帳號:guest(18.227.107.59)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):匡載文
作者(外文):Kwang, Zai-wen
論文名稱(中文):溶劑調控多孔碘化鉛薄膜與甲基碘化胺之反應以提升鈣鈦礦太陽能電池效率
論文名稱(外文):Solvent-modulated reaction between mesoporous PbI2 film and CH3NH3I for enhancement of photovoltaic performance of perovskite solar cell
指導教授(中文):呂世源
指導教授(外文):LU, SHIH-YUAN
口試委員(中文):段興宇
蔡德豪
口試委員(外文):TUAN, HSING-YU
TSAI, DE-HAO
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:104032516
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:109
中文關鍵詞:鈣鈦礦太陽能電池碘化鉛前驅物二甲基亞碸配位晶體成長
外文關鍵詞:Perovskite solar cellsLead iodide precursorsDMSO coordinationCrystal growth
相關次數:
  • 推薦推薦:0
  • 點閱點閱:392
  • 評分評分:*****
  • 下載下載:22
  • 收藏收藏:0
改善鈣鈦礦太陽能電池(Perovskite Solar Cell, PSC)中鈣鈦礦層的形貌與品質,有助於提升電池的光電轉換效率(Power Conversion Efficiency, PCE),而兩步驟沉積法是廣泛用於製備高效能鈣鈦礦電池的製程方式。在兩步驟沉積法製備鈣鈦礦薄膜中,先於第一階段沉積碘化鉛(PbI2)薄膜,再於第二階段引入甲基碘化胺(MethylAmmonium Iodide, MAI)與PbI2反應生成鈣鈦礦MAPbI3薄膜。在第一階段所沉積的PbI2薄膜形貌與組成,是影響第二階段反應所形成的鈣鈦礦薄膜形貌與品質之關鍵。最近的研究指出將二甲基亞碸(DiMethylSulfOxide, DMSO)分子引入鈣鈦礦薄膜製程中,亦能改善鈣鈦礦薄膜的品質。本研究改變DMSO與PbI2之間的配位方式與DMSO的配位數量,並藉由退火過程調控兩步驟法中PbI2的形貌,形成具有部分DMSO殘留的多孔PbI2-DMSO薄膜,此特殊組成與形貌顯著地影響PbI2與MAI之間的反應,形成高品質的鈣鈦礦(PeroVSKite, PVSK)薄膜。
本研究藉由預配位法(pre-coordination)及原位配位法(in-situ coordination),改變DMSO配位方式形成PbI2(DMSO)與PbI2(DMSO)2薄膜,並在薄膜經過退火處理後,控制配位薄膜形貌與組成。在配位數量的比較中,發現配位數高的PbI2-DMSO薄膜,退火後會形成較大的孔洞與殘留較多的DMSO;配位方式不同的比較中,預配位法能形成大小適中的孔洞,以及適當含量的DMSO與PbI2(DMSO)x中間物,而原位配位法較不易控制薄膜的孔洞大小,且會殘留過多DMSO分子。此現象說明配位法與數量的控制,於退火過程影響了PbI2-DMSO晶體的成長,包含孔洞的形成與DMSO的殘留。透過MAI濃度最適化,製備以不同配位PbI2-DMSO薄膜為基底形成的鈣鈦礦薄膜,相較於原位配位法的PbI2-DMSO與未配位的PbI2,以預配位法形成的PbI2-DMSO,更能製備出緻密性高、粒子大小一致、光利用率高以及載子壽命較長的鈣鈦礦薄膜。藉由預配位法,可使平均PSC效率提升至14.02% (負向掃描效率最高為15.16%),與未配位PSC的10.85%以及原位配位法PSC的11.66%相比有顯著提升。證實本研究開發的溶劑調控形成多孔碘化鉛之技術,不僅能了解配位方式對於PbI2-DMSO與PVSK晶體生長的影響,將此技術應用於兩步驟沉積鈣鈦礦薄膜製程,有助於提升PSC之光電轉換效率。
Film morphology and quality of perovskite layer are critical to achieve high efficiencies for perovskite solar cells. Two-step sequential deposition method is widely used in the fabrication of high-performance perovskite solar cells. In two-step sequential deposition, the film morphology and composition of PbI2 are found to play a key role on the quality of the resulting CH3NH3PbI3 film obtained from the reaction between PbI2 and CH3NH3I. Recently, it was shown that introduction of dimethylsulfoxide (DMSO) molecule into the fabrication process of the perovskite layer can significantly improve the film quality.
In this work, we used two methods, pre-coordination and in-situ coordination, to form mesoporous PbI2-DMSO films containing proper amounts of DMSO solvent and PbI2-DMSO intermediate phase through solvent-modulated reactions. The coordination ability between Pb2+ and DMSO is adjusted with different coordination methods and subsequent annealing processes. PbI2(DMSO)2 films contain not only larger voids but also more DMSO solvent and PbI2(DMSO)x complex than PbI2(DMSO) films after the annealing. The films fabricated with the pre-coordination method contain suitable sizes of voids and proper amounts of DMSO solvent and PbI2(DMSO)x complex as compared to the films fabricated with the in-situ coordination method. It indicates that the growth of the PbI2-DMSO crystals is significantly influenced by the coordination method, annealing process, and coordination number.
Perovskite films are fabricated from different PbI2-DMSO films at different MAI concentrations. In general, better quality perovskite films are obtained with the pre-coordination method, possessing more compact and uniform structure with higher light-harvesting capability and longer carrier lifetime. The perovskite solar cells fabricated based on the PbI2 films from the pre-coordination method, exhibit higher average power conversion efficiencies (PCE) with the highest up to 14.02% (achieving the highest reverse scan efficiency of 15.16%), representing a significant enhancement of photovoltaic performance over those from the in-situ coordination method (11.66%) and the control (10.85%). This work not only reveals the mechanism differences between the pre-coordination and in-situ coordination methods for the PbI2-DMSO crystal growth, but also offers a new option to enhance the efficiency of perovskite solar cells.
總目錄
摘要 I
Abstract II
致謝 IV
總目錄 V
圖目錄 VII
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池簡介 1
1.3太陽能電池發展近況 2
1.4 研究動機 4
第二章 文獻回顧 5
2-1 鈣鈦礦太陽能原理 5
2-2鈣鈦礦結構與組成 7
2-2-1 MAPbI3 7
2-2-2 MAPbI3−xClx 8
2-2-3 FAPbI3 10
2-3鈣鈦礦太陽能電池的演進 12
2-4 形貌與效率之關聯性 15
2-4-1 組成成分之影響 16
2-4-2 沉積方法之影響 18
2-4-3 熱處理之影響 23
2-4-4 MAI濃度對於鈣鈦礦晶體成長機制之影響 25
2-5 溶劑與中間物對於鈣鈦礦薄膜之影響 26
2-5-1 以DMSO作為中間物於單步驟法形成鈣鈦礦層 27
2-5-2 PbI2前驅溶液引入DMSO於兩步驟法形成鈣鈦礦薄膜 30
2-5-3 以DMSO/DMF為混合溶劑形成PbI2-DMSO薄膜 32
2-5-4 以DMSO/DMF為混合溶劑製備多孔PbI2 34
第三章 實驗內容 36
3.1 研究架構 36
3-2實驗藥品及耗材 37
3-3儀器設備 39
3-4儀器分析 40
3-5 實驗步驟 43
第四章 結果與討論 48
4-1配位粉末材料鑑定 48
4-1-1 粉末XRD與SDT 48
4-2 預配位法與原位配位法所形成之PbI2-DMSO薄膜 49
4-2-1 預配位與原位配位之PbI2-DMSO薄膜XRD分析 50
4-2-2 HRXPS分析 54
4-2-3 PbI2(DMSO)薄膜SDT分析 58
4-2-4 SEM分析 62
4-2-5 PbI2-DMSO薄膜晶體形成機制 65
4-3 以不同配位PbI2-DMSO薄膜前驅物形成之鈣鈦礦薄膜 68
4-3-1 不同配位體薄膜與MAI濃度反應之SEM分析 68
4-3-2 PbI2-DMSO薄膜與MAI濃度反應之XRD分析 76
4-3-3 PbI2-DMSO薄膜形成鈣鈦礦層機制 80
4-3-4 PbI2-DMSO-PVSK薄膜UV-Vis分析 81
4-3-5 不同配位PbI2-DMSO-PVSK薄膜PL分析 83
4-3-6 PbI2-DMSO-PVSK材料分析比較表 87
4-4 電池效率分析 89
4-4-1 不同配位PbI2-DMSO與MAI濃度最適化平均效率比較 89
4-4-2 預配位、原位配位與未配位冠軍電池效率比較 92
第五章 結論 99
第六章 參考文獻 101

圖目錄
圖1-1 (a) NREL最佳太陽能電池效率圖;(b) 鈣鈦礦太陽能電池最佳效率圖。[6] 3
圖2-1 (a) 電池結構[7];(b) ETL/ PVSK /HTL能階圖。[8] 5
圖2-2 HTL/PVSK/TiO2能階與電子傳輸路徑示意圖。[9] 6
圖2-3 PVSK晶體結構圖。[10] 7
圖2-4電池側視圖。[12] 8
圖2-5 兩步驟液相製程。 8
圖2-6 (a) MAI:PbCl2 (3 : 1)前驅液成核示意圖;(b-d) MAPbI3−xClx SEM圖。[15] 9
圖2-7 低壓氣相輔助液相製程。[16] 9
圖2-8 (a) PbI2、PbCl2混合層;(b) MAPbI3−xClx SEM側視圖;(c) PbI2、PbCl2混合層;(d) MAPbI3−xClx SEM上視圖;(e) PbI2、PbCl2混合層;(f)MAPbI3−xClx XRD。[16] 10
圖2-9 (a) UV-Vis吸收;(b) PL;(c) XPS;(d) 吸收轉換光譜;(e) 電池側視圖;(f) 效率比較圖。[16] 10
圖2-10 (a) FAPbI3搭配MAPbI3結構示意與SEM圖;(b) IPCE;(c) PCE。[17] 11
圖2-11由不同前驅物形成FAPbI3 SEM圖 (a,b) FAI/PbI2;(c,d) FAI/PbI2 與5% HI混合;(e,f) FAI/HPbI3。[18] 12
圖2-12 以FAI/PbI2、FAI/PbI2 與5% HI混合、FAI/HPbI3 為前驅物所形成的FAPbI3 XRD圖。[18] 12
圖2-13 (a) 固態鈣鈦礦電池圖;(b) 電池結構示意圖;(c-d) SEM側視圖。[5] 13
圖2-14 電池結構示意圖與SEM側視圖。[20] 13
圖2-15 電子經由TiO2 與Al2O3傳輸示意圖。[20] 14
圖2-16雙源蒸鍍法示意圖。[10] 14
圖2-17 液相製程與氣相製程SEM上視與側視比較圖。[10] 15
圖2-18 不同結構鈣鈦礦太陽能電池 15
(a) 多孔結構;(b) 平版結構;(c) 反式平板結構。[23] 15
圖2-19 x  =  0, 0.05及0.15 (FAPbI3)1−x(MAPbBr3)x 膜SEM圖。[21] 16
圖2-20 (a) PCE圖;(b) EQE圖。[21] 16
圖2-21製程示意圖及PVSK SEM比較圖。[26] 17
圖2-22 MAPbI3−xClx 與MAPbI3比較 17
(A) SEM圖;(B) XRD;(C) UV吸收圖;(D) PCE;(E) 阻抗。[26] 17
圖2-23 低溫氣相輔助液相製程示意圖。[27] 18
圖2-24 PVSK膜150˚C退火0、0.5、4小時(a) XRD;(b-d) SEM圖。[27] 18
圖2-25 不同Al2O3支架層厚度與不同退火時間(100˚C)鈦礦層SEM圖。[28] 19
圖2-26 快速晶體成核沉積法與傳統製程比較示意圖。[29] 20
圖2-27 快速晶體成核與傳統製程SEM圖。[29] 20
圖2-28 (a) SEM側視圖;(b) 能帶圖;(c) 不同退火時間的XRD(Ι:20 min, stage II: 60 min, stage III: 85 min);(d) stage II SEM;(e) stage III SEM。[22] 21
圖2-29 電池效率圖。[12] 22
圖2-30 (a) 兩步驟旋塗法示意圖;(b) PbI2膜;(c) PVSK退火後; 23
(d) MAI與PbI2混合液旋塗SEM圖。[30] 23
圖2-31 (a) PVSK 薄膜隨升溫變化SEM圖;(b) PVSK表面覆蓋比例隨溫度變化圖。[31] 23
圖2-32 2D GIWAXS方位積分強度圖。[31] 24
圖2-33 一階段與兩階段退火效率比較圖。[32] 24
圖2-34 (a) 溶劑蒸氣退火法示意圖;(b) 傳統退火SEM側視圖;(c) 溶劑蒸氣退火法SEM側視圖。[33] 25
圖2-35 鈣鈦礦晶體形成機制圖(a) 界面反應;(b) 溶解再結晶。[34] 26
圖2-36 中間物生成示意圖。[35] 27
圖2-37 (a) 製程示意圖;(b) MAI-PbI2-DMSO材料鑑定;(c) DMSO溶劑分子與PbI2、MAI反應機制示意圖。[36] 28
圖2-38一步驟法形成PVSK示意圖與SEM圖。 29
(a) MAI+PbI2+DMF旋塗;(b) MAI+PbI2+DMSO+DMF旋塗;(c) 旋塗MAI+PbI2+DMF時加入乙醚;(d) 旋塗MAI+PbI2+DMSO+DMF時加入乙醚。[37] 29
圖2-39 (a) DMSO的強極性導致非晶PbI2形成示意圖;(b) 不同溶劑溶解之PbI2薄膜所形成鈣鈦礦SEM圖;(c) PbI2 UV-Vis與XRD圖譜[38] 31
圖2-40 (a-A) PbI2與FAI分子內交換示意圖;(a-B) 配位粉末XRD;(b-A) 電池SEM側視圖;(b- B) FAPbI3與MAPbI3 SEM上視圖;(b-C) PCE與EQE。[39] 32
圖2-41 (a) 分子自組裝晶體成長示意圖;(b) PbI2(DMSO)X (0 ≤ x ≤ 1.86) XPS; 33
圖2-42 (a) 不同溶劑比PbI2形成鈣鈦礦薄膜SEM圖;(b) Urbach energy與TRPL量測;(c) LBIC量測。[42] 34
圖2-43 (a) 不同溶劑沉積PbX之SEM上視圖與側視圖(a-a,b) 溶於DMF/DMSO;(a-c,d) 溶於DMF;(b) 多孔PbX2與緻密PbX2形成鈣鈦礦之XRD圖譜;(c) 鈣鈦礦之SEM上視圖與側視圖。[43] 35
圖3-1 研究架構圖。 36
圖3-2、PbI2(DMSO)、PbI2(DMSO)2粉末合成示意圖。 45
圖3-3太陽能電池組裝流程圖。 45
圖3-4升溫曲線圖。 46
圖3-5 PbI2-DMSO溶液配置示意圖。 47
圖4-1 (a) PbI2、PbI2(DMSO)、PbI2(DMSO)2粉末XRD;(b) PbI2粉末;(c) PbI2(DMSO)粉末;(d) PbI2(DMSO)2粉末SDT圖。 49
圖4-2 PbI2-DMSO旋轉塗佈2500 rpm 10 sec未退火 XRD分析 52
(a) PbI2-DMSO薄膜;(b) PbI2-DMSO與結晶化PbI2特徵峰比較; 52
(c) 未經退火之PbI2-DMSO薄膜樣品圖。 52
圖4-3 PbI2-DMSO旋轉塗佈2500 rpm 10 sec退火5 min XRD分析PbI2-DMSO薄膜;(b) (001)晶面強度比較;(c) 70˚C退火後之PbI2-DMSO薄膜樣品圖。 54
圖4-4 P-PbI2(DMSO)、P-PbI2(DMSO)2、I-PbI2(DMSO)、I-PbI2(DMSO)2與PbI2 HRXPS分析(a-e) Pb 4f7/2與4f5/2光譜;(f-j) O1s光譜。 56
圖4-5 DMSO移除薄膜階段SDT分析圖。 60
圖4-6 PbI2-DMSO、PbI2前驅溶液於70˚C 恆溫SDT圖 61
(a) P-PbI2(DMSO);(b) P-PbI2(DMSO)2;(c) I-PbI2(DMSO);(d) I-PbI2(DMSO)2;(e) PbI2; (f) DMSO溶劑。 61
圖4-7 SEM上視圖與側視圖 64
(a) P-PbI2(DMSO);(b) P-PbI2(DMSO)2;(c) I-PbI2(DMSO);(d) I-PbI2(DMSO)2;(e) PbI2薄膜旋塗於ms-TiO2基板。 64
圖4-8 薄膜孔洞面積比例 (a) P-PbI2(DMSO);(b) P-PbI2(DMSO)2; 65
(b) I-PbI2(DMSO);(d) I-PbI2(DMSO)2;(e) PbI2 (scale bar:200 nm)。 65
圖4-9 PbI2-DMSO晶體形成機制圖。 67
圖4-10 P-PbI2(DMSO)-PVSK SEM 70
(a)(d) 8 mg/ml;(b)(e) 12 mg/ml;(c)(f) 15 mg/ml。 70
圖4-11 P-PbI2(DMSO)2-PVSK SEM 70
(a)(d) 8 mg/ml;(b)(e) 12 mg/ml;(c)(f) 15 mg/ml。 70
圖4-12 I-PbI2(DMSO)-PVSK SEM 72
(a)(d) 8 mg/ml;(b)(e) 12 mg/ml;(c)(f) 15 mg/ml。 72
圖4-13 I-PbI2(DMSO)2 PVSK SEM 72
(a)(d) 8 mg/ml;(b)(e) 12mg/ml;(c)(f) 15mg/ml。 72
圖4-14 PbI2-PVSK SEM (a)(d) 8 mg/ml;(b)(e) 12 mg/ml;(c)(f) 15 mg/ml。 73
圖4-15 不同配位PbI2-DMSO薄膜與MAI濃度最適化之鈣鈦礦層SEM比較。 75
(a) P-PbI2(DMSO)-8 mg/ml MAI-PVSK;(b) P-PbI2(DMSO)2-12 mg/ml MAI-PVSK;(c) I-PbI2(DMSO)-8 mg/ml-PVSK;(d) I-PbI2(DMSO)2 -12 mg/ml -PVSK;(e) PbI2 -12 mg/ml-PVSK薄膜。 75
圖4-16 PbI2-DMSO與8 mg/ml MAI生成之鈣鈦礦XRD圖。 77
圖4-17 PbI2-DMSO與12 mg/ml MAI生成之鈣鈦礦XRD圖。 79
圖4-18 PbI2-DMSO與15 mg/ml MAI生成之鈣鈦礦XRD圖。 79
圖4-19 不同配位PbI2-DMSO-PVSK薄膜生長機制圖。 81
圖4-20 PbI2-DMSO與(a)8 mg/ml (b) 12 mg/ml MAI反應UV吸收圖。 83
圖4-21 最適化參數PbI2-DMSO-PVSK薄膜UV吸收圖。 83
圖4-22 PbI2-DMSO與(a)8 mg/ml (b) 12 mg/ml MAI反應 穩態PL圖。 84
圖4-23 最適化參數PbI2-DMSO-PVSK薄膜穩態PL圖。 84
圖4-24 PbI2-DMSO-PVSK薄膜之TRPL分析圖。 86
圖4-25 PbI2-DMSO與MAI濃度關係PCE、Jsc、Voc、FF效率圖。 91
圖4-26 PbI2-DMSO-PVSK冠軍電池PCE圖。 94
圖4-27 PbI2-DMSO-PVSK冠軍電池PCE、Jsc、VOC、FF 分佈圖。 95
圖4-28 PbI2-DMSO-PVSK冠軍電池正向掃描與負向掃描PCE圖 96
(a) P-PbI2(DMSO)-PVSK;(b) P- PbI2(DMSO)2-PVSK;(c) I-PbI2(DMSO)-PVSK;(d) I-PbI2(DMSO)2-PVSK;(e) PbI2-PVSK。 96
圖4-29 PbI2-DMSO-PVSK冠軍電池IPCE圖譜。 98

表目錄
表2-1不同前驅物所形成的FAPbI3效率比較表。[18] 12
表4-1 PbI2-DMSO薄膜XRD PbI2(DMSO)x /12.7˚特徵峰面積比值比較表。 52
表4-2 70˚C退火後PbI2-DMSO薄膜XRD 9.8˚/12.7˚特徵峰面積比值比較表。 54
表4-3 PbI2-DMSO薄膜退火後PbI2(DMSO)x、DMSO殘留量比較表。 58
表4-4 各成分PbI2-DMSO薄膜 SDT分析。 62
表4-5各成分PbI2-DMSO薄膜粒子大小與厚度比較表。 65
表4-6 PbI2-DMSO薄膜材料分析比較表。 67
表4-7不同濃度MAI與PbI2-DMSO薄膜生成之PVSK粒子大小比較表。 73
表4-8 PbI2-DMSO-PVSK粒子大小與覆蓋層厚度比較表。 74
表4-9 PbI2-DMSO與8 mg/ml MAI生成之鈣鈦礦12.7˚/14.04˚特徵峰面積比值比較表。 77
表4-10 PbI2-DMSO與12 mg/ml MAI生成之鈣鈦礦12.7˚/14.04˚特徵峰面積比值比較表。 79
表4-11 PbI2-DMSO與15 mg/ml MAI生成之鈣鈦礦12.7˚/14.04˚峰值比較表。 80
表4-12 TRPL biexponential fit參數比較表。 86
表4-13 PbI2-DMSO-PVSK薄膜材料分析比較表。 87
表4-14 PbI2-DMSO與MAI濃度關係效率參數整理表。 91
表4-15 PbI2-(DMSO)-PVSK冠軍電池效率參數整理表。 95
表4-16 PbI2-DMSO-PVSK冠軍電池 97
PCE、Jsc 、VOC、FF正向掃描與負向掃描平均效率整理表。 97

1. Dar, M.I., N. Arora, P. Gao, S. Ahmad, M. Grätzel, and M.K. Nazeeruddin, Investigation regarding the role of chloride in organic–inorganic halide perovskites obtained from chloride containing precursors. Nano Lett., 2014. 14: p. 6991-6996.
2. Wang, X., J. Byrne, L. Kurdgelashvili, and A. Barnett, High efficiency photovoltaics: on the way to becoming a major electricity source. Wiley Interdiscip. Rev.: Energy Environ., 2012. 1: p. 132-151.
3. Mathew, S., A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, and M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem., 2014. 6: p. 242-247.
4. Yella, A., H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, and M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science, 2011. 334: p. 629-634.
5. Kim, H.-S., C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, and J.E. Moser, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep., 2012. 2: p. 591-598.
6. NREL Efficiency Chart. http://www.nrel.gov/ncpv/images/ efficiency_chart.jpg (accessed April 19, 2016).
7. http://web.stanford.edu/group/gcep/cgi-bin/gcep-research/all/novel-inorganic-organic-perovskites-for-solution-processable-photovoltaics/.
8. Gheno, A., S. Vedraine, B. Ratier, and J. Bouclé, π-conjugated materials as the hole-transporting layer in perovskite solar cells. Metals, 2016. 6: p. 21.
9. Marchioro, A., J. Teuscher, D. Friedrich, M. Kunst, R. Van De Krol, T. Moehl, M. Grätzel, and J.-E. Moser, Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nat. Photonics, 2014. 8: p. 250-255.
10. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. 501: p. 395-398.
11. Im, J.-H., C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011. 3: p. 4088-4093.
12. Burschka, J., N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499: p. 316-319.
13. Im, J.-H., H.-S. Kim, and N.-G. Park, Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. APL Mater., 2014. 2: p. 081510.
14. Grätzel, M., The light and shade of perovskite solar cells. Nat. Mater., 2014. 13: p. 838-842.
15. Williams, S.T., F. Zuo, C.-C. Chueh, C.-Y. Liao, P.-W. Liang, and A.K.-Y. Jen, Role of chloride in the morphological evolution of organo-lead halide perovskite thin films. ACS nano, 2014. 8: p. 10640-10654.
16. Li, Y., J.K. Cooper, R. Buonsanti, C. Giannini, Y. Liu, F.M. Toma, and I.D. Sharp, Fabrication of planar heterojunction perovskite solar cells by controlled low-pressure vapor annealing. J Phys. Chem. Lett., 2015. 6: p. 493-499.
17. Lee, J.W., D.J. Seol, A.N. Cho, and N.G. Park, High‐efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Adv. Mater., 2014. 26: p. 4991-4998.
18. Wang, F., H. Yu, H. Xu, and N. Zhao, HPbI3: A new precursor compound for highly efficient solution‐processed perovskite solar cells. Adv. Funct. Mater., 2015. 25: p. 1120-1126.
19. Kojima, A., K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009. 131: p. 6050-6051.
20. Lee, M.M., J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012. 338: p. 643-647.
21. Jeon, N.J., J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015. 517: p. 476-480.
22. Zhou, H., Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science, 2014. 345: p. 542-546.
23. Yang, L., A.T. Barrows, D.G. Lidzey, and T. Wang, Recent progress and challenges of organometal halide perovskite solar cells. Rep. Prog. Phys., 2016. 79: p. 026501.
24. Wu, Z.W., S. Bai, J. Xiang, Z.C. Yuan, Y.G. Yang, W. Cui, X.Y. Gao, Z. Liu, Y.Z. Jin, and B.Q. Sun, Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale, 2014. 6: p. 10505-10510.
25. Zhao, Y.X. and K. Zhu, CH3NH3Cl-assisted one-step solution growth of CH3NH3Pbl3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C, 2014. 118: p. 9412-9418.
26. Yantara, N., F. Yanan, C. Shi, H.A. Dewi, P.P. Boix, S.G. Mhaisalkar, and N. Mathews, Unravelling the effects of Cl addition in single step CH3NH3PbI3 perovskite solar cells. Chem. Mater., 2015. 27: p. 2309-2314.
27. Chen, Q., H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc., 2013. 136: p. 622-625.
28. Eperon, G.E., V.M. Burlakov, P. Docampo, A. Goriely, and H.J. Snaith, Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater., 2014. 24: p. 151-157.
29. Xiao, M., F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray‐Weale, U. Bach, Y.B. Cheng, and L. Spiccia, A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells. Angew. Chem., 2014. 126: p. 10056-10061.
30. Xiao, Z., C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci., 2014. 7: p. 2619-2623.
31. Tan, K.W., D.T. Moore, M. Saliba, H. Sai, L.A. Estroff, T. Hanrath, H.J. Snaith, and U. Wiesner, Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells. Acs Nano, 2014. 8: p. 4730-4739.
32. Hsu, H.-L., C.-P. Chen, J.-Y. Chang, Y.-Y. Yu, and Y.-K. Shen, Two-step thermal annealing improves the morphology of spin-coated films for highly efficient perovskite hybrid photovoltaics. Nanoscale, 2014. 6: p. 10281-10288.
33. Xiao, Z., Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, Solvent annealing of perovskite‐induced crystal growth for photovoltaic‐device efficiency enhancement. Adv. Mater., 2014. 26: p. 6503-6509.
34. Fu, Y., F. Meng, M.B. Rowley, B.J. Thompson, M.J. Shearer, D. Ma, R.J. Hamers, J.C. Wright, and S. Jin, Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications. J. Am. Chem. Soc., 2015. 137: p. 5810-5818.
35. Hao, F., C.C. Stoumpos, Z. Liu, R.P. Chang, and M.G. Kanatzidis, Controllable perovskite crystallization at a gas–solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. J. Am. Chem. Soc., 2014. 136: p. 16411-16419.
36. Jeon, N.J., J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, and S.I. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater., 2014. 13: p. 897-903.
37. Ahn, N., D.-Y. Son, I.-H. Jang, S.M. Kang, M. Choi, and N.-G. Park, Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. J. Am. Chem. Soc., 2015. 137: p. 8696-8699.
38. Wu, Y., A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, and L. Han, Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci., 2014. 7: p. 2934-2938.
39. Yang, W.S., J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015. 348: p. 1234-1237.
40. Li, W., J. Fan, J. Li, Y. Mai, and L. Wang, Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%. J. Am. Chem. Soc., 2015. 137: p. 10399-10405.
41. Wassner, T.A., B. Laumer, S. Maier, A. Laufer, B.K. Meyer, M. Stutzmann, and M. Eickhoff, Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy. J. Appl. Phys., 2009. 105: p. 023505.
42. Tang, Z., S. Tanaka, S. Ito, S. Ikeda, K. Taguchi, and T. Minemoto, Investigating relation of photovoltaic factors with properties of perovskite films based on various solvents. Nano Energy, 2016. 21: p. 51-61.
43. Yi, C., X. Li, J. Luo, S.M. Zakeeruddin, and M. Grätzel, Perovskite photovoltaics with outstanding performance produced by chemical conversion of bilayer mesostructured lead halide/TiO2 films. Adv. Mater., 2016. 28: p. 2964–2970.
44. Vickerman, J.C. and I. Gilmore, Surface analysis: the principal techniques. 2011: John Wiley & Sons.
45. Miyamae, H., Y. Numahata, and M. Nagata, The crystal structure of lead (II) iodide-dimethylsulphoxide (1/2), PbI2(dmso)2. Chem. Lett., 1980. 9: p. 663-664.
46. Fu, W., J. Yan, Z. Zhang, T. Ye, Y. Liu, J. Wu, J. Yao, C.-Z. Li, H. Li, and H. Chen, Controlled crystallization of CH3NH3PbI3 films for perovskite solar cells by various PbI2(X) complexes. Sol. Energy Mater. Sol. Cells, 2016. 155: p. 331-340.
47. Zhang, J., G. Zhai, W. Gao, C. Zhang, Z. Shao, F. Mei, J. Zhang, Y. Yang, X. Liu, and B. Xu, Accelerated formation and improved performance of CH3NH3PbI3-based perovskite solar cells via solvent coordination and anti-solvent extraction. J. Mater. Chem. A, 2017. 5: p. 4190-4198.
48. Jo, Y., K.S. Oh, M. Kim, K.H. Kim, H. Lee, C.W. Lee, and D.S. Kim, High performance of planar perovskite solar cells produced from PbI2(DMSO) and PbI2(NMP) complexes by intramolecular exchange. Adv. Mater. Interfaces., 2016. 3: p. 1500768.
49. Wharf, I., T. Gramstad, R. Makhija, and M. Onyszchuk, Synthesis and vibrational spectra of some lead (II) halide adducts with O-, S-, and N-donor atom ligands. Can. J. Chem., 1976. 54: p. 3430-3438.
50. Lee, Y.H., J. Luo, R. Humphry‐Baker, P. Gao, M. Grätzel, and M.K. Nazeeruddin, Unraveling the reasons for efficiency loss in perovskite solar cells. Adv. Funct. Mater., 2015. 25: p. 3925-3933.
51. Liu, F., Q. Dong, M.K. Wong, A.B. Djurišić, A. Ng, Z. Ren, Q. Shen, C. Surya, W.K. Chan, and J. Wang, Is excess PbI2 beneficial for perovskite solar cell performance? Adv. Energy Mater., 2016. 6: p. 1502206.
52. Zhang, T., M. Yang, Y. Zhao, and K. Zhu, Controllable sequential deposition of planar CH3NH3PbI3 perovskite films via adjustable volume expansion. Nano Lett., 2015. 15: p. 3959-3963.
53. Zhang, H., J. Mao, H. He, D. Zhang, H.L. Zhu, F. Xie, K.S. Wong, M. Grätzel, and W.C. Choy, A smooth CH3NH3PbI3 film via a new approach for forming the PbI2 nanostructure together with strategically high CH3NH3I concentration for high efficient planar‐heterojunction solar cells. Adv. Energy Mater., 2015. 5: p. 1501354.
54. Correa‐Baena, J.P., M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T.J. Jacobsson, M.E. Calvo, and A. Abate, Unbroken perovskite: interplay of morphology, electro‐optical properties, and ionic movement. Adv. Mater., 2016. 28: p. 5031-5037.
55. Zhang, X., J. Ye, L. Zhu, H. Zheng, G. Liu, X. Liu, B. Duan, X. Pan, and S. Dai, High-efficiency perovskite solar cells prepared by using a sandwich structure MAI–PbI2–MAI precursor film. Nanoscale, 2017. 9: p. 4691-4699.
56. deQuilettes, D.W., S.M. Vorpahl, S.D. Stranks, H. Nagaoka, G.E. Eperon, M.E. Ziffer, H.J. Snaith, and D.S. Ginger, Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 2015. 348: p. 683-686.
57. Noel, N.K., A. Abate, S.D. Stranks, E.S. Parrott, V.M. Burlakov, A. Goriely, and H.J. Snaith, Enhanced photoluminescence and solar cell performance via lewis base passivation of organic–inorganic lead halide perovskites. ACS nano, 2014. 8: p. 9815-9821.
58. Zuo, L., S. Dong, N. De Marco, Y.-T. Hsieh, S.-H. Bae, P. Sun, and Y. Yang, Morphology evolution of high efficiency perovskite solar cells via vapor induced intermediate phases. J. Am. Chem. Soc., 2016. 138: p. 15710-15716.
59. Lee, J.-W., H.-S. Kim, and N.-G. Park, Lewis acid–base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res., 2016. 49: p. 311-319.
60. Dong, Q., Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 2015. 347: p. 967-970.
61. Bi, D., W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, and J.-P.C. Baena, Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv., 2016. 2: p. e1501170.
62. Li, F., C. Bao, W. Zhu, B. Lv, W. Tu, T. Yu, J. Yang, X. Zhou, Y. Wang, and X. Wang, Microstructure modulation of the CH3NH3PbI3 layer in perovskite solar cells by 2-propanol pre-wetting and annealing in a spray-assisted solution process. J. Mater. Chem. A, 2016. 4: p. 11372-11380.
63. Fang, X., Y. Wu, Y. Lu, Y. Sun, S. Zhang, J. Zhang, W. Zhang, N. Yuan, and J. Ding, Annealing-free perovskite films based on solvent engineering for efficient solar cells. J. Mater. Chem. C, 2017. 5: p. 842-847.
64. Chen, Q., H. Zhou, T.-B. Song, S. Luo, Z. Hong, H.-S. Duan, L. Dou, Y. Liu, and Y. Yang, Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett., 2014. 14: p. 4158-4163.
65. Im, J.-H., I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol., 2014. 9: p. 927-932.
66. Ko, H.-S., J.-W. Lee, and N.-G. Park, 15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3. J. Mater. Chem. A, 2015. 3: p. 8808-8815.
67. Hsieh, T.-Y., C.-K. Huang, T.-S. Su, C.-Y. Hong, and T.-C. Wei, Crystal growth and dissolution of methylammonium lead iodide perovskite in sequential deposition: correlation between morphology evolution and photovoltaic performance. ACS Appl. Mater. Interfaces, 2017. 9: p. 8623-8633.
68. Li, G., K.L. Ching, J.Y. Ho, M. Wong, and H.S. Kwok, Identifying the optimum morphology in high‐performance perovskite solar cells. Adv. Energy Mater., 2015. 5: p. 1401775.
69. Kim, Y.C., N.J. Jeon, J.H. Noh, W.S. Yang, J. Seo, J.S. Yun, A. Ho‐Baillie, S. Huang, M.A. Green, and J. Seidel, Beneficial effects of PbI2 incorporated in organo‐lead halide perovskite solar cells. Adv. Energy Mater., 2015. 6: p. 1502104.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *