帳號:guest(18.225.92.76)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王姿方
作者(外文):Wang, Tzu-Fang.
論文名稱(中文):聚乙烯醇嵌段共聚物及其與界面活性劑錯合物之自組裝結構與性質
論文名稱(外文):Self-Assembly and Properties of Poly(acrylic acid)-block-poly(vinyl alcohol) (PAA-b-PVA) Block Copolymer and Nanostructured Poly(vinyl alcohol)-Dodecylbenzenesulfonic Acid Complexes
指導教授(中文):陳信龍
指導教授(外文):Chen, Hsin-Lung.
口試委員(中文):蘇群仁
賴偉淇
口試委員(外文):Su, Chun-Jen.
Lai, Wei-Chi.
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:104032517
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:71
中文關鍵詞:聚乙烯醇嵌段共聚物錯合物機械性質自組裝
外文關鍵詞:block copolymerpoly(vinyl alcohol)complexSelf-assembly
相關次數:
  • 推薦推薦:0
  • 點閱點閱:948
  • 評分評分:*****
  • 下載下載:45
  • 收藏收藏:0
本碩士論文研究分兩大部分,第一部分探討PAA-b-PVA嵌段共聚物與PAA/PVA 摻合物之自組裝相行為,嵌段共聚物薄膜的拉伸性質通常比對應摻合物的拉伸性質好得多,其中最大斷裂拉伸應力和應變達到27.3 MPa和641%。FTIR光譜顯示出從溶液狀態轉移之PAA和PVA之間的氫鍵結合程度可以解釋由具有不同pH值的溶液製備之給定類型的膜之機械性質的變化。結合FTIR光譜、DSC與SAXS的結果,我們提出由互聚物錯合物區域構成的薄膜分佈在基相中,其中PVA和PAA產生相分離。在摻合物薄膜中,在宏觀尺度上發生相分離,產生尺寸為微米的PAA和PVA區域;另一方面,嵌段共聚物中的PVA和PAA嵌段歷經微相分離,產生特徵奈米結構,如SAXS分佈所證明的,因為這樣而形成的奈米結構可以規定大量的界面,導致拉伸性質顯著地提高。第二部分,我們研究了聚乙烯醇(PVA)與透過氫鍵形成的兩親性十二烷基苯磺酸(DBSA)錯合物中的自組裝行為與相行為,DBSA的極性端透過氫鍵與PVA主鏈強力結合,從而產生超分子梳狀聚合物,極性和非極性單元之間的微相分離產生層狀形態,層間距離隨著DBSA的結合分率降低而增加。
This thesis is centered on the self-assembly behavior of nanostructured poly(vinyl alcohol) (PVA) constructed by block copolymer and polymer-surfactant complex. It is further divided into two parts. The first part discusses the self-assembly behavior of PAA-b-PVA block copolymer and PAA/PVA blends. The tensile properties of the block copolymer films were in general much better than those of the corresponding blend, where the maximum fractural tensile stress and strain attained were 27.3 MPa and 641 %. The FTIR study indicated that the extent of hydrogen bonding between PAA and PVA transferred from the solution state could explain the variation of the mechanical properties of a given type of films prepared from the solutions with different pH values, but it was unable to rationalize the large difference between the block copolymer and the blend films prepared under a given pH environment. Combining the results of FTIR spectra, DSC, solution turbidity and SAXS, we proposed that the films composed of the interpolymer complex domains distributed over a matrix phase in which PVA and PAA were phase separated. In the blend films, the phase separation occurred at the macroscopic length scale, generating the PAA and PVA domains of micrometers in size. On the other hand, PVA and PAA blocks in the block copolymer underwent the microphase separation, generating a characteristic nanostructure as evidenced by the SAXS profile. The nanostructure thus formed may prescribe a large amount of interface that led to the considerable enhancement of the tensile properties.

In the second part, we studied the self-assembly behavior and phase behavior of polyvinyl alcohol (PVA)/amphiphilic dodecylbenzenesulfonic acid (DBSA) complexes formed by hydrogen bonds. A supramolecular comblike polymer system has been successfully prepared by the complexation of PVA with DBSA via hydrogen bonding. Microphase separation between the polar and nonpolar units generated a lamellar mesophase, as revealed by POM and SAXS. The interlamellar distance increased with decreasing binding fraction of DBSA, indicating that DBSA bound uniformly with PVA backbone. The TODT was found to be largely independent of the binding ratio, which might be due to the occurrence of chemical degradation at elevated temperature.
Abstract.........................................................I
摘要............................................................III
致謝.............................................................IV
總目錄............................................................V
圖目錄..........................................................VII
表目錄............................................................X
第一章 文獻回顧.................................................1
1.1聚乙烯醇基本性質與應用..........................................1
1.2 聚乙烯醇之嵌段共聚物...........................................4
1.2.1 嵌段共聚物之基本相行為.......................................4
1.2.2 嵌段共聚物之機械性質........................................12
1.2.3 以PVA為基底之嵌段共聚物.....................................18
1.3 高分子-界面活性劑之錯合物.....................................25
1.4 研究動機及目的................................................31
第二章 實驗內容................................................32
2.1 實驗樣品.....................................................32
2.1.1 PAA-b-PVA與PVA/PAA摻合物...................................32
2.1.2 PVA-DBSA錯合物.............................................36
2.2 實驗項目及其原理.............................................38
2.2.1 小角度X光散射儀(SAXS)....................................38
廣角度X光散射儀(WAXS)..........................................38
2.2.2 偏光顯微鏡(POM)..........................................41
2.2.3 傅立葉轉換紅外光譜儀(FTIR)................................42
2.2.4 示差掃描熱量分析儀(DSC)...................................44
第三章 結果與討論..............................................46
3.1 PAA-b-PVA嵌段共聚物..........................................46
3.1.1 嵌段共聚物薄膜之熱性質......................................46
3.1.2 PAA-b-PVA及PAA/PVA blend之氫鍵與薄膜拉伸性質................48
3.1.3 PAA與PVA在水溶液中的互聚物錯合作用...........................52
3.1.4 薄膜之相分離形態............................................54
3.2 PVA-DBSA錯合物..............................................57
3.2.1 自組裝結構.................................................57
3.2.2 相變化:有序-無序轉變(ODT)................................65
第四章 結論....................................................67
第五章 參考文獻................................................69
(1) Demerlis, C.C.; Schoneker, D.R., Food Chem. Toxicol, 2003, 41, 319–326.
(2) Razzak, M.T.; Darwis, D.; Zainuddin; Sukirno., Phys. Chem. 2001, 62, 107–113.
(3) Jones JI.; John W.; British Polymer Journal., 1973, 5, 493–494.
(4) Tan, C.J.; Tong, Y.W. 2007, 23, 2722–2730.
(5) Yang, J.M.; Su, W.Y.; Leu, T.L.; Yang, M.C. J. Membr. Sci. 2004, 236, 39–51.
(6) Limpan, N.; Prodpran, T.; Benjakul, S.; Prasarpran, S., Food Hydrocoll. 2012,29, 226–233
(7) V. G. Baranov, T. I. Volkov, and S. Ya. Frenkel, Dokl. Akad. Nauk. SSSR., 1967, 172,849.
(8) H. E. Harris, J. F. Kenney, G. W. Willcockson, R. Chiang, and H. N. Friedlander., J. Polym.S ci., 1966, A4,665.
(9) M. I. Bressonov and A. P. Rudakov, Fiz. Tuerd. Tela, 1964, 6,1041.
(10) Qiu, K.; Netravali, A.N.,n J. Polym. Environ. 2013, 21, 658–674.
(11) Leibler, L., Macromolecules, 1980, 13, 1602-1617.
(12) Lohse, D. J.; Hadjichristidis, N.,Colloid & Interface Science, 1997, 2, 171-176
(13) JOURNAL OF POLYMER SCIENCE Part(A), 1969, 2, 249-252.
(14) Nature materials, 2002, 1, 85-86.
(15) Bates, F. S., Science, 1991, 251, 898.
(16) Mai, Y. Y.; Eisenberg, A.,Chem. Soc. Rev., 2012, 41, 5969–5985
(17) Matsen, M. W.; Schick, M., Macromolecules, 1994, 72, 2660-2663.
(18) Matsen, M. W.; Bates, F. S., Macromolecules, 1996, 29, 1091-1098.
(19) Matsen, M. W.; Bates, F. S., Macromolecules, 1996, 29, 7641-7644.
(20) F. S. Bates and G. H. Fredrickson, Phys. Today, 1999, 52, 32–38
(21) Eisele, U.,Introduction to Polymer Physics, 1990.
(22) Michler, G. H.,Deformations-und Bruchmechanismen, 1992.
(23) Quirk, R.P.; Morton, M., Thermoplastic Elastomers 2nd Edition, 1998, 4, 71-100.
Hanser Publishers, Munich
(24) Hamley, J. W.,1998.
(25) Hashimoto, T., Thermoplastic Elastomers 2nd Edition, 1998, 15A, 429-463.
(26) Elias, H.J.,Makromolekule-Band 1 Grundlagen, 5th Edition, 1990, 962.
(27) Mogi, Y.; Nomura, M.; Kotsuji, M.; Ohnishi; Matsushita, Y.; Noda, I.Macromolecules, 1994, 27 (23), pp 6755–6760
(28) Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Edwin, G. K.; Thomas, L.; Fetters, L. J., Macromolecules, 1994, 27 (15), pp 4063–4075
(29) Cerrada, M. L.; Perez, E.; Perena, J. M.; Benavente, R., Macromolecules, 1998, 31, 2559-2564.
(30) Velazco-Diaz, M.; Ruiz-Trevino, F. A.; Doria-Serrano, M. C.; Gonzalez-Montiel, A.; Zolotukin, M., Ind. Eng. Chem. Res, 2005, 44, 7092-7097.
(31) Speetjens, F. S.; Mahanthappa, M. K., Macromolecules, 2015, 48, 5412−5422.
(32) Ruokolainen, J.; Brinke, G. T.; Ikkala, O., Macromolecules 1996, 29, 3409-3415.
(33) Ruokolainen, J.; Saariaho, M..; Ikkala, O, Macromolecules 1999, 32, 1152-1158.
(34) Chen, H. L., Ko, C. C., and Lin, T. L., Langmuir 2002, 18, 5619-5623.
(35) Wang, F. S.; Wang, T. F.; Lu, H. H.; Ao-Ieong, W. S.; Wang, J.; Chen, H. L.; Peng, C. H., Macromolecules, 2017.
(36) Lee, H.; Mensire, R.; Cohen, R. E.; Rubner, M. F. Strategies for Hydrogen Bonding Based Layer-by-Layer Assembly of Poly(vinyl alcohol) with Weak Polyacids. Macromolecules, 2012, 45, 347-355.
(37) Li, S.; Bruin, B. d.; Peng, C.-H.; Fryd, M.; Wayland, B. B. Exchange of Organic Radicals with Organo-Cobalt Complexes Formed in the Living Radical Polymerization of Vinyl Acetate. J. Am. Chem. Soc. 2008, 130, 13373-13381.
(38) Chen, H.-L.; Hsiao, M.-S. Macromolecules, 1999, 32, 2967.
(39) Takahashi, T.; Kimura, T.; Sakurai, K. Polymer, 1999, 40, 5939.
(40) Chen, H.-L.; Chang, M.-N. J. Polym. Res., 1999, 6, 231.
(41) Bates, F. S., Macromolecules, 1987, 20, 2221-2225.
(42) J. Huh, O. Ikkala, and G. ten Brinke., Macromolecules, 1997, 30, 1828-1835.
(43) Akiba, I.; Akiyama, S. Macromolecules 1999, 32, 3741.
(44) Roukolainen, J.; Torkkeli, M.; Serimaa, R.; Vahvaselka, S.; Saariaho, M.; 10 Brinke, G.; Ikkala, O. Macromolecules 1996, 29, 6621.
(45) Perahia, D.; Vacca, G.; Patel, S. S.; Dai, H. J.; Balsara, N. P. Macromolecules 1994, 27, 7645.
(46) Huh, J.; Ikkala, O.; ten Brinke, G. Macromolecules 1997, 30, 1828.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *