帳號:guest(18.226.93.114)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):章景睿
作者(外文):Chang, Ching-Jui
論文名稱(中文):矽烷表面改質於IC載板上無電鍍銅層之研究
論文名稱(外文):Electroless Copper Deposition on Silane Modified IC Substrate
指導教授(中文):衛子健
指導教授(外文):Wei, Tzu-Chien
口試委員(中文):竇維平
李建良
口試委員(外文):Dow, Wei-Ping
Lee, Chien-Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:104032515
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:88
中文關鍵詞:矽烷化合物IC載板無電鍍銅表面改質附著力
外文關鍵詞:silaneIC substrateelectroless copper depositionsurface modificationAdhesion
相關次數:
  • 推薦推薦:0
  • 點閱點閱:147
  • 評分評分:*****
  • 下載下載:41
  • 收藏收藏:0
由於高階IC載板在未來的發展趨勢朝向表面低粗糙度邁進,以至於在後續金屬化的製程中容易產生金屬層剝落的問題,因此本論文為改善新式IC載板(Ajinomoto Build-up Film, ABF GX-T37)上無電鍍銅層附著力的研究。研究中利用末端具有三個胺基官能團的矽烷化合物(3-2-(2-aminoethylamino) ethylamino propyl trimethoxysilane, ETAS)對ABF基板表面進行改質,藉由矽烷化合物的水解端與表面氫氧化後的ABF基板表面進行脫水反應,使矽烷化合物以共價鍵的形式與基板結合。經矽烷改質後的基板搭配本實驗室所開發出來的聚乙烯醇包覆奈米鈀粒子(Polyvinyl alcohol capped palladium, PVA-Pd)作為無電鍍銅沉積之觸媒,藉由矽烷化合物結構上的胺基官能團與PVA-Pd觸媒進行交互作用,增強後續無電鍍銅層與ABF基板間的附著力。
實驗的首部分是在於矽烷表面改質之結果分析,比較有無矽烷改質之ABF GX-T37基板表面的差異性。利用水滴接觸角量測及原子力顯微鏡(AFM)觀察矽烷化合物於基板表面的效果與變化,再以X射線光電子能譜儀(XPS)瞭解矽烷化合物在ABF GX-T37基板上的鍵結方式。在矽烷表面改質確立後,接著探討不同改質條件對無電鍍銅層附著力之影響,並利用工業上常使用的T-Peel測試機台進行銅層附著力測試,與目前商業上所使用的Sn/Pd膠體觸媒及Pd-ion觸媒製程相比較。然而在重複附著力測試實驗時,發現不同批次進行除膠渣(Desmear)處理的基板附著力差異甚大,因此後續將對此部分再做更深入的探討。
第二部分則是研究除膠渣程序對於不同型號之ABF基板表面所產生之影響,藉由掃描式電子顯微鏡(SEM)、能量散射光譜儀(EDS)與AFM對基板表面進行材料分析,以及銅層與基板之裂面分析,從中尋找出影響無電鍍銅層與基板間附著力之關鍵因素,並試圖將矽烷表面改質搭配奈米鈀(ETAS+PVA-Pd)的技術套用在目前已商業化的ABF GX-13上。
Traditional electroless copper deposition technology cannot satisfy the requirement of fine linewidth and minimal signal loss, which are the features of advanced circuitry. To meet the feature of fine linewidth and minimal signal loss of advanced circuit, modern substrates are made flat and does not allow massively roughened. In this study, we aim to modify the surface of Ajinomoto Build-up Film (ABF) by the formation of the covalent bond between silane, 3-2-(2-amionethylamino) ethylamino propyl trimethoxysilane (ETAS) and substrate. After ETAS modification, home-made polyvinyl alcohol capped palladium(PVA-Pd) nanoparticles were adsorbed onto ETAS-modified ABF film to catalyze electroless copper plating. To enhance the adhesion by interaction of ETAS with PVA-Pd.
In the first part of this study, we analyze the effect of ETAS modification on ABF GX-T37 by water contact angle, atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS). Meanwhile, the adhesion of electroless copper layers prepared using commercial catalyst (Sn/Pd and Pd-ion) were compared. Finally, the relationship between ETAS modification and the adhesion has been connected. Although repeating the adhesion tests, the result show low reproducibility between the ABF GX-T37substrates fabricated by different lots. Therefore, the following analysis of morphology of substrate was carried out to clarify the effect of desmear process on adhesion.
In the second part of this study, we focused on the morphological features of different types of ABF substrate after desmear process using scanning electron microscope (SEM) and Energy-Dispersive Spectroscopy (EDS) and AFM. Moreover, we scrutinized the profile at copper/substrate interface. Finally, we found out the major factor on influencing adhesion between electroless copper layer and ABF substrate. Furthermore, we are looking forward to apply this technic into the commercialized ABF GX-13 substrate.
摘 要 I
Abstract II
致謝詞 III
目 錄 IV
圖目錄 VII
表目錄 XI
第一章 緒 論 1
1.1 前言 1
1.2 研究目的與動機 7
第二章 文獻回顧 8
2.1 IC載板電氣特性 8
2.2 ABF材料 10
2.3 IC載板內導線製程 11
2.3.1 除膠渣製程 11
2.3.2 IC載板表面金屬化 13
2.4無電鍍銅沉積 15
2.4.1 無電鍍沉積基本原理 15
2.4.2 無電鍍銅的發展歷史 16
2.4.3 無電鍍銅的反應機制 16
2.4.4 無電鍍銅鍍液的組成與特性 17
2.5 無電鍍銅觸媒 19
2.5.1 錫鈀膠體觸媒(Sn/Pd Colloid) 19
2.5.2 離子鈀觸媒(Commercial Pd-ion) 20
2.5.3 奈米鈀觸媒(Polyvinyl alcohol capped palladium, PVA-Pd) 21
2.6 矽烷化合物表面改質 23
2.6.1 矽烷化合物的結構及應用 23
2.6.2 矽烷化合物表面改質之機制 26
2.6.3 矽烷化合物於無電鍍金屬沉積之應用 27
第三章 實驗部分 37
3.1 藥品與材料 37
3.1.1 奈米鈀觸媒合成 38
3.1.2 無電鍍銅藥水配置 39
3.1.3 電鍍銅藥水配置 40
3.2 設備與儀器 40
3.3 測量原理 41
3.3.1 奈米粒徑分析儀(Dynamic Light Scattering, DLS) 41
3.3.2 接觸角量測儀(Contact angle measurement) 41
3.3.3 原子力顯微鏡(Atomic force microscope, AFM) 42
3.3.4 表面輪廓量測儀(Alpha-Step) 44
3.3.5 X射線光電子能譜(X-ray photoelectron spectroscopy, XPS) 44
3.3.6 掃描式電子顯微鏡(Scanning electron microscope, SEM) 45
3.3.7 百格膠帶測試 46
3.3.8 萬能拉力機(Universal Testing Machine) 47
3.4 實驗方法 49
3.4.1 ABF基板前處理 49
3.4.2 矽烷表面改質之製程 49
3.4.3 無電鍍銅沉積 51
3.4.4 電鍍銅製程 53
第四章 結果及討論 54
4.1 矽烷表面改質與無電鍍銅層附著力之研究 54
4.1.1 矽烷表面改質之鑑定 55
4.1.2 無電鍍銅層之附著力分析結果 58
4.2 GX-T37基板表面狀況對ETAS改質及後續銅鍍層附著力之影響 63
4.2.1 不同批次GX-T37基板表面形貌 65
4.2.2 無電鍍銅顆粒表面形貌 67
4.2.3 無電鍍銅層與基板間之界面分析 67
4.3 影響無電鍍銅層附著力之因素 70
4.3.1 基板表面形貌分析 71
4.3.2 無機粉體裸露程度 75
4.3.3 無電鍍銅層之附著力探討 76
4.3.4 無電鍍銅層與GX-13基板間之裂面分析 79
4.4 矽烷化合物對有機高分子改質之影響 80
4.4.1 百格測試 80
4.4.2 有機薄膜表面氫氧化測試結果 82
第五章 結 論 84
參考資料 85

1.張致吉, 從IC載板製程技術的變革看國內樹脂材料產業的機會. 工研院IEK調查整理, 2015.
2.Narahashi, H., Low Df Build-up Material for High Frequency Signal Transmission of Substrates. Electronic Components and Technology Conference (ECTC), 2013.
3.LaDou, J., Printed circuit board industry. International journal of hygiene and environmental health, 2006. 209(3): p. 211-219.
4.Pan, T.-C., Application of Nano Palladium Catalyst for Electroless Nickel Deposition on Silane-compound Modified Silicon Wafer. National Tsing Hua University, 2014.
5.D.Nguyen, H.S.R.a., Effect of Scaling of Interconnection. Copper metallization for Sub-Mircron Integrated, 1998.
6.Wheeler, H.A., Formulas for the Skin Effect. Proc. IRE, 1942. 30: p. 412-426.
7.Schneider, M., Dielectric loss in integrated microwave circuits. Bell Labs Technical Journal, 1969. 48(7): p. 2325-2332.
8.Welch, J.D., Losses in Microstrip Transmission System for Integrated Microwave Circuits. NEREM RECORD, 1966: p. 100-101.
9.莊貴貽, IC構裝載板用介電絕緣材料簡介. 工業材料雜誌, 2013. 322期.
10.白蓉生, 通孔與盲孔之除膠渣與金屬化原理. Taiwan Printed Circuit Association(TPCA), 2010.
11.Sun, J.-Y., Hong, D.-H., Ahn, K.-o., Park, S.-H., Park, J.-Y., Kim, Y.-H., Adhesion study between electroless seed layers and build-up dielectric film substrates. Journal of The Electrochemical Society, 2013. 160(3): p. D107-D110.
12.Kukanskis, P.E. and H.L. Rhodenizer, Process for preparing printed circuit board thru-holes. 1986, Google Patents.
13.Carano, M.V., F. Polakovic, and B.A. LaFayette, Permanganate desmear process for printed wiring boards. 1999, Google Patents.
14.楊雲凱, 物理氣相沉積(PVD)介紹. Nano communication. 22卷: p. 33-35.
15.Chen, J.R., Electroless Nickel Plating on Silicon. National Tsing Hua University, 1995.
16.Okinaka, Y. and T. Osaka, Electroless deposition processes: fundamentals and applications. Advances in electrochemical science and engineering, 1990. 3: p. 57-116.
17.Brenner, A. and G.E. Riddell, Nickel plating on steel by chemical reduction. Plating and surface finishing, 1998. 85(8): p. 54-55.
18.Harold, N., Method for metalization on nonconductors. 1948, Google Patents.
19.Mallory, G.O. and J.B. Hajdu, Electroless plating: fundamentals and applications. 1990: William Andrew.
20.Cahill, A.E., American Electrochemical Society Proceedings. 1957. 44: p. 130.
21.Kou, S.-C. and A. Hung, Effect of buffer on electroless copper deposition. Plating and surface finishing, 2002. 89(2): p. 48-52.
22.Shacham-Diamand, Y. and V.M. Dubin, Copper electroless deposition technology for ultra-large-scale-integration (ULSI) metallization. Microelectronic Engineering, 1997. 33(1): p. 47-58.
23.Dubin, V.M., Shacham‐Diamand, Y., Zhao, B., Vasudev, P., Ting, C. H., Selective and blanket electroless copper deposition for ultralarge scale integration. Journal of The Electrochemical Society, 1997. 144(3): p. 898-908.
24.Shacham-Diamand, Y., V. Dubin, and M. Angyal, Electroless copper deposition for ULSI. Thin Solid Films, 1995. 262(1): p. 93-103.
25.Shu, J., B. Grandjean, and S. Kaliaguine, Effect of Cu (OH) 2 on electroless copper plating. Industrial & engineering chemistry research, 1997. 36(5): p. 1632-1636.
26.Ryu, C., Kwon, K.-W., Loke, A. L., Lee, H., Nogami, T., Dubin, V. M., Kavari, R. A., Ray, G. W., Wong, S. S., Microstructure and reliability of copper interconnects. IEEE transactions on electron devices, 1999. 46(6): p. 1113-1120.
27.Hung, A., Electroless copper deposition with hypophosphite as reducing agent. Plating and surface finishing, 1988. 75(1): p. 62-65.
28.Juzeliunas, E., H.W. Pickering, and K.G. Weil, Electrochemical quartz crystal microgravimetry study of metal deposition from EDTA complexes. Journal of the Electrochemical Society, 2000. 147(3): p. 1088-1095.
29.Oita, M., M. Matsuoka, and C. Iwakura, Deposition rate and morphology of electroless copper film from solutions containing 2, 2′-dipyridyl. Electrochimica Acta, 1997. 42(9): p. 1435-1440.
30.Shipley, J.C.R., Method of electroless deposition on a substrate and catalyst solution therefor. 1961, Google Patents.
31.De Minjer, C. and P. vd Boom, The Nucleation with SnCl2‐PdCl2 Solutions of Glass Before Electroless Plating. Journal of The Electrochemical Society, 1973. 120(12): p. 1644-1650.
32.Osaka, T., H. Takematsu, and K. Nihei, A study on activation and acceleration by mixed PdCl2/SnCl2 catalysts for electroless metal deposition. Journal of The Electrochemical Society, 1980. 127(5): p. 1021-1029.
33.Chen, L.J., Preparation of Pd Nanoparticles and its Application to Electroless Copper Deposition, in Chemical Engineering. 2004, National Tsing Hua University
34.Cookson, J., The preparation of palladium nanoparticles. Platinum Metals Review, 2012. 56(2): p. 83-98.
35.Schmid, G. and L.F. Chi, Metal clusters and colloids. Advanced Materials, 1998. 10(7): p. 515-526.
36.Yonezawa, T., K. Imamura, and N. Kimizuka, Direct preparation and size control of palladium nanoparticle hydrosols by water-soluble isocyanide ligands. Langmuir, 2001. 17(16): p. 4701-4703.
37.Xian, J., Hua, Q., Jiang, Z., Ma, Y., Huang, W., Size-dependent interaction of the poly (N-vinyl-2-pyrrolidone) capping ligand with Pd nanocrystals. Langmuir, 2012. 28(17): p. 6736-6741.
38.Hsu, C.W., The Study of Highly Adhesive Electroless Nickel Plating Film on Silicon Wafer, in Chemical Engineering. 2016, National Tsing Hua University. p. 31-38.
39.Arkles, B., Hydrophobicity, hydrophilicity and silanes. Paint & Coatings Industry magazine. 2006.
40.Chrisey, L.A., G.U. Lee, and C.E. O'Ferrall, Covalent attachment of synthetic DNA to self-assembled monolayer films. Nucleic acids research, 1996. 24(15): p. 3031-3039.
41.Kim, H. and J. Jang, Corrosion protection and adhesion promotion for polyimide/copper system using silane-modified polymeric materials. Polymer, 2000. 41(17): p. 6553-6561.
42.Herzer, N., S. Hoeppener, and U.S. Schubert, Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates. Chemical Communications, 2010. 46(31): p. 5634-5652.
43.Xue, C.-H., Zhang, P., Ma, J.-Z., Ji, P.-T., Li, Y.-R., Jia, S.-T., Long-lived superhydrophobic colorful surfaces. Chemical Communications, 2013. 49(34): p. 3588-3590.
44.Hsu, C.W., Wang, W.-Y., Wei, T. C., Lai, K.-C., Chen, C.-M., Effect of Different Palladium Nanoparticles on the Adhesion Between Electroless-Deposited Nickel-Phosphorus Film and Silane-Compound-Modified Silicon Surface. in Meeting Abstracts. 2015. The Electrochemical Society.
45.丁仁奎, 硫醇基丙基三甲氧基矽烷應用於封裝植入式電子功能器之玻璃與白金電極孔隙之探討. 中原大學醫學工程研究所學位論文, 2009: p. 1-92.
46.Xu, L., Huang, L., Ou, D., Guo, Z., Zhang, H., Ge, C., Gu, N., Liu, J., Surface-bound nanoparticles for initiating metal deposition. Thin Solid Films, 2003. 434(1): p. 121-125.
47.Li, Y., Chen, D., Lu, Q., Qian, X., Zhu, Z., Yin, J., Selective electroless deposition of copper on polyimide surface by microcontact printing. Applied surface science, 2005. 241(3): p. 471-476.
48.Osaka, T. and M. Yoshino, New formation process of plating thin films on several substrates by means of self-assembled monolayer (SAM) process. Electrochimica Acta, 2007. 53(2): p. 271-277.
49.Lu, Y., Improvement of copper plating adhesion on silane modified PET film by ultrasonic-assisted electroless deposition. Applied Surface Science, 2010. 256(11): p. 3554-3558.
50.Xu, J., Fan, R., Wang, J., Jia, M., Xiong, X., Wang, F., Comparative Study of Electroless Copper Film on Different Self-Assembled Monolayers Modified ABS Substrate. International journal of molecular sciences, 2014. 15(4): p. 6412-6422.
51.Malki, M., Rozenblat-Raz, A., Duhin, A., Inberg, A., Horvitz, D., Shacham-Diamand, Y., Thin electroless Co (W, P) film growth on titanium–nitride layer modified by self-assembled monolayer. Surface and Coatings Technology, 2014. 252: p. 1-7.
52.Shen, S.-P. and W.-P. Dow, Adhesion enhancement of a plated copper layer on an AlN substrate using a chemical grafting process at room temperature. Journal of The Electrochemical Society, 2014. 161(10): p. D579-D585.
53.Guo, R., Yin, G., Sha, X., Wei, L., Zhao, Q., Effect of surface modification on the adhesion enhancement of electrolessly deposited Ag-PTFE antibacterial composite coatings to polymer substrates. Materials Letters, 2015. 143: p. 256-260.
54.Nian, Y.-Y., Youh, M.-J., Chang, C.-P., Chen, Y.-C., Ger, M.-D., Preparation of styrene-γ-methacryloxypropyltrimethoxysilane/Pd nanoparticles as ink for ink-jet printing technology and electroless nickel plating on glass. Journal of the Taiwan Institute of Chemical Engineers, 2016. 68: p. 423-430.
55.Wei, T.-C., Pan, T.-C., Chen, C.-M., Lai, K.-C., Wu, C.-H., Annealing-free adhesive electroless deposition of a nickel/phosphorous layer on a silane-compound-modified Si wafer. Electrochemistry Communications, 2015. 54: p. 6-9.
56.Dow, W.-P., H.-S. Huang, and Z. Lin, Interactions between brightener and chloride ions on copper electroplating for laser-drilled via-hole filling. Electrochemical and solid-state letters, 2003. 6(9): p. C134-C136.
57.Binnig, G., C.F. Quate, and C. Gerber, Atomic force microscope. Physical review letters, 1986. 56(9): p. 930.
58.Zhang, F. and M. Srinivasan, Self-assembled molecular films of aminosilanes and their immobilization capacities. Langmuir, 2004. 20(6): p. 2309-2314.
59.Ma, P.C., J.-K. Kim, and B.Z. Tang, Functionalization of carbon nanotubes using a silane coupling agent. Carbon, 2006. 44(15): p. 3232-3238.
60.Li, H., Wang, R., Hu, H., Liu, W., Surface modification of self-healing poly (urea-formaldehyde) microcapsules using silane-coupling agent. Applied Surface Science, 2008. 255(5): p. 1894-1900.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *