帳號:guest(18.224.59.181)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林思羽
作者(外文):Lin, Ssu-Yu
論文名稱(中文):結合電沉積二氧化鈦緻密層與板鈦礦支架層製備高效率塑膠鈣鈦礦太陽能電池
論文名稱(外文):High Efficiency Plastic Perovskite Solar Cell Using Low Temperature Processable Electrodeposited TiO2 Compact Layer and Brookite Scaffold
指導教授(中文):衛子健
指導教授(外文):Wei, Tzu-Chien
口試委員(中文):竇維平
李建良
口試委員(外文):Dow, Wei-Ping
Lee, Chien-Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:104032508
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:73
中文關鍵詞:鈣鈦礦塑膠基板低溫電沉積板鈦礦
外文關鍵詞:PerovskitePlasticElectrodepositionBrookite
相關次數:
  • 推薦推薦:0
  • 點閱點閱:198
  • 評分評分:*****
  • 下載下載:41
  • 收藏收藏:0
鈣鈦礦太陽能電池的效率在近十年來快速的成長至22.1 %,使得商業化的可能性大幅提升,但傳統形式的鈣鈦礦太陽能電池結構中,緻密層與多孔支架層二氧化鈦薄膜需高溫燒結製程,不僅不利於大面積連續生產,更消耗大量的能源。因此發展低溫製程的鈣鈦礦太陽能電池便成為實用化與否的一大重要技術挑戰。低溫製程的鈣鈦礦太陽能電池仍然可以硬式玻璃基板與塑膠高分子基板上施作,然一般認為塑膠高分子基板擁有輕量與可彎曲的特性,應用範圍較玻璃基板廣泛,因此此篇研究著重於發展低溫塑膠基板的鈣鈦礦太陽能電池。
低溫鈣鈦礦太陽能電池的挑戰在於傳統緻密層與多孔支架層的二氧化鈦需高溫燒結,因此,此篇研究在緻密層的部分,為使不耐酸鹼性的塑膠高分子基板不被電沉積溶液腐蝕,添加螯合劑(EDTA)至電沉積溶液中,增加三氯化鈦在溶液中的溶解度,達到增加電沉積溶液pH值的目的,再進行電沉積反應沉積緻密層,並經由循環伏安法的結果發現沉積的薄膜具有良好的覆蓋率。而多孔支架層為不含黏著劑(Binder-free)的特殊多孔漿料,此漿料可在70 oC即形成板鈦礦二氧化鈦結晶,其結晶經由XRD確認,從TEM得知其幾何形狀為扁平狀且直徑相較於原先所使用的銳鈦礦二氧化鈦較小(約25奈米),大約16-18奈米,除此之外,結合UV與UPS的結果發現,此漿料導帶位置也較銳鈦礦低,表示未經高溫燒結的多孔漿料可藉由顆粒較小且扁平狀增加與鄰近顆粒的接觸面積,以彌補未經燒結所增加的電子傳遞電阻與導帶位置低增加電子的注入能力。結合以上的電沉積緻密層與特殊多孔漿料,可製備出目前塑膠高分子基板的多孔結構最高效率,效率高達15.76 %。
In recent years, fabricating plastic perovskite solar cells (PSCs) becomes increasingly attractive because of their light-weight and bendability. However, commercial plastic substrate like Indium Tin Oxide-polyethylene naphthalate (ITO-PEN) substrate cannot endure in high temperature and acidic condition, which are safe while making PSC on glass substrate. Previously, our group developed an electrodeposition technology to replace commonly-used spin coating to deposit more compact and thinner hole blocking TiOx layer at ambient temperature. In this research, modified electrodeposition is developed to deposit TiOx blocking layer (ED-BL) on ITO-PEN. As to scaffold layer, commercial brookite slurry are used to substitute conventional anatase slurry, because brookite slurry does not require high temperature post-treatment to remove binder so that entire process to be available below 150 oC. However, ITO-PEN is easily corroded in acidic solution bath with pH value below 3. Here, we adjusted the pH value to 4.8 and applied EDTA to solution bath to prevent particle aggregation and make the solution be suitable for ITO-PEN substrate. For brookite slurry, the XRD pattern evidenced that brookite crystal can be formed after annealing at 70 °C. Sheet-like structure of brookite particles with particle size between 16-18 nm was investigated by TEM, which was believed to provide more contact area with near particles, benefiting electron transfer. After process optimization, the flexible device fabricated in low temperature showed a champion photovoltaic efficiency of 15.76%.
總目錄
摘要 I
Abstract II
致謝 III
第一章 緒論 1
1-1前言 1
1-3太陽能電池的發展 3
第二章 文獻回顧 5
2-1鈣鈦礦太陽能電池 5
2-1-1鈣鈦礦起源與材料介紹 5
2-1-2鈣鈦礦太陽能電池的發展與近況 6
2-2低溫鈣鈦礦太陽能電池發展 8
2-2-1低溫多孔超結構鈣鈦礦太陽能電池發展 8
2-2-2低溫平面異質接面結構鈣鈦礦太陽能電池發展 10
2-3塑膠鈣鈦礦太陽能電池發展 13
2-3-1氧化鋅平面異質接面結構ETL 13
2-3-2氧化錫平面異質接面結構ETL 16
2-3-3 Zn2SnO4(ZSO)平面異質接面結構ETL 17
2-3-4 二氧化鈦平面異質接面結構ETL 19
2-3-5多孔結構鈣鈦礦太陽能電池 23
2-4研究動機與目的 25
第三章 實驗方法與儀器分析 26
3-1設備與儀器 26
3-2儀器原理 27
3-2-1太陽光模擬器 27
3-2-2 X光繞射儀 32
3-2-3二次飛行離子質譜儀(TOF-SIMS) 33
3-2-4紫外光/可見光光譜儀(UV-Vis) 34
3-2-5穿透式電子顯微鏡(TEM) 35
3-2-6 場發射掃描式電子顯微鏡(FE-SEM) 36
3-3藥品與材料 37
3-4實驗藥品製備與配置 38
3-4-1甲基碘化胺(CH3NH3I,MAI)合成方法 38
3-4-2電洞傳輸層製備 38
3-5理論與分析原理 39
3-5-1半導體能隙(Band gap)量測分析 39
3-5-3循環伏安法原理介紹 39
3-6實驗方法 43
3-6-1電沉積二氧化鈦緻密層 43
3-6-2塑膠鈣鈦礦太陽能電池製備流程 45
第四章 結果與討論 47
4-1電沉積二氧化鈦緻密層分析 47
4-1-1掃描式電子顯微鏡分析(SEM) 47
4-1-2 TiOx薄膜材料特性鑑定 49
4-1-3 TiOx薄膜緻密性及阻隔效果檢測 50
4-1-4 TiOx薄膜厚度檢測 52
4-1-5低溫TiOx緻密層鈣鈦礦太陽能元件光伏表現 53
4-2板鈦礦二氧化鈦多孔層特徵分析 55
4-2-1 多孔支架層結晶特徵鑑定 55
4-2-2多孔支架層幾何特徵鑑定 57
4-2-3多孔支架層能階分析 58
4-2-4優化低溫多孔支架層之元件表現 60
4-3 結合最適化電沉積TiOx緻密層與低溫板鈦礦多孔支架層之元件表現 61
4-4元件表現之機械性質測試與長效穩定性 63
第五章 結論 66
第六章 未來方向 67
參考文獻 68
1 K. E. Trenberth, J. T. Fasullo, J. Kiehl, Earth's Global Energy Budget. Bulletin of the American Meteorological Society 90, 311-323 (2009).
2 D. M. Chapin, C. Fuller, G. Pearson, A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics 25, 676-677 (1954).
3 D. Weber, CH3NH3SnBrXI3-X(X=0-3), a Sn(II)-System with Cubic Perovskite Structure. Zeitschrift für Naturforschung B 33, 862-864 (1978).
4 D. Weber, CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure. Zeitschrift für Naturforschung B 33, 1443-1445 (1978).
5 A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 131, 6050-6051 (2009).
6 J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. Nanoscale 3, 4088-4093 (2011).
7 M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 338, 643-647 (2012).
8 S. D. Stranks, G. E. Eperson G. Grancini, C Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 342, 341-344 (2013).
9 H.-S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. H. Baker, J. Ho. Yum, J. E. Moser, M. GrätzelLead, N. G. Park, Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientic Report 2, 591-597 (2012).
10 M. Liu, M. B. Johnston, H. J. Snaith, Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature 501, 395-398 (2013).
11 H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface Engineering of Highly Efficient Perovskite Solar Cells. Science 345, 542-546 (2014).
12 J. Chen, J. Xu, L. Xiao, B. Zhang, S. Dai, J. Yao, Mixed-Organic-Cation (FA)x(MA)1-xPbI3 Planar Perovskite Solar Cells with 16.48% Efficiency via a Low-Pressure Vapor-Assisted Solution Process. ACS Applied Material Interfaces 9, 2449-2458 (2017).
13 M. H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P. P. Boix, N. Mathews, Flexible, Low-Temperature, Solution Processed ZnO-Based Perovskite Solid State Solar Cells. Chemical Communications 49, 11089-11091 (2013).
14 W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells. Journal of the American Chemical Society 137, 6730-6733 (2015).
15 W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, H. J. Snait, Enhancement of Perovskite-Based Solar Cells Employing Core–Shell Metal Nanoparticles. Nano letters 13, 4505-4510 (2013).
16 J. M. Ball, M. M. Lee, A. Hey, H. J. Snaith, Low-Temperature Processed Meso-Superstructured to Thin-Film Perovskite Solar Cells. Energy Enviromental Science 6, 1739-1743 (2013).
17 J. T.-W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M Saliba, I. M. Sero, J. Bisquert, H. J. Snaith, R. J. Nicholas, Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells. Nano letters 14, 724-730 (2013).
18 K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, H. J. Snaith, Sub-150 C Processed Meso-Superstructured Perovskite Solar Cells with Enhanced Efficiency. Energy Environmental Science 7, 1142-1147 (2014).
19 A. K. Jena, H. W. Chen, A. Kogo, Y. Sanehira, M. Ikegami, T. Miyasaka, The Interface between FTO and the TiO2 Compact Layer Can Be One of the Origins to Hysteresis in Planar Heterojunction Perovskite Solar Cells. ACS applied materials & interfaces 7, 9817-9823 (2015).
20 S. D. Sung, D. P. Ojha, J. S. You, J. Lee, J. Kim, W. I. Lee, 50 nm Sized Spherical TiO2 Nanocrystals for Highly Efficient Mesoscopic Perovskite Solar Cells. Nanoscale 7, 8898-8906 (2015).
21 F. Fu, T. Feurer, T. Jäger, E. Avancini, B. Bissig, S. Yoon, S. Buecheler, A. N. Tiwari, Low-Temperature-Processed Efficient Semi-Transparent Planar Perovskite Solar Cells for Bifacial and Tandem Applications. Nature Communications 6, 8932-8940 (2015).
22 S. S. Shin, W. S. Wang, J. H. Noh, J. H. Suk, N. J. Jeon, J. H. Park, J. S. Kim, W. M. Seong, S. I. Seok, High-Performance Flexible Perovskite Solar Cells Exploiting Zn2SnO4 Prepared in Solution below 100 OC. Nature communications 6, 7410-7418 (2015).
23 A. Yella, L.-P. Heiniger, P. Gao, M. K. Nazeeruddin, M. Grätzel, Nanocrystalline Rutile Electron Extraction Layer Enables Low-Temperature Solution Processed Perovskite Photovoltaics with 13.7% Efficiency. Nano letters 14, 2591-2596 (2014).
24 D. Liu, T. L. Kelly, Perovskite Solar Cells with a Planar Heterojunction Structure Prepared Using Room-Temperature Solution Processing Techniques. Nature Photonics 8, 133-138 (2014).
25 J. Zhang, E. J. Juárez-Pérez, I. Mora-Seró, B. Viana, T. Pauporté, Fast and Low Temperature Growth of Electron Transport Layers for Efficient Perovskite Solar Cells. Journal of Materials Chemistry A 3, 4909-4915 (2015).
26 P. Tiwana, P. Docampo, M. B. Johnston, H. J. Snaith, L. M. Herz, Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO2, and TiO2 Films Used in Dye-Sensitized Solar Cells. ACS nano 5, 5158-5166 (2011).
27 J. P. C. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J. Jacobsson, A. R. S. Kandada, S. M. Zakeeruddin, . Petrozza, . Abate, M. K. Nazeeruddin, M. Grätzel, A. Hagfeldt, Highly Efficient Planar Perovskite Solar Cells Through Band Alignment Engineering. Energy & Environmental Science 8, 2928-2934 (2015).
28 E. H. Anaraki, A. Kermanpur, L. Steier, . Domanski, T. Matsui, W. Tress, M. Saliba, A. Abate, M . Grätzel, A. Hagfeldt, J. P. Correa-Baena, Highly Efficient and Stable Planar Perovskite Solar Cells by Solution-Processed Tin Oxide. Energy & Environmental Science 9, 3128-3134, (2016).
29 J.-Y. Chen, C.-C. Chueh, Z. Zhu, W.-C. Chen, A. K.-Y. Jen, Low-Temperature Electrodeposited Crystalline SnO2 as an Efficient Electron-Transporting Layer for Conventional Perovskite Solar Cells. Solar Energy Material Solar Cells 164, 47-55 (2017).
30 Y. Cheng, Q. D. Yang, J. Xiao, Q. Xue, H. W. Li, Z. Guan, H. L. Yip, S. W. Tsang, Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles. ACS Applied Materials & Interfaces 7, 19986-19993 (2015).
31 J. Yang, B. D. Siempelkamp, E. Mosconi, F. De Angelis, T. L. Kelly, Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO. Chemistry of Materials 27, 4229-4236 (2015).
32 A. Huang, L. Lei, J. Zhu, Y. Yu, Y. Liu, S. Yang, S. Bao, P. Jin, Controllable Deposition of TiO2 Nanopillars at Room Temperature for High Performance Perovskite Solar Cells with Suppressed Hysteresis. Solar Energy Materials and Solar Cells 168, 172-182 (2017).
33 J. H. Heo, M. H. Lee, H. J. Han, B. R. Patil, J. S. Yu, S. H. Im, Highly Efficient Low Temperature Solution processable Planar Type CH3NH3PbI3 Perovskite Flexible Solar Cells. Journal of Materials Chemistry A 4, 1572-1578 (2016).
34 A. Kogo, M. Ikegami, T. A. Miyasaka, SnOx–Brookite TiO2 Bilayer Electron Collector for Hysteresis-Less High Efficiency Plastic Perovskite Solar Cells Fabricated at Low Process Temperature. Chemical Communications 52, 8119-8122 (2016).
35 M. Park, J. Y. Kim, H. J. Son, C. H. Lee, S. S. Jang, M. J. Ko, Low-Temperature Solution-Processed Li-Doped SnO2 as an Effective Electron Transporting Layer for High-Performance Flexible and Wearable Perovskite Solar Cells. Nano Energy 26, 208-215 (2016).
36 C. Wang, D. Zhao, C. R. Grice, W. Liao, Y. Yu, A. Cimaroli, . Shrestha, P. J. Roland, J. Chen, Z. Yu, . Liu, N. Cheng, R. J. Ellingson, X, Zhao, Y. Yan, Low-Temperature Plasma-Enhanced Atomic Layer Deposition of Tin Oxide Electron Selective Layers for Highly Efficient Planar Perovskite Solar Cells. Journal of Materials Chemistry A 4, 12080-12087 (2016).
37 S. S. Shin, W. S. Yang, E. J. Yeom, S. J. Lee, N. J. Jeon, Y. C. Joo, I. J. Park, J. H. Noh, S. I. Seok, Tailoring of Electron-Collecting Oxide Nanoparticulate Layer for Flexible Perovskite Solar Cells. Journal of Physical Chemistry Letters 7, 1845-1851 (2016).
38 D. Yang, R. Yang, J. Zhang, Z. Yang, S. Liu, . Li, High Efficiency Flexible Perovskite Solar Cells Using Superior Low Temperature TiO2. Energy & Environmental Science 8, 3208-3214 (2015).
39 W. Qiu, U. W. Paetzold, R. Gehlhaar, V. Smirnov, H. G. Boyen, J. G. Tait, B. Conings, W. Zhang, C. B. Neilsen, I. M. Culloch, L. Froyen, P. Heremans, D. heyns, An Electron Beam Evaporated TiO2 Layer for High Efficiency Planar Perovskite Solar Cells on Flexible Polyethylene Terephthalate Substrates. Journal of Materials Chemistry A 3, 22824-22829 (2015).
40 I. Jeong, H. Jung, M. Park, J. S. Park, H. J. Son, J. Joo, J. Lee, M. J. Ko, A Tailored TiO2 Electron Selective Layer for High-Performance Flexible Perovskite Solar Cells via Low Temperature UV Process. Nano Energy 28, 380-389 (2016).
41 F. Di Giacomo, V. Zardetto, A. D'Epifanio, S. Pescetelli, F. Matteocci, S. Razza, A. D. Carlo, S. Licoccia, W. M. M. Kessels, M. Creatore, T. M. Brown, Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV‐Irradiated TiO2 Scaffolds on Plastic Substrates. Advanced Energy Materials 5, 1401808-1401816 (2015).
42 A. Kogo, S. Iwasaki, M. Ikegami, T. Miyasaka, An Ultrathin Sputtered TiO2 Compact Layer for Mesoporous Brookite-Based Plastic CH3NH3PbI3−xClx Solar Cells. Chemistry Letters 46, 530-532 (2017).
43 A. Fakharuddin, F. Di Giacomo, I. Ahmed, Q. Wali, T. M. Brown, R. Jose, Role of Morphology and Crystallinity of Nanorod and Planar Electron Transport Layers on the Performance and Long Term Durability of Perovskite Solar Cells. J. Power Sources 283, 61-67 (2015).
44 C. Lokhande, S.-K. Min, K.-D. Jung, O.-S. Joo, Cathodic Electrodeposition of Amorphous Titanium Oxide Films From an Alkaline Solution Bath. Journal of Matweials Science 39, 6607-6610 (2004).
45 L. Rassaei, E. Vigil, R. W. Frnch, M. F. Mahon, R. G. Compton, F. Marken, Effects of Microwave Radiation on Electrodeposition Processes at Tin-Doped Indium Oxide (ITO) Electrodes. Electrochimica Acta 54, 6680-6685 (2009).
46 石彦龙, 冯晓娟, 杨武, 王永生, 超疏水二氧化钛薄膜的製備及其經紫外光照射引發的超親水性研究. 無機化學學报 26, 2209-2214 (2010).
47 T.-S. Su, T.-Y. Hsieh, C.-Y. Hong, T.-C. Wei, Electrodeposited Ultrathin TiO2 Blocking Layers for Efficient Perovskite Solar Cells. Scientific reports 5 16098-16105 (2015).
48 H. Hu, B. Dong, H. Hu, F. Chen, M. Kong, Q. Zhang, T. Luo, L. Zhao, Z. Guo, J. Li, Z. Xu, S. Wang, D. Eder, L. Wan, Atomic Layer Deposition of TiO2 for a High-Efficiency Hole-Blocking Layer in Hole-Conductor-Free Perovskite Solar Cells Processed in Ambient Air. ACS Applied Materials & Interfaces 8, 17999-18007 (2016).
49 S. Y. Lin, T. S. Su, T. Y. Hsieh, P. C. Lo, T. C. Wei, Efficient Plastic Perovskite Solar Cell with a Low‐Temperature Processable Electrodeposited TiO2 Compact Layer and a Brookite TiO2 Scaffold. Advanced Energy Materials 1700169-1700177(2017).
50 S. Wang, M. Sina, P. Parikh, T. Uekert, B. Shahbazan, A. Devaraj, Y. S. Meng, Role of 4-Tert-Butylpyridine as a Hole Transport Layer Morphological Controller in Perovskite Solar Cells. Nano Letters 16, 5594-5600 (2016).
51 S. Cacovich, L. Cina, F. Matteocci, . Divitini, P. A. Midgey, A. D. Carlo, C. Ducai, Gold and Iodine Diffusion in Large Area Perovskite Solar Cells Under Illumination. Nanoscale 9, 4700-4706 (2017).


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *