帳號:guest(18.118.10.37)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳敬薇
作者(外文):Chen, Jing-Wei
論文名稱(中文):Sb/Co、Co/Sb2Te3與Ni/Sb2Te3的界面反應及電遷移效應對電子軟銲銲點界面反應之影響
論文名稱(外文):Sb/Co, Co/Sb2Te3 and Ni/Sb2Te3 interfacial reactions and electromigration effects upon interfacial reactions
指導教授(中文):陳信文
指導教授(外文):Chen, Sinn-Wen
口試委員(中文):王朝弘
張道智
口試委員(外文):Wang, Chao-Hong
Chang, Tao-Chih
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:104032506
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:66
中文關鍵詞:界面反應熱電材料電遷移軟銲銲點Sb2Te3Ni/Sb2Te3Co/Sb2Te3
外文關鍵詞:interfacial reactionthermoelectric materialelectromigrationsolder jointsSb2Te3Ni/Sb2Te3Co/Sb2Te3
相關次數:
  • 推薦推薦:0
  • 點閱點閱:62
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
熱電材料能將熱與電能直接進行轉換的特性,在現今能源議題受矚目之時,成為相當熱門的研究題材之一。在一個完整的熱電模組中,通常需要多組p型與n型半導體接合,Bi2Te3熱電材料以摻雜(doping)第三種元素的方式提升其熱電性質,在商用Bi2Te3熱電元件中,通常以摻雜Sb形成p型(Bi,Sb)2Te3及摻雜Se形成n型Bi2(Te,Se)3,在熱電元件中的接點處由於不同材料的接合而發生界面反應,通常會在銲料與熱電材料之間引入擴散阻障層以免界面反應造成熱電材料的消耗或是接點的破壞,而由於熱電元件在使用中勢必會有電流通過,電遷移效應造成的原子擴散也同時影響接點處界面反應之情形。
Bi2Te3系熱電材料對Ni阻障層的界面反應已有相關實驗結果,然而在p型(Bi,Sb)2Te3材料中的二元Sb2Te3化合物並未有界面反應實驗探討。在本研究中對Sb2Te3/Ni界面反應進行150˚C、200˚C、300˚C的界面反應,此界面反應生成的介金屬相為Ni2SbTe2相,或是具有Sb取代Te的NiTe2-x相,相關二元界面反應Ni/Sb、Ni/Te於200˚C的界面反應的界面反應則各自生成NiSb、NiSb2及Ni3Te2、NiTe0.775、NiTe2-x相,於熱處理480小時之後界面反應層平均厚度分別達到17.0及61.0μm。Sb2Te3/Co及相關二元Co/Sb、Co/Te於200˚C之界面反應,反應速率相對緩慢,可能之生成相包含CoSb、CoSb3與CoTe2等相,Co/Sb於450˚C與550˚oC之界面反應於48小時後界面反應層分別達到27.6及88.3μm,生成CoSb與CoSb3相,Sb2Te3/Co於300˚C反應之後生成具有Sb取代Te的CoTe2相。。
電遷移實驗部分進行Sn-3.5Ag/Cu界面反應有無通電流之比較,及以計算方式呈現Sn/Ni界面反應層生成速率於不同電流密度下之影響,於125˚C之Sn-Ag/Cu生成相為Cu3Sn與Cu6Sn5相,Sn/Ni界面於愈高電流密度作用下反應生成Ni3Sn4相愈快。
Thermoelectric modules have attracted very intensive research interests primarily due to their ability of enhancing energy usage efficiency by converting waste heat into electricity. Thermoelectric modules are usually composed of arrays of devices, and there are numerous joints in thermoelectric modules. Interfacial reactions at these joints are critical to the module’s reliability. In commercially used Bi2Te3 thermoelectric modules, often doped Sb and Se to enhance thermoelectric properties, and thus formed p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3. To prevent the consumption of thermoelectric material due to interfacial reaction at thermoelectric material and solder joints, diffusion barrier layer is ususally introduced in between. Besides diffusion, electromigration also contribute to atomic flux.
There are already some experimental results of Bi2Te3 type thermoelectric material to Ni barrier layer, but no result related to Sb2Te3 compound. This study investigates interfacial reactions at Sb2Te3 to nickel interface at 150, 200 and 300˚C, Ni2SbTe2 phase, or NiTe2-x phase with Sb atoms occupied at Te sites, is observed at the interface. Ni5Sb2 and NiSb phases are formed at Ni/Sb interface. Ni3Te2, NiTe0.775 and NiTe2-x phases are formed at Ni/Te interface. The reaction layers grow to 17.0 and 61.0μm at Ni/Sb and Ni/Te interface after 480 hours under 200˚C heat treatment. Co is also introduced as diffusion barrier layer, CoTe2 phase is found at Sb2Te3/Co and Co/Te interface at 200 and 300˚C. CoSb and CoSb3 phases are found at Sb/Co interface when react at 450 and 550˚C. The reaction layer thickness is 27.6 and 88.3μm after 48 hours reaction.
The interfacial reactions of Sn-3.5Ag/Cu solder joints at 125˚C and with or without electric current are experimentally investigated. Cu3Sn and Cu6Sn5 phases are found. A one-dimensional mass transfer model was developed to describe the growth of the reaction phase layer of Sn/Ni interfacial reactions. The growth of Ni3Sn4 phase at Sn/Ni interface is faster with higher electric current density.
摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 VIII
一、前言 1
二、文獻回顧 3
2-1 Ni/Sb2Te3相關界面反應情形 3
2-1-1 Ni/Sb界面反應 3
2-1-2 Ni/Te界面反應 3
2-1-3 Ni/Sb2Te3界面反應 4
2-2 Co/Sb2Te3相關界面反應情形 11
2-2-1 Co/Sb界面反應 11
2-2-2 Co/Te界面反應 11
2-2-3 Co/Sb2Te3界面反應 11
2-3電遷移 16
2-3-1 Sn/Cu界面反應 17
2-3-2 Sn-Ag/Cu界面反應 17
2-3-3擴散模型推導 19
三、實驗方法 24
3-1 界面反應實驗 24
3-1-1 樣品製備 24
3-1-2界面反應 26
3-1-3樣品分析 26
3-2 電遷移實驗 27
3-2-1 反應偶製備 27
3-2-2 通電流實驗 27
3-2-3金相分析 28
四、結果與討論 29
4-1 Ni/Sb界面反應 29
4-2 Ni/Te界面反應 31
4-3 Co/Sb界面反應 35
4-4 Co/Te界面反應 42
4-5 Sb2Te3對Ni阻障層界面反應 45
4-6 Sb2Te3對Co阻障層界面反應 49
4-7 Sn-Ag/Cu於125˚C界面反應 53
4-7-1 Sn-Ag/Cu於125˚C,未通電流之界面反應情形 53
4-7-2 Sn-Ag/Cu於125˚C,電流密度500A/cm2,界面反應情形 53
4-8 計算 58
4-8-1 於160˚C,Sn/Ni/Sn在不同電流密度反應之情形 58
4-8-2 於200˚C,Sn/Ni/Sn在不同電流密度反應之情形 58
4-8-3 於160˚C,Sn-3.5Ag/Ni/Sn-3.5Ag在不同電流密度反應之情形 58
4-8-4 於200˚C,Sn-3.5Ag/Ni/Sn-3.5Ag在不同電流密度反應之情形 59
五、結論 62
六、參考文獻 64
[1] 朱旭山, “熱電材料與元件之發展與應用”, 工業材料雜誌220期, pp. 93-103, (2005).
[2] 劉姿彣碩士論文,國立清華大學化工所,(2016)。
[3] 楊庭瑞碩士論文,國立清華大學化工所,(2015)。
[4] 吳芷聿碩士論文,國立清華大學化工所,(2013)。
[5] S.-W. Chen, T.-R. Yang, C.-Y. Wu, H.-W. Hsiao, H.-S. Chu, J.-D. Huang, and T.-W. Liou, “Interfacial reactions in the Ni/(Bi0.25Sb0.75)2Te3 and Ni/Bi2(Te0.9Se0.1)3 couples”, Journal of Alloys and Compounds, Vol. 686, pp. 847-853, (2016).
[6] 陳韋安碩士論文,國立清華大學化工所,(2014)。
[7] W.-A. Chen, S.-W. Chen, S.-M. Tseng, H.-W. Hsiao, Y.-Y. Chen, G. J. Snyder, and Y. Tang, “Interfacial reactions in Ni/CoSb3 couples at 450oC”, Journal of Alloys and Compounds, Vol. 632, pp. 500-504, (2015).
[8] Y. Zhang, C. Li, Z. Du, and C. Guo, “A thermodynamic assessment of Ni-Sb system”, Calphad, Vol. 32(2), pp. 378-388, (2008).
[9] S.-W. Chen, T.-R. Yang, H.-W. Hsiao, P.-H. Lin, J.-H. Huang, and J.-D. Huang, “Ni/Te and Ni/Ag2Te interfacial reaction”, Materials Chemistry and Physics, Vol. 180, pp. 396-403, (2016).
[10] S.Y. Lee and P. Nash, “Ni-Te(Nickel-Tellurium)”, Phase Diagrams of Binary Nickel Alloys, ASM International, pp. 330-338, (1991).
[11] F. Laufek, M. Drábek, and R. Skála, “The system Ni-Sb-Te at 400oC”, The Canadian Mineralogist, Vol. 48, pp. 1069-1079, (2010).
[12] T. Shimozaki, K.-S. Kim, T. Iwata, T. Okino, and C.-G. Lee, “Structure of Thermoelectric Material CoSb3 Formed by Reactive Diffusion”, Materials Transactions, Vol. 43(10), pp. 2609-2616, (2002)
[13] Y.-B. Zhang, C.-R. Li, Z.-M. Du, and T. Geng, “The thermodynamic assessment of the Co-Sb system”, Computer Coupling of Phase Diagrams and Thermochemistry, Vol.32, pp.56-63, (2008).
[14] C.-Y. Ko and A. T. Wu, “Evaluation of Diffusion Barrier Between Pure Sn and Te”, Journal of Electronic Materials, Vol. 41(12), pp. 3320-3324, (2012).
[15] K. Ishida, T. Nishizawa, “Co-Te(Cobalt-Tellurium)”, Binary Alloy Phase Diagrams, II Ed., Ed. T.B. Massalski, Vol. 2, pp. 1247-1248, (1990).
[16] R. P. Gupta, O. D. Iyore, J. B. White, K. Cho, H. N. Alshareef, and B. E. Gnade, “Interface Characterization of Cobalt Contacts on Bismuth Selenium Telluride for Thermoelectric Devices”, Electrochemical and Solid-State Letters, Vol. 12(10), H395-H397, (2009).
[17] P. Terzieff and H. Ipser, “A Contribution to the Ternary Phase Diagram Co-Sb-Te”, Monatshefte für Chemie, Vol. 123, pp. 35-42, (1992).
[18] K. -N. Tu, Solder Joint Technology, Springer, (2007)
[19] S. -W. Chen, C.-M. Chen, C.-H Wang, and C.-M. Hsu, “Effects of Electromigration on Electronic Solder Joints”, Lead-free Solders: Materials Reliability for Electronics, Wiley, pp. 401-422, (2012).
[20] H. B. Huntington and A.R. Grone, “Current-induced marker motion in gold wires”, Journal of Physics and Chemistry of Solids, Vol. 20, pp. 76-87, (1961).
[21] S.-W. Chen, C.-M. Chen, and W.-C. Liu, “The Electric Current Effects Upon the Sn\Cu and Sn\Ni Interfacial Reactions”, Journal of Electronic Materials, Vol. 27(11), pp. 1193-1198, (1998).
[22] H. Gan and K. N. Tu, “Polarity effect of electromigration on kinetics of intermetallic compound formation in Pb-free solder V-groove samples”, Journal of Applied Physics, Vol. 97, 063514 (2005).
[23] S.-W. Chen and C.-H. Wang, “Effects of electromigration on interfacial reactions in cast Sn/Cu joints”, Journal of Materials Research, Vol. 22(3), pp. 695-702, (2007).
[24] G.-C. Xu, F. Guo, and W.-R. Zhu, “Electromigration in eutectic SnAg solder reaction couples with various ambient temperatures and current densities”, International Journal of Minerals, Metallurgy and Materials, Vol. 16, pp. 685-690, (2009).
[25] J. Yu and J.Y. Kim, “Effects of residual S on Kirkendall void formation at Cu/Sn-3.5Ag solder joints”, Acta Materialia, Vol. 56, pp. 5514-5523, (2008).
[26] M.-S. Kim, M.-S. Kang, J.-H. Bang, C.-W. Lee, M.-S. Kim, and S. Yoo, “Interfacial reactions of fine-pitch Cu/Sn-3.5Ag pillar joints on Cu/Zn and Cu/Ni under bump metallurgies”, Journal of Alloys and Compounds, Vol. 616, pp. 394-400, (2014).
[27] Y. Jung and J. Yu, “Electromigration induced Kirkendall void growth in Sn-3.5Ag/Cu solder joints”, Journal of Applied Physics, Vol. 15, 083708, (2014).
[28] J. -A. Lin, C. -K. Lin, C. -M. Liu, Y. -S. Huang, C. Chen, D. T. Chu, and K. -N. Tu, “Formation Mechanism of Porous Cu3Sn Intermetallic Compounds by High Current Stressing at High Temperatures in Low-Bump-Height Solder Joints”, Crystals, Vol. 6(1), 12, (2016).
[29] Huntington, H.B., “Effect of driving force on atom motion”, Thin Solid Film, Vol. 25, pp. 265-280, (1975).
[30] 陳志銘博士論文,國立清華大學化工所,(2002)。
[31] C.-M. Chen and S.-W. Chen, “Electric Current Effects on Sn/Ag Interfacial Reactions”, Journal of Electronic Materials, Vol. 28(7), pp. 902-906, (1999).
[32] D.R. Frear, S.N. Burchett, H.S. Morgan, and J.H. Lau, Mechanics of Solder Alloy Interconnects, Van Nostrand Reinhold, pp. 60, (1994).
[33] C.-M. Chen and S.-W. Chen, “Electromigration effect upon the Sn/Ag and Sn/Ni interfacial reactions at various temperatures”, Acta Materialia, Vol. 50, pp. 2461-2469, (2002).
[34] C.-M. Chen and S.-W. Chen, “Electromigration effect upon the Sn-0.7 wt% Cu/Ni and Sn-3.5 wt% Ag/Ni interfacial reactions”, Journal of Applied Physics, Vol. 90(3), pp. 1208-1214, (2001).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *