帳號:guest(3.145.104.137)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許雅甄
作者(外文):Hsu, Ya-Chen
論文名稱(中文):以桿狀病毒表現系統生產小兒麻痺類病毒顆粒疫苗
論文名稱(外文):Production of virus-like particle (VLP) vaccine against poliovirus by using the baculovirus expression system
指導教授(中文):胡育誠
指導教授(外文):Hu, Yu-Chen
口試委員(中文):鍾文彬
黃振煌
口試委員(外文):Chung, Wen-Bin
Huang, Jen-Huang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:104032510
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:78
中文關鍵詞:小兒痲痺類病毒顆粒
外文關鍵詞:VLPvirus-like particlespoliovirus
相關次數:
  • 推薦推薦:0
  • 點閱點閱:369
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
小兒麻痺病毒(Poliovirus)的感染會引起嬰兒與幼童發燒、頭痛,甚至侵入中樞神經系統造成永久性的殘疾。因小兒麻痺症無特效藥物可醫治,最佳的防疫方法就是接種疫苗。目前市面上最常見的疫苗為沙克疫苗與沙賓口服疫苗,雖然免疫效果十分良好但這兩種疫苗為真實病毒經由突變或是化學處理後作為抗原施打,皆有疫苗中病毒毒性恢復的危險。自1988年世界衛生組織以疫苗策略推行小兒麻痺根除計畫以來,已獲得全球性的防疫成果,但在根除計畫的尾聲,減少疫苗所帶來的隱憂是十分重要的環節。類病毒顆粒疫苗並不含有病毒的遺傳物質,可使用基因工程技術進行生產,作為疫苗無毒性復發與病毒突變等問題,因此欲完全根除小兒麻痺病毒,以類病毒顆粒作為疫苗是相當有利的工具。
本實驗室先前已成功的利用昆蟲細胞/重組桿狀病毒表現系統生產腸病毒71型類病毒顆粒疫苗,其品質與產量相當穩定也可引起良好的抗病毒免疫效果。在本研究中我們希望根據先前的經驗,以昆蟲細胞/重組桿狀病毒系統進行同為腸病毒屬的小兒麻痺類病毒顆粒疫苗開發。我們以最易衍生疫苗病毒感染的第二型小兒麻痺病毒為優先,利用舊有的重組桿狀病毒載體為基礎,分別以polyhedrin啟動子驅動小兒麻痺病毒P1外殼蛋白與CMV、ETL或vp39啟動子驅動3CD水解酶,藉由flashBACULTRATM系統製作成重組桿狀病毒。我們從這些建構中篩選出類病毒顆粒產量與質量最好的BacU-PV2-P1-vp39-3CD病毒,並將此病毒建構應用於第一型與第三型小兒麻痺類病毒顆粒的生產。我們證實以vp39啟動子驅動3CD水解酶的病毒建構在感染High FiveTM細胞後,第二型與第三型病毒的P1外殼蛋白可以被正確的切割成VP0、VP3以及VP1三個結構蛋白,純化後可以在穿透式電子顯微鏡下觀察到大小約30 nm、空心的二十面體顆粒;然而第一型類病毒顆粒的產量與質量卻不如預期。
因此後續實驗我們將mRNA表現量較高的第三型3CD水解酶置換到第一型小兒麻痺類病毒顆粒的重組載體上,由初步生產結果可發現,此重組載體可生產出切割較為完整的類病毒顆粒。未來的實驗我們將第一型外殼蛋白搭配第三型3CD水解酶的重組桿狀病毒感染High FiveTM細胞放大生產,以蔗糖連續梯度超高速離心純化,期待能得到組裝完整的標準品,加速根除小兒麻痺病毒的實現。
Poliovirus (PV), which may elicit the fever or headache and leads to irreversible paralysis of children less than 5 years of age, is a highly infectious disease caused by a virus. However, there is no cure for Poliomyelitis, the only efficient way to protect children from being transmitted is vaccination. There are two vaccines that have been commonly used recently: Salk inacticated polio vaccine (IPV) and Sabin oral polio vaccine (OPV), while both IPV and OPV possess some criticial disadvantages. The immune response induced by IPV is not comprehensive (especially in the instestines) that may cause indirect infection through faeces. Though OPV is effective and inexpensive, in rare cases the live attenuated vaccine-virus in OPV can cause paralysis, which is called vaccine-derived poliovirus (VDPV). From 1988, World Health Organization (WHO) launched the Global Polio Eradication Initiative (GPEI) for the purpose of eliminating wild-type poliovirus in the world, has already helped countries to make huge progress in protecting the global population from this debilitating disease. Virus-like particle (VLP), which contains no viral genetic material, is non-infectious and can ignore the risk of virus mutation. Therefore, to remove poliovirus completely, VLPs are forceful and powerful tools.
Poliovirus has an RNA genome that can be translated into a polyprotein, and the viral P1 polyprotein is cleaved by 3CD protease into individual structural proteins (VP1, VP3 and VP0). By mimicking the natural process, we developed virus-like particle (VLP) vaccines by the baculovirus/insect cells expression system combined with flashBACULTRATM system to co-express P1 and 3CD derived from PV-type 1, type2 and type 3. First of all, we select the promoter to drive 3CD protease among CMV, ETL, and vp39, and the recombinant baculovirus BacU-PV2-P1-vp39-3CD express VLPs with most efficient P1 cleavage. After production and purification of VLPs by continuous sucrose ultracentrifugation, we can clearly observe icosahedron with diameter 30 nm, empty particles under the transmission electron microscope (TEM). However, we cannot obtain VLPs of poliovirus type 1 after purification.
For the following experiment, we replace 3CD protease gene of type 1 on recombinant baculovirus construction with 3CD protease gene of type 3, which has the better expression. With this construction, the cleavage of P1 polyprotein of type 1 improves and we hope to purify successfully to accelerate the eradication of poliovirus in the foreseeable future.
摘要 I
Abstract II
目錄 III
圖表目錄 VI
第一章 文獻回顧 1
1-1 小兒麻痺病毒 1
1-1-1 小兒麻痺病毒簡介 1
1-1-2 小兒麻痺症的流行病學 2
1-2 小兒麻痺疫苗發展 3
1-2-1 沙克疫苗 3
1-2-2 沙賓疫苗 4
1-2-3 小兒麻痺病毒根除計畫 5
1-2-4 目前小兒麻痺疫苗所面臨的問題 5
1-2-5 類病毒顆粒疫苗 7
1-3 昆蟲細胞/重組桿狀病毒表現系統 9
1-3-1 昆蟲細胞/重組桿狀病毒表現系統的發展 9
1-3-2 昆蟲細胞/重組桿狀病毒表現系統的應用 10
1-3-3 flashBACTM桿狀病毒表現系統 12
1-3-4 flashBACULTRATM桿狀病毒表現系統 12
1-4 Gibson Assembly 13
1-5 研究目的 14
第二章 實驗材料及方法 23
2-1 昆蟲細胞培養 23
2-2 重組桿狀病毒 23
2-2-1 重組載體的系統與建構 23
2-2-1-1 第二型小兒麻痺類病毒顆粒載體的建構 24
2-2-1-2 第一型與第三型小兒麻痺類病毒顆粒載體的建構 24
2-2-2 重組桿狀病毒的建構 25
2-2-3 重組桿狀病毒的放大 25
2-2-4 重組桿狀病毒感染效價 26
2-3 小兒麻痺類病毒顆粒 26
2-3-1 小兒麻痺類病毒顆粒生產 26
2-3-2 小兒麻痺類病毒顆粒純化流程 27
2-3-2-1 切向流過濾(Tangential Flow Filtration) 27
2-3-2-2 蔗糖連續濃度梯度超高速離心純化(Continuous sucrose ultracentrifugation) 28
2-4 實驗分析方法 28
2-4-1 SDS-PAGE凝膠電泳 28
2-4-2 西方點墨法(Western Blot) 29
2-4-3 Bradford 蛋白質濃度測定 30
2-4-4 免疫酵素連結吸附分析法(ELISA) 30
2-4-5 穿透式電子顯微鏡 31
2-5 RT-qPCR絕對定量分析mRNA表現 32
2-6 終點稀釋法(End-point dilution method)篩選單株病毒 33
2-7 以Gibson Assembly進行小兒麻痺第一型類病毒顆粒的載體建構 34
2-7-1 Gibson Assembly之載體(vector)的建構 34
2-7-2 Gibson Assembly Reaction 34
2-7-3 Gibson Assembly重組載體的轉染與放大 37
第三章 實驗結果與討論 42
3-1 重組桿狀病毒的建構與啟動子的篩選 42
3-2 小兒麻痺類病毒顆粒的生產 43
3-3 小兒麻痺類病毒顆粒的純化 44
3-4 小兒麻痺類病毒顆粒純化樣品分析 45
3-4-1 以凝膠電泳分析純化標準品 45
3-4-2 以免疫酵素連結吸附法偵測類病毒顆粒產量 46
3-4-3 以穿透式電子顯微鏡觀察類病毒顆粒 46
3-5 第一型小兒麻痺類病毒顆粒之產量優化 47
3-5-1 更改第一型小兒麻痺類病毒顆粒的生產條件 47
3-5-2 以終點稀釋法進行第一型單株桿狀病毒的篩選 47
3-6 外殼蛋白P1與水解酶3CD 基因表現的定量分析 48
3-7 重新設計第一型重組桿狀病毒之建構 49
3-7-1 使用Gibson Assebly搭配終點稀釋法進行DNA shuffling 49
3-7-2 多種基因組合之單株病毒的放大與單株病毒篩選 50
3-7-3 建構以不同型別3CD水解酶切割PV1外殼蛋白之重組病毒 51
3-8 第一型小兒麻痺類病毒顆粒的生產 51
3-9 結論 52
第四章 未來展望 72
4-1 第一型小兒麻痺類病毒顆粒的純化 72
4-2 第二型小兒麻痺類病毒顆粒產量之提升 72
4-3 腸病毒71型與克沙奇病毒A16型類病毒顆粒產量之提升 73
第五章 參考文獻 74
Abercrombie J. 1828. Pathological and Practical Reseaches on Diseases of the Brain and Spinal Cord.
Airenne KJ, Hu YC, Kost TA, Smith RH, Kotin RM, Ono C, Matsuura Y, Wang S, Yla-Herttuala S. 2013. Baculovirus: an insect-derived vector for diverse gene transfer applications. Mol Ther 21: 739-749.
Airenne KJ, Laitinen OH, Mahonen AJ, Yla-Herttuala S. 2009. Preparation of recombinant baculoviruses with the BVboost system. Cold Spring Harb Protoc 2009: pdb prot5181.
Airenne KJ, Peltomaa E, Hytonen VP, Laitinen OH, Yla-Herttuala S. 2003. Improved generation of recombinant baculovirus genomes in Escherichia coli. Nucleic Acids Res 31: e101.
Ansardi DC, Morrow CD. 1995. Amino acid substitutions in the poliovirus maturation cleavage site affect assembly and result in accumulation of provirions. J Virol 69: 1540-1547.
Ansardi DC, Porter DC, Anderson MJ, Morrow CD. 1996. Poliovirus assembly and encapsidation of genomic RNA. Adv Virus Res 46: 1-68.
Ansardi DC, Porter DC, Morrow CD. 1991. Coinfection with recombinant vaccinia viruses expressing poliovirus P1 and P3 proteins results in polyprotein processing and formation of empty capsid structures. J Virol 65: 2088-2092.
Basavappa R, Syed R, Flore O, Icenogle JP, Filman DJ, Hogle JM. 1994. Role and mechanism of the maturation cleavage of VP0 in poliovirus assembly: structure of the empty capsid assembly intermediate at 2.9 A resolution. Protein Sci 3: 1651-1669.
Bedard KM, Semler BL. 2004. Regulation of picornavirus gene expression. Microbes Infect 6: 702-713.
Brautigam S, Snezhkov E, Bishop DH. 1993. Formation of poliovirus-like particles by recombinant baculoviruses expressing the individual VP0, VP3, and VP1 proteins by comparison to particles derived from the expressed poliovirus polyprotein. Virology 192: 512-524.
Brown BA, Oberste MS, Alexander JP, Jr., Kennett ML, Pallansch MA. 1999. Molecular epidemiology and evolution of enterovirus 71 strains isolated from 1970 to 1998. J Virol 73: 9969-9975.
Buenz EJ, Howe CL. 2006. Picornaviruses and cell death. Trends Microbiol 14: 28-36.
Buonaguro L, Visciano ML, Tornesello ML, Tagliamonte M, Biryahwaho B, Buonaguro FM. 2005. Induction of systemic and mucosal cross-clade neutralizing antibodies in BALB/c mice immunized with human immunodeficiency virus type 1 clade A virus-like particles administered by different routes of inoculation. J Virol 79: 7059-7067.
Casal JI. 1999. Use of parvovirus-like particles for vaccination and induction of multiple immune responses. Biotechnol Appl Biochem 29: 141-150.
Chaabihi H, Ogliastro MH, Martin M, Giraud C, Devauchelle G, Cerutti M. 1993. Competition between baculovirus polyhedrin and p10 gene expression during infection of insect cells. J Virol 67: 2664-2671.
Chen CY, Wu HH, Chen CP, Chern SR, Hwang SM, Huang SF, Lo WH, Chen GY, Hu YC. 2011. Biosafety assessment of human mesenchymal stem cells engineered by hybrid baculovirus vectors. Mol Pharm 1505-1514.
Chung CY, Chen CY, Lin SY, Chung YC, Chiu HY, Chi WK, Lin YL, Chiang BL, Chen WJ, Hu YC. 2010. Enterovirus 71 virus-like particle vaccine: improved production conditions for enhanced yield. Vaccine 28: 6951-6957.
Chung YC, Huang JH, Lai CW, Sheng HC, Shih SR, Ho MS, Hu YC. 2006. Expression, purification and characterization of enterovirus-71 virus-like particles. World J Gastroenterol 12: 921-927.
Cox MM. 2007. Vaccines in development against avian influenza. Minerva Med 98: 145-153.
Frohlich MW. 2012. Sipuleucel-T for the treatment of advanced prostate cancer. Semin Oncol 39: 245-252.
Gibson DG. 2009. Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res 37: 6984-6990.
Gibson DG. 2011. Enzymatic assembly of overlapping DNA fragments. Methods Enzymol 498: 349-361.
Gilbert SC. 2001. Virus-like particles as vaccine adjuvants. Mol Biotechnol 19: 169-177.
Grace TD. 1962. Establishment of four strains of cells from insect tissues grown in vitro. Nature 195: 788-789.
Gromeier M, Bossert B, Arita M, Nomoto A, Wimmer E. 1999. Dual stem loops within the poliovirus internal ribosomal entry site control neurovirulence. J Virol 73: 958-964.
Han C, Jan LY, Jan YN. 2011. Enhancer-driven membrane markers for analysis of nonautonomous mechanisms reveal neuron-glia interactions in Drosophila. Proc Natl Acad Sci U S A 108: 9673-9678.
Hawtin RE, Zarkowska T, Arnold K, Thomas CJ, Gooday GW, King LA, Kuzio JA, Possee RD. 1997. Liquefaction of Autographa californica nucleopolyhedrovirus-infected insects is dependent on the integrity of virus-encoded chitinase and cathepsin genes. Virology 238: 243-253.
Heine J. 1940. Beobachtungeh über Lähmungszustände der unteren Extremitäten und deren Behandlung.
Hitchman RB, Possee RD, Crombie AT, Chambers A, Ho K, Siaterli E, Lissina O, Sternard H, Novy R, Loomis K, Bird LE, Owens RJ, King LA. 2010. Genetic modification of a baculovirus vector for increased expression in insect cells. Cell Biol Toxicol 26: 57-68.
Hodgson JJ, Arif BM, Krell PJ. 2011. Interaction of Autographa californica multiple nucleopolyhedrovirus cathepsin protease progenitor (proV-CATH) with insect baculovirus chitinase as a mechanism for proV-CATH cellular retention. J Virol 85: 3918-3929.
Hu YC, Hsu JT, Huang JH, Ho MS, Ho YC. 2003. Formation of enterovirus-like particle aggregates by recombinant baculoviruses co-expressing P1 and 3CD in insect cells. Biotechnol Lett 25: 919-925.
Jiang P, Liu Y, Ma HC, Paul AV, Wimmer E. 2014. Picornavirus morphogenesis. Microbiol Mol Biol Rev 78: 418-437.
Kamiyama Y, Adachi K, Handharyani E, Soejoedono RD, Kusano T, Inai M, Tsukamoto M, Kashiwagi S, Tsukamoto Y. 2011. Protection from avian influenza H5N1 virus infection with antibody-impregnated filters. Virol J 8: 54.
Kew OM, Sutter RW, de Gourville EM, Dowdle WR, Pallansch MA. 2005. Vaccine-derived polioviruses and the endgame strategy for global polio eradication. Annu Rev Microbiol 59: 587-635.
Kuzio J, Jaques R, Faulkner P. 1989. Identification of p74, a gene essential for virulence of baculovirus occlusion bodies. Virology 173: 759-763.
Lenz P, Day PM, Pang YYS, Frye SA, Jensen PN, Lowy DR, Schiller JT. 2001. Papillomavirus-like particles induce acute activation of dendritic cells. J Immunol 166: 5346-5355.
Lin G, Li G, Granados RR, Blissard GW. 2001. Stable cell lines expressing baculovirus P35: resistance to apoptosis and nutrient stress, and increased glycoprotein secretion. In Vitro Cell Dev Biol Anim 37: 293-302.
Lin SY, Chiu HY, Chiang BL, Hu YC. 2015. Development of EV71 virus-like particle purification processes. Vaccine 33: 5966-5973.
Lin SY, Chung YC, Chiu HY, Chi WK, Chiang BL, Hu YC. 2013. Evaluation of the stability of enterovirus 71 virus-like particle. J Biosci Bioeng.
Lin SY, Yeh CT, Li WH, Yu CP, Lin WC, Yang JY, Wu HL, Hu YC. 2015. Enhanced enterovirus 71 virus-like particle yield from a new baculovirus design. Biotechnol Bioeng 112: 2005-2015.
Lin YL, Yu CI, Hu YC, Tsai TJ, Kuo YC, Chi WK, Lin AN, Chiang BL. 2012. Enterovirus type 71 neutralizing antibodies in the serum of macaque monkeys immunized with EV71 virus-like particles. Vaccine 30: 1305-1312.
Liu YV, Massare MJ, Barnard DL, Kort T, Nathan M, Wang L, Smith G. 2011. Chimeric severe acute respiratory syndrome coronavirus (SARS-CoV) S glycoprotein and influenza matrix 1 efficiently form virus-like particles (VLPs) that protect mice against challenge with SARS-CoV. Vaccine 29: 6606-6613.
Lokugamage KG, Yoshikawa-Iwata N, Ito N, Watts DM, Wyde PR, Wang N, Newman P, Kent Tseng CT, Peters CJ, Makino S. 2008. Chimeric coronavirus-like particles carrying severe acute respiratory syndrome coronavirus (SCoV) S protein protect mice against challenge with SCoV. Vaccine 26: 797-808.
Lu B, Huang Y, Huang L, Li B, Zheng Z, Chen Z, Chen J, Hu Q, Wang H. 2010. Effect of mucosal and systemic immunization with virus-like particles of severe acute respiratory syndrome coronavirus in mice. Immunology 130: 254-261.
McBurney SP, Ross TM. 2009. Human immunodeficiency virus-like particles with consensus envelopes elicited broader cell-mediated peripheral and mucosal immune responses than polyvalent and monovalent Env vaccines. Vaccine 27: 4337-4349.
Paul JR. 1971. History of Poliomyelitis.
Pfeiffer BD, Truman JW, Rubin GM. 2012. Using translational enhancers to increase transgene expression in Drosophila. Proc Natl Acad Sci U S A 109: 6626-6631.
Pham DQ, Hice RH, Sivasubramanian N, Federici BA. 1993. The 1629-bp open reading frame of the Autographa californica multinucleocapsid nuclear polyhedrosis virus encodes a virion structural protein. Gene 137: 275-280.
Potter ML, Kane EM, Bergstrom JR, Dritz SS, Tokach MD, Derouchey JM, Goodband RD, Nelssen JL. 2012. Effects of diet source and vaccination for porcine circovirus type 2 and Mycoplasma hyopneumoniae on nursery pig performance. J Anim Sci.
Ranganathan S, Singh S, Poh CL, Chow VT. 2002. The hand, foot and mouth disease virus capsid: sequence analysis and prediction of antigenic sites from homology modelling. Appl Bioinformatics 1: 43-52.
Rodems SM, Friesen PD. 1993. The hr5 transcriptional enhancer stimulates early expression from the Autographa californica nuclear polyhedrosis virus genome but is not required for virus replication. J Virol 67: 5776-5785.
Roy P. 1996. Genetically engineered particulate virus-like structures and their use as vaccine delivery systems. Intervirology 39: 62-71.
Sabin AB, Ramos-Alvarez M, Alvarez-Amezquita J, Pelon W, Michaels RH, Spigland I, Koch MA, Barnes JM, Rhim JS. 1960. Live, orally given poliovirus vaccine. Effects of rapid mass immunization on population under conditions of massive enteric infection with other viruses. JAMA 173: 1521-1526.
Smith JS. 1990. Patenting the Sun: Polio and the Salk Vaccine.
Sokolenko S, George S, Wagner A, Tuladhar A, Andrich JM, Aucoin MG. 2012. Co-expression vs. co-infection using baculovirus expression vectors in insect cell culture: Benefits and drawbacks. Biotechnol Adv 30: 766-781.
Szarewski A. 2010. HPV vaccine: Cervarix. Expert Opin Biol Ther 10: 477-487.
Taticek RA, Choi C, Phan SE, Palomares LA, Shuler ML. 2001. Comparison of growth and recombinant protein expression in two different insect cell lines in attached and suspension culture. Biotechnol Prog 17: 676-684.
Thomas CJ, Brown HL, Hawes CR, Lee BY, Min MK, King LA, Possee RD. 1998. Localization of a baculovirus-induced chitinase in the insect cell endoplasmic reticulum. J Virol 72: 10207-10212.
Thompson CM, Petiot E, Mullick A, Aucoin MG, Henry O, Kamen AA. 2015. Critical assessment of influenza VLP production in Sf9 and HEK293 expression systems. BMC Biotechnol 15: 31.
Thorpe R, Minor PD, Mackay A, Schild GC, Spitz M. 1982. Immunochemical studies of polioviruses: identification of immunoreactive virus capsid polypeptides. J Gen Virol 63: 487-492.
Underwood M. 1789. A Treatise on Diseases of Children with General Directions for the Management of Infants from the Biirth.
Vialard JE, Richardson CD. 1993. The 1,629-nucleotide open reading frame located downstream of the Autographa californica nuclear polyhedrosis virus polyhedrin gene encodes a nucleocapsid-associated phosphoprotein. J Virol 67: 5859-5866.
Visciano ML, Diomede L, Tagliamonte M, Tornesello ML, Asti V, Bomsel M, Buonaguro FM, Lopalco L, Buonaguro L. 2011. Generation of HIV-1 Virus-Like Particles expressing different HIV-1 glycoproteins. Vaccine 29: 4903-4912.
Vlak JM, Klinkenberg FA, Zaal KJ, Usmany M, Klinge-Roode EC, Geervliet JB, Roosien J, van Lent JW. 1988. Functional studies on the p10 gene of Autographa californica nuclear polyhedrosis virus using a recombinant expressing a p10-beta-galactosidase fusion gene. J Gen Virol 69 ( Pt 4): 765-776.
Washington DC. 1996. Summary Polio's legacy: an oral history.
Washington DC. 2007. Epidemiology and Prevention of Vaccine-Preventable Diseases (The Pink Book).
Weissmann F, Petzold G, VanderLinden R, Huis In 't Veld PJ, Brown NG, Lampert F, Westermann S, Stark H, Schulman BA, Peters JM. 2016. biGBac enables rapid gene assembly for the expression of large multisubunit protein complexes. Proc Natl Acad Sci U S A 113: E2564-2569.
Wesley J, Whitmore J, Trager J, Sheikh N. 2012. An overview of sipuleucel-T: Autologous cellular immunotherapy for prostate cancer. Hum Vaccin Immunother 8.
Wetz K, Habermehl KO. 1982. Specific cross-linking of capsid proteins to virus RNA by ultraviolet irradiation of poliovirus. J Gen Virol 59: 397-401.
Wheeler DS, Hector R. Wong, Thomas P. Shanley. cience and practice of pediatric critical care medicine. 2009.
Wickham TJ, Davis T, Granados RR, Shuler ML, Wood HA. 1992. Screening of insect cell lines for the production of recombinant proteins and infectious virus in the baculovirus expression system. Biotechnol Prog 8: 391-396.
Wickman I. 1907. Poliomyelitis acuta und verwandter Erkankungen.
William Atkinson CW, and Jennifer Hamborsky. 2011. Epidemiology and prevention of vaccine-preventable diseases. Public Health Foundation.
Williams GV, Rohel DZ, Kuzio J, Faulkner P. 1989. A cytopathological investigation of Autographa californica nuclear polyhedrosis virus p10 gene function using insertion/deletion mutants. J Gen Virol 70 ( Pt 1): 187-202.
Yang L, Song Y, Li X, Huang X, Liu J, Ding H, Zhu P, Zhou P. 2012. HIV-1 Virus Like Particles Produced by Stably Transfected Drosophila S2 cells - a Desirable Vaccine Component. J Virol.
Yao Q, Bu Z, Vzorov A, Yang C, Compans RW. 2003. Virus-like particle and DNA-based candidate AIDS vaccines. Vaccine 21: 638-643.
Young KR, McBurney SP, Karkhanis LU, Ross TM. 2006. Virus-like particles: designing an effective AIDS vaccine. Methods 40: 98-117.
Yu CK, Chen CC, Chen CL, Wang JR, Liu CC, Yan JJ, Su IJ. 2000. Neutralizing antibody provided protection against enterovirus type 71 lethal challenge in neonatal mice. J Biomed Sci 7: 523-528.
Zhao Q, Li S, Yu H, Xia N, Modis Y. 2013. Virus-like particle-based human vaccines: quality assessment based on structural and functional properties. Trends Biotechnol 31: 654-663.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *