帳號:guest(3.145.37.250)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林家伃
作者(外文):Lin, Chia-Yu
論文名稱(中文):官能化聚苯醚高分子之反應方法、性質與應用研究
論文名稱(外文):Functionalization of poly(phenylene oxide): reaction methods, properties, and application
指導教授(中文):劉英麟
指導教授(外文):Liu, Ying-Ling
口試委員(中文):孫一明
鄭如忠
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:104032522
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:73
中文關鍵詞:聚苯醚高分子熱固性聚苯醚高分子薄膜
外文關鍵詞:poly(phenylene oxide)crosslinked membranes
相關次數:
  • 推薦推薦:0
  • 點閱點閱:390
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
本論文探討改質聚苯醚(PPO)之反應方法與性質,以製備官能化工程塑料並應用於物質分離與電氣等領域。首先利用原子轉移自由基反應及沃爾–齊格勒反應使PPO溴化,提出新的溴化反應方法radical and atom transfer halogenation (RATH)及其反應機制,相較於傳統溴化方法,RATH反應可在較低溫中進行,並可應用於多種溶劑之中。以溴化PPO為起始反應物,進行原子轉移自由基加成反應及雙原子親核取代反應,分別將TEMPO及米氏酸化合物(MA-M)導入PPO中,合成官能化的PPO-TEMPO及PPO-MAM,利用紅外光光譜儀(FTIR)、核磁共振光譜儀(NMR)、微差掃描卡計(DSC)和熱重分析儀(TGA)確認高分子之結構與熱性質。PPO-TEMPO可進行氮氧自由基控制聚合反應,且可利用TEMPO基團進行自由基交聯反應;而PPO-MAM之米氏酸基團進行熱裂解反應後可生成高反應性的烯酮官能基(ketene),可接續進行[2+2]自身加成反應。因此,PPO-TEMPO和PPO-MAM都是具有可自身交聯特性的熱塑性高分子。將PPO-TEMPO和PPO-MAM製成膜材後並進行熱交聯反應,藉由熱重分析儀(TGA)、動態熱機械分析儀(DMA)及拉伸實驗確認膜材之性質。交聯後之PPO膜材保有良好的熱性質且具有更好的耐溶劑性、成膜性及機械強度。
This study explores multiple ways to functionalize poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and investigates the properties of the functionalized PPO. First, brominated PPO is prepared by atom transfer radical reaction and Wohl-Ziegler reaction. A new bromination method, radical and atom transfer halogenation (RATH), and its reaction mechanism has been demonsatrted. Compared to the conventional bromination methods, RATH can be performed at lower temperatures with less solvent restriction. Then, crosslinkable thermalplastic polymers, PPO-TEMPO and PPO-MAM, have been synthesized through bromination of PPO followed by atom transfer radical addition and nucleophilic substitution reaction, respectively. Structural and thermal analysis are carried out with FTIR, NMR, DSC and TGA. PPO-TEMPO could serve as a macroinitiator for nitroxide-mediated polymerization. Moreover, PPO-TEMPO and PPO-MAM are casted into films and thermally crosslinked to form crosslinked membranes with high gel fractions. The cured membranes exhibit excellent thermal properties, mechanical properties and solvent resistance as well as film formability.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1-1 Poly(phenylene oxide) (PPO)結構與特性 1
1-2 PPO應用領域 2
1-3 PPO改質方法 3
1-4研究動機 6
第二章 文獻回顧 7
2-1 PPO溴化反應機制 7
2-2溴化PPO之改質反應 9
2-3含可交聯官能基之熱固性PPO 13
2-4帶米氏酸衍生物及Ketene官能基之高分子 15
2-5研究方法 19
第三章 實驗部分 20
3-1實驗藥品 20
3-2分析方法及使用儀器 22
3-3實驗步驟 25
3-3-1利用兩種機制溴化PPO,合成PPO-Br及NBS_PPO-Br 25
3-3-2利用兩種機制改質及官能化NBS_PPO-Br 28
3-3-3官能化PPO之熱交聯反應 30
第四章 結果與討論 32
4-1利用兩種機制溴化PPO 32
4-1-1 PPO-Br之合成鑑定 32
4-1-2 NBS_PPO-Br之合成鑑定 39
4-2利用兩種機制改質及官能化溴化PPO 44
4-2-1 PPO-TEMPO之合成鑑定 44
4-2-2 PPO-MAM之合成鑑定 51
4-3 官能化PPO之熱交聯反應 56
4-3-1 PPO-TEMPO之熱交聯反應 56
4-3-2 PPO-MAM之熱交聯反應 60
第五章 結論 66
第六章 參考文獻 67
1. Hay, A. S.; Blanchard, H. S.; Endres, G. F.; Eustance, J. W., POLYMERIZATION BY OXIDATIVE COUPLING. Journal of the American Chemical Society 1959, 81 (23), 6335-6336.
2. Hwang, H.-J.; Hsu, S.-W.; Wang, C.-S., Low dielectric and flame-retardant properties of thermosetting redistributed poly(phenylene oxide). Journal of Vinyl and Additive Technology 2009, 15 (1), 54-59.
3. Ilinitch, O. M.; Fenelonov, V. B.; Lapkin, A. A.; Okkel, L. G.; Terskikh, V. V.; Zamaraev, K. I., Intrinsic microporosity and gas transport in polyphenylene oxide polymers. Microporous and Mesoporous Materials 1999, 31 (1–2), 97-110.
4. Seike, Y.; Okude, Y.; Iwakura, I.; Chiba, I.; Ikeno, T.; Yamada, T., Synthesis of Polyphenylene Ether Derivatives: Estimation of Their Dielectric Constants. Macromolecular Chemistry and Physics 2003, 204 (15), 1876-1881.
5. Dang, H.-S.; Weiber, E. A.; Jannasch, P., Poly(phenylene oxide) functionalized with quaternary ammonium groups via flexible alkyl spacers for high-performance anion exchange membranes. Journal of Materials Chemistry A 2015, 3 (10), 5280-5284.
6. Li, J.-X.; Chan, C.-M., Phase structure and mechanical properties of modified poly(phenylene oxide) with high fluidity. Polymers for Advanced Technologies 2012, 23 (4), 803-809.
7. Fukuhara, T.; Shibasaki, Y.; Ando, S.; Ueda, M., Synthesis of thermosetting poly(phenylene ether) containing allyl groups. Polymer 2004, 45 (3), 843-847.
8. Lai, Y.-C., Graft copolymers of nylon 6 and polyphenylene oxide: Syntheses and their role in compatibilizing nylon 6/polyphenylene oxide blends. Journal of Applied Polymer Science 1994, 54 (9), 1289-1296.
9. Lee, C.-H.; Lee, S.-K.; Kang, S.-W.; Yun, S.-H.; Ho Kim, J.; Choe, S., Impact strength in ABS–PPO blends compatibilized with styrene–acrylonitrile–glycidil methacrylate terpolymers. Journal of Applied Polymer Science 1999, 73 (5), 841-852.
10. 赵亚囡,一种ppo/abs共混合金材料及其制备方法. CN Patents 103849099, June 11, 2014.
11. 邢秋;张效礼;朱四来,改性聚苯醚(MPPO)工程塑料国内外发展现状.热固性树脂 2006, 21 (5), 49-53.
12. 梁孟,新型高耐熱、低介電之熱硬化型高分子合成與應用;計畫編號NSC93-2113-M-415-009-;行政院國家科學委員會: 2004.
13. Pan, Y.; Huang, Y.; Liao, B.; Cong, G., Synthesis and characterization of aminated poly(2,6-dimethyl-1,4-phenylene oxide). Journal of Applied Polymer Science 1996, 61 (7), 1111-1115.
14. Wang, C.; Huang, Y.; Cong, G., Preparation and Characterization of Sulfonated Poly(phenylence oxide). Polym J 1995, 27 (2), 173-178.
15. Hu, X.; Cong, H.; Shen, Y.; Radosz, M., Nanocomposite Membranes for CO2 Separations:  Silica/Brominated Poly(phenylene oxide). Industrial & Engineering Chemistry Research 2007, 46 (5), 1547-1551.
16. Krijgsman, J.; Feijen, J.; Gaymans, R. J., Synthesis and characterisation of telechelic poly(2,6-dimethyl-1,4-phenylene ether) for copolymerisation. Polymer 2003, 44 (23), 7055-7065.
17. Liang, M.; Jhuang, Y.-J.; Zhang, C.-F.; Tsai, W.-J.; Feng, H.-C., Synthesis and characterization of poly(phenylene oxide) graft copolymers by atom transfer radical polymerizations. European Polymer Journal 2009, 45 (8), 2348-2357.
18. Saito, K.; Masuyama, T.; Oyaizu, K.; Nishide, H., Depolymerization of Poly(2,6-dimethyl-1,4-phenylene oxide) under Oxidative Conditions. Chemistry – A European Journal 2003, 9 (17), 4240-4246.
19. Hwang, H.-J.; Hsu, S.-W.; Wang, C.-S., Synthesis and physical properties of low-molecular-weight redistributed poly(2,6-dimethyl-1,4-phenylene oxide) for epoxy resin. Journal of Applied Polymer Science 2008, 110 (3), 1880-1890.
20. Líška, J.; Borsig, E.; Tkáč, I., A route to preparation of bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide). Die Angewandte Makromolekulare Chemie 1993, 211 (1), 121-129.
21. Katzfuß, A.; Gogel, V.; Jörissen, L.; Kerres, J., The application of covalently cross-linked BrPPO as AEM in alkaline DMFC. Journal of Membrane Science 2013, 425–426, 131-140.
22. Liu, Y.-L.; Chang, Y.-H.; Liang, M., Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) multi-bonded carbon nanotube (CNT): Preparation and formation of PPO/CNT nanocomposites. Polymer 2008, 49 (25), 5405-5409.
23. Cong, H.; Yu, B.; Tang, J.; Zhao, X. S., Ionic liquid modified poly(2,6-dimethyl-1,4-phenylene oxide) for CO2 separation. Journal of Polymer Research 2012, 19 (2), 1-6.
24. Lin, C. H.; Tsai, Y. J.; Shih, Y. S.; Chang, H. C., Catalyst-free synthesis of phosphinated poly(2,6-dimethyl-1,4-phenylene oxide) with high-Tg and low-dielectric characteristic. Polymer Degradation and Stability 2014, 99, 105-110.
25. Prolongo, S. G.; Cabanelas, J. C.; Fine, T.; Pascault, J.-P., Poly(phenylene ether)/epoxy thermoset blends based on anionic polymerization of epoxy monomer. Journal of Applied Polymer Science 2004, 93 (6), 2678-2687.
26. Wu, S. J.; Tung, N. P.; Lin, T. K.; Shyu, S. S., Thermal and mechanical properties of PPO filled epoxy resins compatibilized by triallylisocyanurate. Polymer International 2000, 49 (11), 1452-1457.
27. Wang, Y.; Cheng, S.; Li, W.; Huang, C.; Li, F.; Shi, J., Synthesis and Properties of Thermosetting Modified Polyphenylene Ether. Polymer Bulletin 2007, 59 (3), 391-402.
28. Lee, J.-S.; Jung, C.-H.; Jo, S.-Y.; Choi, J.-H.; Hwang, I.-T.; Nho, Y.-C.; Lee, Y.-M.; Lee, J.-S., Preparation of sulfonated crosslinked poly(2,6-dimethyl-1,4-phenylene oxide) membranes for direct methanol fuel cells by using electron beam irradiation. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48 (12), 2725-2731.
29. Huang, C.-C.; Yang, M.-S.; Liang, M., Synthesis of new thermosetting poly(2,6-dimethyl-1,4-phenylene oxide)s containing epoxide pendant groups. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44 (20), 5875-5886.
30. Meldrum, A. N., LIV.-A [small beta]-lactonic acid from acetone and malonic acid. Journal of the Chemical Society, Transactions 1908, 93 (0), 598-601.
31. GAO Wen-Tao, Z. M.-R., HOU Wen-Duan, Progress in Application of Meldrum s Acid to Synthesis of Heterocyclic Compounds. Chin. J. Org. Chem. 2010, 30 (07), 958-967.
32. Leibfarth, F. A.; Kang, M.; Ham, M.; Kim, J.; Campos, L. M.; Gupta, N.; Moon, B.; Hawker, C. J., A facile route to ketene-functionalized polymers for general materials applications. Nat Chem 2010, 2 (3), 207-212.
33. Lad, U. P., Synthetic studies on the development of green methodologies and natural products. 2012.
34. Jung, H.; Leibfarth, F. A.; Woo, S.; Lee, S.; Kang, M.; Moon, B.; Hawker, C. J.; Bang, J., Efficient Surface Neutralization and Enhanced Substrate Adhesion through Ketene Mediated Crosslinking and Functionalization. Advanced Functional Materials 2013, 23 (12), 1597-1602.
35. Lin, L.-K.; Hu, C.-C.; Su, W.-C.; Liu, Y.-L., Thermosetting resins with high fractions of free volume and inherently low dielectric constants. Chemical Communications 2015, 51 (64), 12760-12763.
36. Wang, J.-S.; Matyjaszewski, K., Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society 1995, 117 (20), 5614-5615.
37. Pintauer, T.; Matyjaszewski, K., Atom transfer radical addition and polymerization reactions catalyzed by ppm amounts of copper complexes. Chemical Society Reviews 2008, 37 (6), 1087-1097.
38. Kharasch, M. S.; Urry, W. H.; Jensen, E. V., ADDITION OF DERIVATIVES OF CHLORINATED ACETIC ACIDS TO OLEFINS. Journal of the American Chemical Society 1945, 67 (9), 1626-1626.
39. Han, Y.-J.; Lin, C.-Y.; Liang, M.; Liu, Y.-L., Radical and Atom Transfer Halogenation (RATH): A Facile Route for Chemical and Polymer Functionalization. Macromolecular Rapid Communications 2016, 37 (10), 845-850.
40. Çankaya, N., Cellulose Grafting by Atom Transfer Radical Polymerization Method. In Cellulose - Fundamental Aspects and Current Trends, Poletto, M.; Junior, H. L. O., Eds. InTech: Rijeka, 2015; p Ch. 03.
41. Lin, X.; Liang, X.; Poynton, S. D.; Varcoe, J. R.; Ong, A. L.; Ran, J.; Li, Y.; Li, Q.; Xu, T., Novel alkaline anion exchange membranes containing pendant benzimidazolium groups for alkaline fuel cells. Journal of Membrane Science 2013, 443, 193-200.
42. Lei, L.; Tanishima, M.; Goto, A.; Kaji, H., Living Radical Polymerization via Organic Superbase Catalysis. Polymers 2014, 6 (3), 860.
43. Hawker, C. J.; Bosman, A. W.; Harth, E., New polymer synthesis by nitroxide mediated living radical polymerizations. Chemical Reviews 2001, 101 (12), 3661-3688.
44. Le¨®n-Berm¨²dez; Adan-Yovani; Salazar; Ramiro, SYNTHESIS AND CHARACTERIZATION OF THE POLYSTYRENE - ASPHALTENE GRAFT COPOLYMER BY FT-IR SPECTROSCOPY. CT&F - Ciencia, Tecnolog¨ªa y Futuro 2008.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *