|
1. Dar, M.I., N. Arora, P. Gao, S. Ahmad, M. Grätzel, and M.K. Nazeeruddin, Investigation regarding the role of chloride in organic–inorganic halide perovskites obtained from chloride containing precursors. Nano Lett., 2014. 14: p. 6991-6996. 2. Wang, X., J. Byrne, L. Kurdgelashvili, and A. Barnett, High efficiency photovoltaics: on the way to becoming a major electricity source. Wiley Interdiscip. Rev.: Energy Environ., 2012. 1: p. 132-151. 3. Mathew, S., A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, and M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem., 2014. 6: p. 242-247. 4. Yella, A., H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, and M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science, 2011. 334: p. 629-634. 5. Kim, H.-S., C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, and J.E. Moser, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep., 2012. 2: p. 591-598. 6. NREL Efficiency Chart. http://www.nrel.gov/ncpv/images/ efficiency_chart.jpg (accessed April 19, 2016). 7. http://web.stanford.edu/group/gcep/cgi-bin/gcep-research/all/novel-inorganic-organic-perovskites-for-solution-processable-photovoltaics/. 8. Gheno, A., S. Vedraine, B. Ratier, and J. Bouclé, π-conjugated materials as the hole-transporting layer in perovskite solar cells. Metals, 2016. 6: p. 21. 9. Marchioro, A., J. Teuscher, D. Friedrich, M. Kunst, R. Van De Krol, T. Moehl, M. Grätzel, and J.-E. Moser, Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nat. Photonics, 2014. 8: p. 250-255. 10. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. 501: p. 395-398. 11. Im, J.-H., C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011. 3: p. 4088-4093. 12. Burschka, J., N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499: p. 316-319. 13. Im, J.-H., H.-S. Kim, and N.-G. Park, Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. APL Mater., 2014. 2: p. 081510. 14. Grätzel, M., The light and shade of perovskite solar cells. Nat. Mater., 2014. 13: p. 838-842. 15. Williams, S.T., F. Zuo, C.-C. Chueh, C.-Y. Liao, P.-W. Liang, and A.K.-Y. Jen, Role of chloride in the morphological evolution of organo-lead halide perovskite thin films. ACS nano, 2014. 8: p. 10640-10654. 16. Li, Y., J.K. Cooper, R. Buonsanti, C. Giannini, Y. Liu, F.M. Toma, and I.D. Sharp, Fabrication of planar heterojunction perovskite solar cells by controlled low-pressure vapor annealing. J Phys. Chem. Lett., 2015. 6: p. 493-499. 17. Lee, J.W., D.J. Seol, A.N. Cho, and N.G. Park, High‐efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Adv. Mater., 2014. 26: p. 4991-4998. 18. Wang, F., H. Yu, H. Xu, and N. Zhao, HPbI3: A new precursor compound for highly efficient solution‐processed perovskite solar cells. Adv. Funct. Mater., 2015. 25: p. 1120-1126. 19. Kojima, A., K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009. 131: p. 6050-6051. 20. Lee, M.M., J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012. 338: p. 643-647. 21. Jeon, N.J., J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015. 517: p. 476-480. 22. Zhou, H., Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science, 2014. 345: p. 542-546. 23. Yang, L., A.T. Barrows, D.G. Lidzey, and T. Wang, Recent progress and challenges of organometal halide perovskite solar cells. Rep. Prog. Phys., 2016. 79: p. 026501. 24. Wu, Z.W., S. Bai, J. Xiang, Z.C. Yuan, Y.G. Yang, W. Cui, X.Y. Gao, Z. Liu, Y.Z. Jin, and B.Q. Sun, Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale, 2014. 6: p. 10505-10510. 25. Zhao, Y.X. and K. Zhu, CH3NH3Cl-assisted one-step solution growth of CH3NH3Pbl3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C, 2014. 118: p. 9412-9418. 26. Yantara, N., F. Yanan, C. Shi, H.A. Dewi, P.P. Boix, S.G. Mhaisalkar, and N. Mathews, Unravelling the effects of Cl addition in single step CH3NH3PbI3 perovskite solar cells. Chem. Mater., 2015. 27: p. 2309-2314. 27. Chen, Q., H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc., 2013. 136: p. 622-625. 28. Eperon, G.E., V.M. Burlakov, P. Docampo, A. Goriely, and H.J. Snaith, Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater., 2014. 24: p. 151-157. 29. Xiao, M., F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray‐Weale, U. Bach, Y.B. Cheng, and L. Spiccia, A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells. Angew. Chem., 2014. 126: p. 10056-10061. 30. Xiao, Z., C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci., 2014. 7: p. 2619-2623. 31. Tan, K.W., D.T. Moore, M. Saliba, H. Sai, L.A. Estroff, T. Hanrath, H.J. Snaith, and U. Wiesner, Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells. Acs Nano, 2014. 8: p. 4730-4739. 32. Hsu, H.-L., C.-P. Chen, J.-Y. Chang, Y.-Y. Yu, and Y.-K. Shen, Two-step thermal annealing improves the morphology of spin-coated films for highly efficient perovskite hybrid photovoltaics. Nanoscale, 2014. 6: p. 10281-10288. 33. Xiao, Z., Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, Solvent annealing of perovskite‐induced crystal growth for photovoltaic‐device efficiency enhancement. Adv. Mater., 2014. 26: p. 6503-6509. 34. Fu, Y., F. Meng, M.B. Rowley, B.J. Thompson, M.J. Shearer, D. Ma, R.J. Hamers, J.C. Wright, and S. Jin, Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications. J. Am. Chem. Soc., 2015. 137: p. 5810-5818. 35. Hao, F., C.C. Stoumpos, Z. Liu, R.P. Chang, and M.G. Kanatzidis, Controllable perovskite crystallization at a gas–solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. J. Am. Chem. Soc., 2014. 136: p. 16411-16419. 36. Jeon, N.J., J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, and S.I. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater., 2014. 13: p. 897-903. 37. Ahn, N., D.-Y. Son, I.-H. Jang, S.M. Kang, M. Choi, and N.-G. Park, Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. J. Am. Chem. Soc., 2015. 137: p. 8696-8699. 38. Wu, Y., A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, and L. Han, Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci., 2014. 7: p. 2934-2938. 39. Yang, W.S., J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015. 348: p. 1234-1237. 40. Li, W., J. Fan, J. Li, Y. Mai, and L. Wang, Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%. J. Am. Chem. Soc., 2015. 137: p. 10399-10405. 41. Wassner, T.A., B. Laumer, S. Maier, A. Laufer, B.K. Meyer, M. Stutzmann, and M. Eickhoff, Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy. J. Appl. Phys., 2009. 105: p. 023505. 42. Tang, Z., S. Tanaka, S. Ito, S. Ikeda, K. Taguchi, and T. Minemoto, Investigating relation of photovoltaic factors with properties of perovskite films based on various solvents. Nano Energy, 2016. 21: p. 51-61. 43. Yi, C., X. Li, J. Luo, S.M. Zakeeruddin, and M. Grätzel, Perovskite photovoltaics with outstanding performance produced by chemical conversion of bilayer mesostructured lead halide/TiO2 films. Adv. Mater., 2016. 28: p. 2964–2970. 44. Vickerman, J.C. and I. Gilmore, Surface analysis: the principal techniques. 2011: John Wiley & Sons. 45. Miyamae, H., Y. Numahata, and M. Nagata, The crystal structure of lead (II) iodide-dimethylsulphoxide (1/2), PbI2(dmso)2. Chem. Lett., 1980. 9: p. 663-664. 46. Fu, W., J. Yan, Z. Zhang, T. Ye, Y. Liu, J. Wu, J. Yao, C.-Z. Li, H. Li, and H. Chen, Controlled crystallization of CH3NH3PbI3 films for perovskite solar cells by various PbI2(X) complexes. Sol. Energy Mater. Sol. Cells, 2016. 155: p. 331-340. 47. Zhang, J., G. Zhai, W. Gao, C. Zhang, Z. Shao, F. Mei, J. Zhang, Y. Yang, X. Liu, and B. Xu, Accelerated formation and improved performance of CH3NH3PbI3-based perovskite solar cells via solvent coordination and anti-solvent extraction. J. Mater. Chem. A, 2017. 5: p. 4190-4198. 48. Jo, Y., K.S. Oh, M. Kim, K.H. Kim, H. Lee, C.W. Lee, and D.S. Kim, High performance of planar perovskite solar cells produced from PbI2(DMSO) and PbI2(NMP) complexes by intramolecular exchange. Adv. Mater. Interfaces., 2016. 3: p. 1500768. 49. Wharf, I., T. Gramstad, R. Makhija, and M. Onyszchuk, Synthesis and vibrational spectra of some lead (II) halide adducts with O-, S-, and N-donor atom ligands. Can. J. Chem., 1976. 54: p. 3430-3438. 50. Lee, Y.H., J. Luo, R. Humphry‐Baker, P. Gao, M. Grätzel, and M.K. Nazeeruddin, Unraveling the reasons for efficiency loss in perovskite solar cells. Adv. Funct. Mater., 2015. 25: p. 3925-3933. 51. Liu, F., Q. Dong, M.K. Wong, A.B. Djurišić, A. Ng, Z. Ren, Q. Shen, C. Surya, W.K. Chan, and J. Wang, Is excess PbI2 beneficial for perovskite solar cell performance? Adv. Energy Mater., 2016. 6: p. 1502206. 52. Zhang, T., M. Yang, Y. Zhao, and K. Zhu, Controllable sequential deposition of planar CH3NH3PbI3 perovskite films via adjustable volume expansion. Nano Lett., 2015. 15: p. 3959-3963. 53. Zhang, H., J. Mao, H. He, D. Zhang, H.L. Zhu, F. Xie, K.S. Wong, M. Grätzel, and W.C. Choy, A smooth CH3NH3PbI3 film via a new approach for forming the PbI2 nanostructure together with strategically high CH3NH3I concentration for high efficient planar‐heterojunction solar cells. Adv. Energy Mater., 2015. 5: p. 1501354. 54. Correa‐Baena, J.P., M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T.J. Jacobsson, M.E. Calvo, and A. Abate, Unbroken perovskite: interplay of morphology, electro‐optical properties, and ionic movement. Adv. Mater., 2016. 28: p. 5031-5037. 55. Zhang, X., J. Ye, L. Zhu, H. Zheng, G. Liu, X. Liu, B. Duan, X. Pan, and S. Dai, High-efficiency perovskite solar cells prepared by using a sandwich structure MAI–PbI2–MAI precursor film. Nanoscale, 2017. 9: p. 4691-4699. 56. deQuilettes, D.W., S.M. Vorpahl, S.D. Stranks, H. Nagaoka, G.E. Eperon, M.E. Ziffer, H.J. Snaith, and D.S. Ginger, Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 2015. 348: p. 683-686. 57. Noel, N.K., A. Abate, S.D. Stranks, E.S. Parrott, V.M. Burlakov, A. Goriely, and H.J. Snaith, Enhanced photoluminescence and solar cell performance via lewis base passivation of organic–inorganic lead halide perovskites. ACS nano, 2014. 8: p. 9815-9821. 58. Zuo, L., S. Dong, N. De Marco, Y.-T. Hsieh, S.-H. Bae, P. Sun, and Y. Yang, Morphology evolution of high efficiency perovskite solar cells via vapor induced intermediate phases. J. Am. Chem. Soc., 2016. 138: p. 15710-15716. 59. Lee, J.-W., H.-S. Kim, and N.-G. Park, Lewis acid–base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res., 2016. 49: p. 311-319. 60. Dong, Q., Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 2015. 347: p. 967-970. 61. Bi, D., W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, and J.-P.C. Baena, Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv., 2016. 2: p. e1501170. 62. Li, F., C. Bao, W. Zhu, B. Lv, W. Tu, T. Yu, J. Yang, X. Zhou, Y. Wang, and X. Wang, Microstructure modulation of the CH3NH3PbI3 layer in perovskite solar cells by 2-propanol pre-wetting and annealing in a spray-assisted solution process. J. Mater. Chem. A, 2016. 4: p. 11372-11380. 63. Fang, X., Y. Wu, Y. Lu, Y. Sun, S. Zhang, J. Zhang, W. Zhang, N. Yuan, and J. Ding, Annealing-free perovskite films based on solvent engineering for efficient solar cells. J. Mater. Chem. C, 2017. 5: p. 842-847. 64. Chen, Q., H. Zhou, T.-B. Song, S. Luo, Z. Hong, H.-S. Duan, L. Dou, Y. Liu, and Y. Yang, Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett., 2014. 14: p. 4158-4163. 65. Im, J.-H., I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol., 2014. 9: p. 927-932. 66. Ko, H.-S., J.-W. Lee, and N.-G. Park, 15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3. J. Mater. Chem. A, 2015. 3: p. 8808-8815. 67. Hsieh, T.-Y., C.-K. Huang, T.-S. Su, C.-Y. Hong, and T.-C. Wei, Crystal growth and dissolution of methylammonium lead iodide perovskite in sequential deposition: correlation between morphology evolution and photovoltaic performance. ACS Appl. Mater. Interfaces, 2017. 9: p. 8623-8633. 68. Li, G., K.L. Ching, J.Y. Ho, M. Wong, and H.S. Kwok, Identifying the optimum morphology in high‐performance perovskite solar cells. Adv. Energy Mater., 2015. 5: p. 1401775. 69. Kim, Y.C., N.J. Jeon, J.H. Noh, W.S. Yang, J. Seo, J.S. Yun, A. Ho‐Baillie, S. Huang, M.A. Green, and J. Seidel, Beneficial effects of PbI2 incorporated in organo‐lead halide perovskite solar cells. Adv. Energy Mater., 2015. 6: p. 1502104.
|