Soft Matter 8(36) (2012) 9469-9479.
[44] J.F.L. Duval, F. Gaboriaud, Progress in electrohydrodynamics of soft microbial particle interphases, Current Opinion in Colloid & Interface Science 15(3) (2010) 184-195.
[45] P. Ramirez, P.Y. Apel, J. Cervera, S. Mafe, Pore structure and function of synthetic nanopores with fixed charges: Tip shape and rectification properties, Nanotechnology 19(31) (2008) 315707.
[46] J.P. Hsu, T.C. Su, C.Y. Lin, S. Tseng, Power generation from a pH-regulated nanochannel through reverse electrodialysis: Effects of nanochannel shape and non-uniform H+ distribution, Electrochimica Acta 294 (2019) 84-92.
[47] A. Wolf, N. Reber, P.Y. Apel, B.E. Fischer, R. Spohr, Electrolyte transport in charged single ion track capillaries, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 105(1-4) (1995) 291-293.
[48] Z. Siwy, Y. Gu, H.A. Spohr, D. Baur, A. Wolf-Reber, R. Spohr, P. Apel, Y.E. Korchev, Rectification and voltage gating of ion currents in a nanofabricated pore, Europhysics Letters‎ 60(3) (2002) 349-355.
[49] M.R. Powell, L. Cleary, M. Davenport, K.J. Shea, Z.S. Siwy, Electric-field-induced wetting and dewetting in single hydrophobic nanopores, Nature Nanotechnology 6(12) (2011) 798-802.
[50] H.C. Zhang, X. Hou, J. Hou, L. Zeng, Y. Tian, L. Li, L. Jiang, Synthetic asymmetric-shaped nanodevices with symmetric pH-gating characteristics, Advanced Functional Materials 25(7) (2015) 1102-1110.
[51] J.P. Hsu, A.M. Spasic, Interfacial electroviscoelasticity and electrophoresis, CRC Press2010.
[52] S.M. Bezrukov, O.V. Krasilnikov, L.N. Yuldasheva, A.M. Berezhkovskii, C.G. Rodrigues, Field-dependent effect of crown ether (18-crown-6) on ionic conductance of alpha-hemolysin channels, Biophysical Journal 87(5) (2004) 3162-3171.
[53] R.M. Izatt, R.E. Terry, B.L. Haymore, L.D. Hansen, N.K. Dalley, A.G. Avondet, J.J. Christensen, Calorimetric titration study of the interaction of several uni- and bivalent cations with 15-crown-5, 18-crown-6, and two isomers of dicyclohexo-18-crown-6 in aqueous solution at 25 °C and μ=0.1, Journal of the American Chemical Society 98(24) (1976) 7620-7626.
[54] J.P. Hsu, Y.M. Chen, S.T. Yang, C.Y. Lin, S. Tseng, Influence of salt valence on the rectification behavior of nanochannels, Journal of Colloid and Interface Science 531 (2018) 483-492.
[55] M.A. Parashchenko, N.S. Filippov, V.V. Kirienko, S.I. Romanov, Electroosmotic pump based on asymmetric silicon microchannel membranes, Optoelectronics, Instrumentation and Data Processing 50(3) (2014) 315-322.
[56] D.J. Laser, J.G. Santiago, A review of micropumps, Journal of Micromechanics and Microengineering 14(6) (2004) R35-R64.



 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *