帳號:guest(3.17.81.228)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許嘉恩
作者(外文):Hsu, Chia-En.
論文名稱(中文):分子架構對Poly(3-hexyl thiophene)-Poly(ε-caprolactone)嵌段共聚物自組裝行為的影響研究
論文名稱(外文):Molecular Architecture Effect on the Self-assembly of Poly(3-hexyl thiophene)-Poly(ε-caprolactone) Block Copolymer
指導教授(中文):陳信龍
指導教授(外文):Chen, Hsin-Lung.
口試委員(中文):蘇群仁
賴偉淇
口試委員(外文):Su, Chun-Jen.
Lai, Wei-Chi.
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:104032521
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:85
中文關鍵詞:嵌段共聚物自組裝結構微相分離
外文關鍵詞:block copolymerP3HT-b-PCLmicrophase separationself-assembled structure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:274
  • 評分評分:*****
  • 下載下載:22
  • 收藏收藏:0
由於嵌段共聚物(block copolymers)自組裝行為所產生的微結構在奈米科技上多樣的應用潛力,因此其相關的研究受到相當大的重視,在各式各樣的嵌段共聚物系統中,剛-柔嵌段共聚物(rod-coil block copolymer)的項行為以及微結構都較柔-柔嵌段共聚物(coil-coil block copolymer)複雜多變,一般而言,聚合度、體積分率(組成)以及組成的聚合物種類都是會影響嵌段共聚物自組裝結構的的基本參數,除此之外,分子架構對其自組裝行為也會有所影響,本實驗系統性地研究以聚(3-己基噻吩)為剛段,聚己內酯為柔段組成,且擁有不同分子架構之嵌段共聚物(P3HT-b-PCL),透過小角度X光散射(SAXS)、廣角度X光散射(WAXS)以及示差掃描量熱儀(DSC)等儀器,我們探討不同分子架構對嵌段共聚物的自組裝行為、微相分離現象,以及結晶動力學的影響。
Self-assembly of block copolymers (bcps) has attracted considerable attention due to their versatile applications for nanotechnology. Among the wide variety of bcp systems, the rod-coil bcp composed of a rod and a coil block has received intensive interest owing to the complex phase structure prescribed by the large disparity of the flexibility of the constituting blocks as well as the strong self-organization driving force of the rod block. In addition to the conventional parameters such as segregation strength and constituent volume fraction, molecular architecture offers another important parameter for tuning the self-assembled structure of bcp. In this work, we systematically study the self-assembly behavior of the rod-coil block copolymers composed of poly(3-hexylthophene) (P3HT, A blok) as the rod and poly(ε-caprolactone) (PCL, B block) as the coil .The bcp systems studied bear the molecular architecture of AB, AB2, BAB and B2AB¬¬2. The crystallization kinetics of the PCL block was found to depend strongly on the molecular architecture; moreover, the architecture also influenced the interdomain distance of the microphase-separated structure, which was explained by considering the packing mode of the B block in the microdomains. To further explore the phase transition mechanism, temperature-dependent simultaneous SAXS and WAXS experiments were conducted. The results indicated the microphase separation always occurred before the crystallization of P3HT block in the cooling cycle. Moreover, the crystallizations of P3HT and PCL block were largely confined in the microdomains constructed by the microphase separation.
總目錄
Abstract...............................................Ⅰ
摘要...................................................Ⅱ
致謝...................................................Ⅲ
總目錄.................................................Ⅳ
圖目錄.................................................Ⅵ
表目錄.................................................Ⅹ
第一章 文獻回顧.........................................1
1.1嵌段共聚物的自組裝行為及微相分離現象...................1
1.2嵌段共聚物之自組裝理論及其成果........................4
1.2.1 Coil-Coil共聚物之自組裝理論及其成果................4
1.2.2 Rod-Coil共聚物之自組裝理論及其成果.................7
1.3以聚(3-烷基噻吩)( P3AT)為剛段之共聚物相關研究.........14
1.3.1聚(3-烷基噻吩)( P3AT)簡介.........................14
1.3.2聚(3-烷基噻吩)( P3AT)為剛段之共聚物的自組裝行為.....16
1.4不同分子架構對嵌段共聚物自組裝行為之影響..............19
1.5 嵌段共聚物之結晶動力學.............................24
1.6研究動機...........................................33
第二章 實驗部分........................................34
2.1實驗樣品...........................................34
2.2實驗流程與樣品製備..................................35
2.3儀器設備與原理......................................38
2.3.1示差掃描量熱儀(Differential scanning calorimetry,DSC).....38
2.3.2小角度X光散射(Small-angle X-ray scattering and,SAXS)
廣角度X光散射(Widel-angle X-ray scattering and,WAXS)......40
第三章 結果與討論......................................41
3.1 P3HT-b-PCL嵌段共聚物之自組裝結構與相轉換行為.........41
3.1.1 P3HT-b-PCL嵌段共聚物之自組裝結構..................41
3.1.2 P3HT-b-PCL嵌段共聚物之相轉化行為..................50
3.1.3 不同分子架構之嵌段共聚物對domain spacing之影響.....60
3.2 P3HT-b-PCL嵌段共聚物之結晶動力學....................63
3.2.1不同分子架構對P3HT和PCL鏈段之熔點與結晶溫度影響......63
3.2.2 P3HT-b-PCL嵌段共聚物之等溫與非等溫結晶(PCL鏈段)....66
第四章 結論............................................73
第五章 附錄............................................74
5.1 PCL鏈段結晶對SAXS散射強度之影響.....................74
5.2 Domain spacing之推導與計算.........................76
第六章 參考文獻........................................83

圖目錄
圖1.1 嵌段共聚物常見的自組裝結構示意圖(左至右:層狀、柱狀、球狀結構)...3
圖1.2 嵌段共聚物依據高分子鏈柔軟度可區分為(a) coil-coil,(b) rod-coil............................................................6
圖1.3 Matsen利用SCFT推導出之嵌段共聚物相圖.........................6
圖1.4 Khandpur實驗所得之相圖(PS-b-PI)............................10
圖1.5 Khandpur相圖中的PS-b-PI微結構示意圖........................10
圖1.6 Manuel考慮rod間作用力推導出之相圖(N=40,ω/χ=1).............11
圖1.7 Manuel考慮rod間作用力推導出之相圖(N=40,ω/χ=8).............11
圖1.8不同組成之共聚物(PPV-b-PI)的diorder相轉化行為示意圖..........12
圖1.9不同組成之rod-coil共聚物(PPV-b-PI)之相圖(a) moderately segregated limit regime,(b) weak segregated limit regime......12
圖1.10 PPV-b-P4VP TEM層狀結構圖(fcoil=0.5)......................13
圖1.11 PPV-b-P4VP TEM柱狀結構圖(fcoil=0.8)......................13
圖1.12 PPV-b-P4VP TEM球狀結構圖(fcoil=0.88).....................13
圖1.14 以3個3-烷基噻吩排列,可能的四種排列結構....................15
圖1.15 P3HT 奈米線結構之AFM圖...................................18
圖1.16不同烷基種類為rod之共聚物SAXS圖............................18
圖1.17線性與非線性嵌段共聚物(PS-b-P2VP)及添加界面活性劑(DBSA)示意圖.............................................................21
圖1.18 I-1對T-1作圖求取TODT(PS-b-P2VP)..........................21
圖1.19 I-1對T-1作圖求取TODT( (PS-b-P2VP)DBSA)...................22
圖1.20 I-1對T-1作圖求取TODT((PS-b-P2VP)5(PS)5(DBSA).............22
圖1.21線性PCL-b-PS和星狀(PCL2)-b-(PS2)嵌段共聚物分子架構示意圖....23
圖1.22 不同組成之線性PCL-b-PS和星狀(PCL2)-b-(PS2)嵌段共聚物TEM圖..23
圖1.23 PMMA2-P3HT星狀共聚物(fP3HT=0.72)之(a)SAXS圖,(b)TEM圖.....23
圖1.24 PLLA的結晶溫度與domain spacing示意圖......................27
圖1.25 PEO等溫結晶SAXS圖(PLLA在不同溫度下結晶)....................27
圖1.26 PEO非等溫結晶DSC圖(PLLA在不同溫度下結晶)...................27
圖1.27 sPP-b-PCL嵌段共聚物(fsPP=0.24)SAXS圖.....................28
圖1.28 sPP-b-PCL的invariant(Q)及結晶度對時間之關係圖(sPP鏈段80℃結晶)............................................................28
圖1.29 sPP-b-PCL的invariant(Q)及結晶度對時間之關係圖(sPP鏈段60℃結晶)............................................................29
圖1.30sPP-b-PCL的invariant(Q)及結晶度對時間之關係圖(41.5℃等溫結晶)............................................................29
圖1.31 sPP-b-PCL的invariant(Q)及結晶度對時間之關係圖(30℃等溫結晶)...........................................................30
圖1.32 P3DDT-b-PMMA共聚物(ωP3HT =0.56)之(a)SAXS圖,(b)TEM圖....30
圖1.33 P3DDT-b-PMMA共聚物(ωP3HT =0.37)之(a)SAXS圖,(b)TEM圖....31
圖1.34 P3DDT-b-PMMA共聚物(ωP3HT =0.20)之(a)SAXS圖,(b)TEM圖....31
圖1.35 P3DDT-b-PMMA共聚物(ωP3HT =0.76)之(a)SAXS圖,(b)TEM圖(200℃),(c)TEM圖(100℃)...............................................32
圖2.1 不同分子架構之P3HT-b-PCL嵌段共聚物........................34
圖2.2 本研究實驗架構圖..........................................35
圖2.3 Heat treatment示意圖(Process 1)..........................35
圖3.1 AB之SAXS圖譜(Process 1)..................................45
圖3.2 AB之WAXS圖譜(Process 1)..................................45
圖3.3 AB2之SAXS圖譜(Process 1).................................46
圖3.4 AB2之WAXS圖譜(Process 1).................................46
圖3.5 BAB之SAXS圖譜(Process 1).................................47
圖3.6 BAB之WAXS圖譜(Process 1).................................47
圖3.7 B2AB2之SAXS圖譜(Process 1)...............................48
圖3.8 B2AB2之WAXS圖譜(Process 1)...............................48
圖3.9 AB之SAXS變溫圖譜(Process 1)...............................53
圖3.10 AB之WAXS變溫圖譜(Process 1).............................53
圖3.11 AB在250℃之SAXS圖譜.....................................54
圖3.12 AB在230℃之SAXS圖譜.....................................54
圖3.13 AB在250℃和200℃之SAXS圖譜...............................55
圖3.14 AB在150℃之SAXS圖譜.....................................56
圖3.15 AB2之SAXS變溫圖譜(Process 1)............................57
圖3.16 AB2之WAXS變溫圖譜(Process 1)............................57
圖3.17 AB2在250℃之SAXS圖譜....................................58
圖3.18 AB2在200℃之SAXS圖譜....................................58
圖3.19 AB2在250℃和200℃之SAXS圖譜..............................59
圖3.20 P3HT-b-PCL共聚物之冷卻DSC圖譜(5℃/min)...................64
圖3.21 P3HT-b-PCL共聚物之二次加熱DSC圖譜(10℃/min)..............65
圖3.22 AB之PCL鏈段的非等溫結晶DSC圖譜...........................68
圖3.23 AB2之PCL鏈段的非等溫結晶DSC圖譜..........................68
圖3.24 BAB之PCL鏈段的非等溫結晶DSC圖譜..........................69
圖3.25B2AB2之PCL鏈段的非等溫結晶DSC圖譜.........................69
圖3.26 PCL鏈段等溫結晶DSC圖譜(33℃).............................70
圖3.27 PCL鏈段等溫結晶DSC圖譜(35℃).............................70
圖3.28 PCL鏈段等溫結晶DSC圖譜(38℃).............................71
圖3.29 PCL鏈段等溫結晶時間對結晶溫度關係圖.......................71
圖5.1 AB2在bilayer packing mode下的高分子鏈堆疊示意圖...........78
圖5.2 AB之SAXS圖譜(Process 2)..................................79
圖5.3 AB之WAXS圖譜(Process 2)..................................79
圖5.4 AB2之SAXS圖譜(Process 2).................................80
圖5.5 AB2之WAXS圖譜(Process 2).................................80
圖5.6 BAB之SAXS圖譜(Process 2).................................81
圖5.7 BAB之WAXS圖譜(Process 2).................................81
圖5.8 B2AB2之SAXS圖譜(Process 2)...............................82
圖5.9 B2AB2之WAXS圖譜(Process 2)...............................82

表目錄
表2.1. P3HT-b-PCLs基本性質.....................................34
表2.2 SAXS/WAXS前置熱處理by DSC(Process 1).....................36
表2.3 SAXS/WAXS前置熱處理by DSC(Process 2).....................36
表2.4 P3HT和PCL非等溫結晶DSC流程................................37
表2.5 PCL非等溫結晶DSC流程(P3HT等溫結晶)........................37
表2.6 PCL等溫結晶DSC流程(P3HT等溫結晶...........................38
表3.1 P3HT-b-PCL嵌段共聚物之特性與結構(Process 1)...............49
表3.2 P3HT-b-PCL嵌段共聚物之特性與結構(Process 2)...............49
表3.3 P3HT-b-PCL嵌段共聚物之P3HT和PCL之Tc與ΔHc..................65
表3.4 P3HT-b-PCL嵌段共聚物之P3HT和PCL之Tm與ΔHm..................65
表3.29 PCL鏈段等溫結晶參數(經Avrami運算)........................72
表5.1不同結晶度的P3HT與PCL之SLD.................................75

(1)Ikkala, O.;Brinke, G. T., Science, 2002, 295, 2407-2409.
(2)Whitesides, G. M.; Grzybowski,B., Science, 2002, 295, 2418-2421.
(3)Stupp, S. I.; LeBonheur, V.; Walker, K.; Li , L. S.; Huggins, K. E.; Keser, M.;.Amstutz, A., Science, 2002, 276, 384-389
(4)Farrell, R.A.; Fitzgerald, G. T.; Borah, D.; Holmes D. J.; Morris A. M., Journal of Molecular Sciences, 2009, 10, 3672-3712
(5)Klok, H.A.; Lecommandoux, S., Advanced Materials, 2001, 16, 1217-1229
(6)Meier, D.J., J. Polym. Sci., part C, 1969, 26, 81.
(7)Helfand, E., Macromolecules, 1975, 8, 552-556.
(8)Helfand, E.; Wasserman, Z. R., Macromolecules, 1976, 9, 879-887.
(9)Helfand, E.; Wasserman, Z. R., Macromolecules, 1979, 13, 994-998.
(10)Helfand, E.; Wasserman, Z. R., Macromolecules, 1978, 11, 960-966.
(11)Leibler, L., Macromolecules, 1980, 13, 1602-1617.
(12)Matsen, M. W.; Schick, M., Macromolecules, 1994, 72, 2660-2663.
(13)Matsen, M. W.; Bates, F. S., Macromolecules, 1996, 29, 1091-1098.
(14)Matsen, M. W.; Bates, F. S., Macromolecules, 1996, 29, 7641-7644.
(15)Semenov, A. N.; Vasilenko, S. V., Sov. Phys. JETP, 1986, 63(1), 70-79.
(16)Khandpur, A K; Farster ,S.; Bates, F. S., Macromolecules, 1995, 28, 8796-8806.
(17)Reenders, M.; ten Brinke, G. Macromolecules 2002, 35, 3266-3280
(18)Olsen, B. D., Segalman, R. A., Macromolecules, 2006, 39, 7078-7083.
(19)Olsen, B. D., Segalman, R. A., Macromolecules, 2007, 40, 6922-6929.
(20)Sary, N.; Rubatat, L.; Brochon, C.; Hadziioannou, G.; Ruokolainen, J.; Mezzenga, R., Macromolecules, 2007, 40, 6990-6997.
(21)Elsenbaumer, D. L.; Jen, K. Y.; Oboodi, R., Synth. Met., 1986, 15, 169.
(22)Sato, M.; Tanaka, S.; Kaeriyama, K.; J. Chem. Soc., Chem. Commun., 1986, 873.
(23)Sugimoto, R.; Takeda, S.; Gu, H. B.; Yoshino, K., Chem. Express., 1986, 1, 635.
(24)Jen, K. Y.; Miller, G. G.; Elsenbaumer, R. L., J. Chem. Soc., Chem. Commun., 1986, 1346.
(25)Roncali, J.; Garreau, R.; Delabouglise, D.; Lemaire, F. M., Synth. Met., 1989, 28, C341.
(26)Chen, T. A.; Wu, X.; Rieke, R. D., J. Am. Chem. Soc., 1995, 117, 233-244.
(27)Liu, J. S.; Sheina, E.; Kowalewski, T.; McCullough, R. D., Angew. Chem., 2000, 114, 339-342.
(28)Lin, S. H.; Wu, S. J.; Ho, C. C.; Su, W. F., Macromolecules, 2013, 46, 2725-2732.
(29)Nandan, B.; Lee, C. H.; Chen, H. L.; Chen, W. C., Macromolecules, 2005, 38, 10117-10126.
(30)Lorenzo, A. T.; Muller, A.J.; Lin, M. C.; Chen, H. L.; Jeng, U. S.; Priftis, D; Pitsikalis, M.; Hadjichristidis, N., Macromolecules, 2009, 42, 8353-8364.
(31)Park, J.; Choi, C.; Hyum, S.; Moon, H. C.; Vincent Joseph, K. L.; Kim, J. K., Macromolecules, 2016, 49, 616-623.
(32)Cong, Y.; Wang, D.; Zhao, B.; Yan, T.; Li, L., Macromolecules, 2011, 44, 5878-5882.
(33)Lin, M. C.; Chen, H. L.; Su, W. B.; Su, C. J.; Jeng, U. S.; Tseng, F. Y.; Wu, J. Y.; Tsai, J. C.; Hashimoto, T., Macromolecules, 2012, 45, 5114-5127.
(34)Moon, H. C.; Bae, D.; Kim, J. K, Macromolecules, 2012, 45, 5201-5207.
(35)R. J. Roe, Methods of X-Ray and Neutron Scattering in Polymer Science, Oxford University Press, New York 2000.
(36)Lin, Y. H.; Chen, H. L.; Goseki, R.; Hirao, A., Macromol. Chem. Phys, 2017, 218.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *