帳號:guest(3.135.200.217)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許展瑋
作者(外文):Hsu, Chan-Wei
論文名稱(中文):氫化碳摻雜二氧化鈦奈米晶/氮摻雜碳/二氧化鈦奈米柱之三明治結構提升光電化學分解水效率
論文名稱(外文):Sandwiched Nanostructure of Hydrogenated Carbon Doped TiO2 Nanoparticle/Nitrogen Doped Carbon/Rutile TiO2 Nanorod Array for Efficient Photoelectrochemical Water Oxidation
指導教授(中文):呂世源
指導教授(外文):Lu, Shih-Yuan
口試委員(中文):徐雍鎣
蔡德豪
口試委員(外文):Hsu, Yung-Jung
Tsai, De-Hao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:104032504
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:95
中文關鍵詞:三明治結構氮摻雜碳氫化碳摻雜二氧化鈦多巴胺光電化學
外文關鍵詞:sandwiched nanostructurenitrogen doped carbonHydrogenated Carbon Doped TiO2 Nanoparticledopaminephotoelectrochemical
相關次數:
  • 推薦推薦:0
  • 點閱點閱:411
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
光電化學分解水產氫的發展已經有數十年歷史,已開發的電極材料不勝其數,其中二氧化鈦為最早使用的光觸媒,其合適的價帶和導帶位置,使其能與水進行氧化和還原反應產生氧氣和氫氣。但受限於材料本身能隙過寬的因素,二氧化鈦必須在紫外光驅動下,才能進行光催化反應。本研究針對此問題,透過異質結構搭配的策略,期望改善二氧化鈦的光電化學效能。
本實驗所設計的三明治奈米結構—氫化碳摻雜銳鈦礦二氧化鈦奈米晶/氮摻雜碳/金紅石二氧化鈦奈米柱能有效提升金紅石二氧化鈦奈米柱之光電化學性能表現。其中,透過水熱法合成出的一維結構二氧化鈦奈米柱具有載子傳遞直接且快速的優點;而氮摻雜碳則是以多巴胺作為碳氮來源,利用簡易的一鍋合成法,在多巴胺自聚合機制下修飾於二氧化鈦奈米柱表面,並經過高溫碳化後,形成嵌有碳點的碳層結構。其中的碳點能扮演光敏劑的角色有效吸收可見光,提升太陽光的利用率,而碳層則能幫助內外層所產生的光生電子電洞傳遞至導電基材FTO。氫化碳摻雜銳鈦礦奈米粒則在水熱法與低濃度氫氣氫化的搭配下成功合成,其能吸收可見光,進一步提升光電流。
於光電化學測試上,本研究合成出的三明治結構電極,以1M氫氧化鉀作為電解質,在太陽模擬光(AM1.5G)照射下,其光電流大小於理論水分解電位1.23 V驅動下為0.8 mA/cm2 ,相對於單純金紅石二氧化鈦奈米柱提升約86 %;而在400 nm波長以上的可見光照射下,同樣於偏壓1.23 V,光電流表現為82 μA/cm2 ,相對於單純二氧化鈦奈米柱提升達228 %,顯示碳點/層與氫化碳摻雜銳鈦礦奈米粒對可見光波段的太陽光具有良好的吸收效果,且材料搭配上能有效進行載子傳遞,分離電子電洞。在長效性方面,本研究以5小時作為穩定性測量的標準,其施加的偏壓為最高光轉換效率所對應的電位,結果為本研究所合成出的三明治結構能維持84 %初始光電流,相對於單純二氧化鈦奈米柱的60 %有顯著提升。
Photoelectrochemical water splitting is a long investigated research topic, and a great deal of electrode materials have been developed. Among them, TiO2 is the first photocatalyst studied. Because of the appropriate positions of valence and conduction bands, TiO2 can produce oxygen and hydrogen from the corresponding redox reactions with water. Nevertheless, because of the large band gap, TiO2 can only function under illumination of UV light. The goal of this research is to improve the photocatalytic efficiency of TiO2 through design of heterostructure and matching materials.
A sandwiched nanostructure of hydrogenated carbon doped anatase TiO2 nanoparticle/ nitrogen doped carbon dots@layer/ rutile TiO2 nanorod was developed for the above purpose. In this design, we used a hydrothermal method to synthesize rutile TiO2 nanorod array that has the beneficial characteristic of direct and fast charge transfer. For the coating of the nitrogen doped carbon layer on the rutile TiO2 nanorods, dopamine was chosen as the carbon and nitrogen sources and the coating was carried out with a one pot synthesis involving the self-polymerization of dopamine. After high temperature carbonization a carbon dot embedded carbon layer was formed on the surface of the rutile TiO2 nanorods. The carbon dots function as a photosensitizer to absorb visible light, thus significantly increasing the utilization of sun light. The carbon layer, located in the middle of the sandwiched nanostructure, served as a mediator and conduction layers, which facilitate the transport of photo-induced charges from the innermost and outermost layers. As for the outermost layer, the hydrogenated carbon doped anatase TiO2 nanoparticles were first prepared with hydrothermal method followed by hydrogenation in an atmosphere of low concentration hydrogen. The hydrogenated carbon doped anatase TiO2 nanoparticles can absorb visible light for generation of photo-induced charges and serve to further boost the photocurrent density of the composite electrode.
The photocurrent density achieved by sandwiched nanostructure electrode was 0.8 mA/cm2 at 1.23V(vs. RHE) under irradiation of simulated sun light at 100 mW/cm2 (AM1.5G), a 86% improvement over the plain rutile TiO2 nanorod array electrode. If illuminated under the light of λ > 400 nm, the sandwiched nanostructure electrode offered a photocurrent density of 82 μA/cm2 at 1.23V(vs. RHE), a 228% improvement over the plain rutile TiO2 nanorod array electrode. These improvements may be attributed to the much improved light harvesting and the implement of a central charge transport highway layer, enhancing also the charge separation. For the operation stability, the sandwiched nanostructure maintained 84% of the starting current density after 5 h operation at an applied potential set at the corresponding maximum photoconversion, significantly outperforming 60% of the plain rutile TiO2 nanorod array electrode.
摘要 I
Abstract III
誌謝 V
總目錄 VI
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1-1 前言 1
1-2 本多-藤島效應 (Honda-Fujishima effect) 2
1-3 光觸媒原理 3
1-3.1光觸媒催化原理 3
1-3.2光分解水原理 5
1-4 半導體光觸媒 7
1-4.1 半導體材料 7
1-4.2 光電極種類 8
1-4.3半導體費米能階 (Fermi Level) 8
1-5 光催化水分解裝置 9
1-5.1 光電化學反應裝置 10
1-5.2 對電極 10
1-5.3 參考電極 11
1-6 研究動機 13
第二章 文獻回顧 14
2-1 二氧化鈦的基本性質 14
2-2 一維二氧化鈦奈米柱合成法 16
2-2.1 水熱合成法(Hydrothermal Methods) 16
2-2.2 微波輔助法(Microwave Assisted Methods) 17
2-2.3 化學/物理氣相沉積法(Chemical/Physical Vapor Deposition) 17
2-3 碳量子點(Carbon Quantum Dots, CQDs) 性質與合成 18
2-3.1 碳量子點的合成 20
2-3.2氮摻雜碳量子點合成 22
2-3.3 碳量子點與氮摻雜碳量子點在光催化領域上的應用 23
2-4 碳化聚多巴胺合成與應用 27
2-5 黑色二氧化鈦 32
2-6 三明治結構 35
第三章 實驗內容 41
3-1 實驗藥品 41
3-2 實驗器材 42
3-3 分析儀器 43
3-4 光電極製備 47
3-4.1 FTO導電玻璃前處理 47
3-4.2 一維二氧化鈦奈米柱製備方法(第一層結構) 47
3-4.3 氮摻雜碳點/層修飾於二氧化鈦奈米柱(第二層結構) 48
3-4.4 氫化後碳摻雜二氧化鈦奈米粒修飾於碳點/層(第三層結構) 48
3-4.5 三明治結構整體製備流程圖 49
3-4.6 光電極封膠製備 50
3-5電化學量測 50
3-5.1 光電流密度量測 51
3-5.2 光轉換效率(photoconversion efficiency) 52
3-5.3 莫特-肖特基方程(Mott-Schottky equation, M-S ) 53
第四章 結果與討論 54
4-1 金紅石二氧化鈦奈米柱鑑定 54
4-2 氮摻雜碳點/層包覆二氧化鈦奈米柱鑑定 58
4-3 二氧化鈦奈米粒修飾後的三明治結構鑑定 62
4-3.1 氫化碳摻雜銳鈦礦二氧化鈦奈米粒鑑定 62
4-3.2二氧化鈦奈米粒修飾於碳包覆二氧化鈦奈米柱鑑定 66
4-4 光學分析 71
4-5 光電化學分析 79
4-5.1 第二、三層最適化條件選擇 79
4-5.2 三者各層材料搭配後的光電化學表現比較 82
第五章 結論 86
第六章 參考文獻 87

[1] Wang, C.; Chen, Z.; Jin, H.; Cao, C.; Li, J.; Mi, Z., Enhancing visible-light photoelectrochemical water splitting through transition-metal doped TiO2 nanorod arrays. J. Mater. Chem. A 2014, 2 (42), 17820-17827.
[2] Fujishima, A.; Honda, K., ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE. Nature 1972, 238 (5358), 37-+.
[3] Kudo, A., Photocatalyst materials for water splitting. Catal. Surv. Asia 2003, 7 (1), 31-38.
[4] Mills, A.; LeHunte, S., An overview of semiconductor photocatalysis. J. Photochem. Photobiol. 1997, 108 (1), 1-35.
[5] Kudo, A.; Miseki, Y., Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38 (1), 253-278.
[6] Jing, D. W.; Guo, L. J.; Zhao, L. A.; Zhang, X. M.; Liu, H. A.; Li, M. T.; Shen, S. H.; Liu, G. J.; Hu, X. W.; Zhang, X. H.; Zhang, K.; Ma, L. J.; Guo, P. H., Efficient solar hydrogen production by photocatalytic water splitting: From fundamental study to pilot demonstration. Int. J. Hydrogen Energy 2010, 35 (13), 7087-7097.
[7] 龔正, 吳. 洪. 連., 半導體元件. 台北、東華書局 2003, (第五版), 67-125.
[8] Goetzberger, A. K., J.; Vob, B., Crystalline Silicon Solar Cells. John Wiley & Sons Ltd 1998, 5.
[9] Minggu, L. J.; Daud, W. R. W.; Kassim, M. B., An overview of photocells and photoreactors for photoelectrochemical water splitting. Int. J. Hydrogen Energy 2010, 35 (11), 5233-5244.
[10] Kittel, C., Introduction to Solid State Physics. John Wiley & Sons Ltd 2005, (8), 186.
[11] Pu, Y. C.; Wang, G. M.; Chang, K. D.; Ling, Y. C.; Lin, Y. K.; Fitzmorris, B. C.; Liu, C. M.; Lu, X. H.; Tong, Y. X.; Zhang, J. Z.; Hsu, Y. J.; Li, Y., Au Nanostructure-Decorated TiO2 Nanowires Exhibiting Photoactivity Across Entire UV-visible Region for Photoelectrochemical Water Splitting. Nano Lett. 2013, 13 (8), 3817-3823.
[12] Sasaki, Y.; Kato, H.; Kudo, A., Co(bpy)(3) (3+/2+) and Co(phen)(3) (3+/2+) Electron Mediators for Overall Water Splitting under Sunlight Irradiation Using Z-Scheme Photocatalyst System. J. Am. Chem. Soc. 2013, 135 (14), 5441-5449.
[13] M., Z. C. H. N. D. E., Photoelectrochemical Water Splitting. Springer 2013.
[14] Nie, X. L.; Zhuo, S. P.; Maeng, G.; Sohlberg, K., Doping of TiO2 Polymorphs for Altered Optical and Photocatalytic Properties. Int. J. Photoenergy 2009.
[15] Mo, S. D.; Ching, W. Y., Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Physical review. B, Condensed matter 1995, 51 (19), 13023-13032.
[16] Woodley, S. M.; Catlow, C. R. A., Structure prediction of titania phases: Implementation of Darwinian versus Lamarckian concepts in an Evolutionary Algorithm. Computational Materials Science 2009, 45 (1), 84-95.
[17] Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K., Titania nanotubes prepared by chemical processing. Adv. Mater. 1999, 11 (15), 1307-+.
[18] Wang, X. D.; Li, Z. D.; Shi, J.; Yu, Y. H., One-Dimensional Titanium Dioxide Nanomaterials: Nanowires, Nanorods, and Nanobelts. Chem. Rev. 2014, 114 (19), 9346-9384.
[19] Lin, K. L.; Mai, F. D.; Chan, Y. C.; Chung, J. C.; Lin, K. M.; Yu, C. C.; Liao, M. Y.; Li, F. Y., Morphology Dependence of Photocatalytic Activity of TiO2 Nanostructure Prepared through Microwave Hydrothermal Process. J Chin Chem Soc-Taip 2012, 59 (5), 603-613.
[20] Chen, C. A.; Chen, Y. M.; Korotcov, A.; Huang, Y. S.; Tsai, D. S.; Tiong, K. K., Growth and characterization of well-aligned densely-packed rutile TiO(2) nanocrystals on sapphire substrates via metal-organic chemical vapor deposition. Nanotechnology 2008, 19 (7).
[21] Namdari, P.; Negahdari, B.; Eatemadi, A., Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review. Biomed Pharmacother 2017, 87, 209-222.
[22] Baker, S. N.; Baker, G. A., Luminescent Carbon Nanodots: Emergent Nanolights. Angew. Chem. Int. Ed. 2010, 49 (38), 6726-6744.
[23] Lim, S. Y.; Shen, W.; Gao, Z. Q., Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44 (1), 362-381.
[24] Yuan, C.; Liu, B. H.; Liu, F.; Han, M. Y.; Zhang, Z. P., Fluorescence "Turn On" Detection of Mercuric Ion Based on Bis(dithiocarbamato)copper(II) Complex Functionalized Carbon Nanodots. Anal Chem 2014, 86 (2), 1123-1130.
[25] Addamo, M.; Bellardita, M.; Di Paola, A.; Palmisano, L., Preparation and photoactivity of nanostructured anatase, rutile and brookite TiO2 thin films. Chem. Commun. 2006, (47), 4943-4945.
[26] Li, Y.; Zhao, Y.; Cheng, H. H.; Hu, Y.; Shi, G. Q.; Dai, L. M.; Qu, L. T., Nitrogen-Doped Graphene Quantum Dots with Oxygen-Rich Functional Groups. J. Am. Chem. Soc. 2012, 134 (1), 15-18.
[27] Tang, Z. J.; Li, G. K.; Hu, Y. L., Advances in Preparation and Applications in Quantitative Analysis of Nitrogen-Doped Carbon Dots. Prog Chem 2016, 28 (10), 1455-1461.
[28] Wang, R.; Lu, K. Q.; Tang, Z. R.; Xu, Y. J., Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J. Mater. Chem. A 2017, 5 (8), 3717-3734.
[29] Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A., Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126 (40), 12736-12737.
[30] Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F.; Luo, P. J. G.; Yang, H.; Kose, M. E.; Chen, B. L.; Veca, L. M.; Xie, S. Y., Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128 (24), 7756-7757.
[31] Zhou, J. G.; Booker, C.; Li, R. Y.; Zhou, X. T.; Sham, T. K.; Sun, X. L.; Ding, Z. F., An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J. Am. Chem. Soc. 2007, 129 (4), 744-745.
[32] Liu, R. L.; Wu, D. Q.; Liu, S. H.; Koynov, K.; Knoll, W.; Li, Q., An Aqueous Route to Multicolor Photoluminescent Carbon Dots Using Silica Spheres as Carriers. Angew. Chem. Int. Ed. 2009, 48 (25), 4598-4601.
[33] Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Karakassides, M.; Giannelis, E. P., Surface functionalized carbogenic quantum dots. Small 2008, 4 (4), 455-458.
[34] Li, H. T.; Ming, H.; Liu, Y.; Yu, H.; He, X. D.; Huang, H.; Pan, K. M.; Kang, Z. H.; Lee, S. T., Fluorescent carbon nanoparticles: electrochemical synthesis and their pH sensitive photoluminescence properties. New J Chem 2011, 35 (11), 2666-2670.
[35] S., D. Z. L. L. Y., Effect of the nitrogen doping on the performance of nano-structure carbon materials:a review. Chemical Industry and Engineering Progress 2016, 35 (3), 831-836.
[36] Zhang, L. W.; Fu, H. B.; Zhu, Y. F., Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Adv. Funct. Mater. 2008, 18 (15), 2180-2189.
[37] Zhang, H. C.; Ming, H.; Lian, S. Y.; Huang, H.; Li, H. T.; Zhang, L. L.; Liu, Y.; Kang, Z. H.; Lee, S. T., Fe2O3/carbon quantum dots complex photocatalysts and their enhanced photocatalytic activity under visible light. Dalton T 2011, 40 (41), 10822-10825.
[38] Zhang, Y. Q.; Ma, D. K.; Zhang, Y. G.; Chen, W.; Huang, S. M., N-doped carbon quantum dots for TiO2-based photocatalysts and dye-sensitized solar cells. Nano Energy 2013, 2 (5), 545-552.
[39] Ming, H.; Ma, Z.; Liu, Y.; Pan, K. M.; Yu, H.; Wang, F.; Kang, Z. H., Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton T 2012, 41 (31), 9526-9531.
[40] Pan, J. Q.; Sheng, Y. Z.; Zhang, J. X.; Wei, J. M.; Huang, P.; Zhang, X.; Feng, B. X., Preparation of carbon quantum dots/TiO2 nanotubes composites and their visible light catalytic applications. J. Mater. Chem. A 2014, 2 (42), 18082-18086.
[41] Kong, J. H.; Shahabadi, S. I. S.; Lu, X. H., Integration of inorganic nanostructures with polydopamine-derived carbon: tunable morphologies and versatile applications. Nanoscale 2016, 8 (4), 1770-1788.
[42] Dreyer, D. R.; Miller, D. J.; Freeman, B. D.; Paul, D. R.; Bielawski, C. W., Perspectives on poly(dopamine). Chem Sci 2013, 4 (10), 3796-3802.
[43] Yu, X. Y.; Hu, H.; Wang, Y. W.; Chen, H. Y.; Lou, X. W., Ultrathin MoS2 Nanosheets Supported on N-doped Carbon Nanoboxes with Enhanced Lithium Storage and Electrocatalytic Properties. Angew. Chem. Int. Ed. 2015, 54 (25), 7395-7398.
[44] Wei, Y. F.; Kong, J. H.; Yang, L. P.; Ke, L.; Tan, H. R.; Liu, H.; Huang, Y. Z.; Sun, X. W.; Lu, X. H.; Du, H. J., Polydopamine-assisted decoration of ZnO nanorods with Ag nanoparticles: an improved photoelectrochemical anode. J. Mater. Chem. A 2013, 1 (16), 5045-5052.
[45] Chen, X. B.; Liu, L.; Huang, F. Q., Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 2015, 44 (7), 1861-1885.
[46] Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S., Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331 (6018), 746-750.
[47] Zeng, L.; Song, W. L.; Li, M. H.; Zeng, D. W.; Xie, C. S., Catalytic oxidation of formaldehyde on surface of H-TiO2/H-C-TiO2 without light illumination at room temperature. Appl Catal B-Environ 2014, 147, 490-498.
[48] Leshuk, T.; Parviz, R.; Everett, P.; Krishnakumar, H.; Varin, R. A.; Gu, F., Photocatalytic Activity of Hydrogenated TiO2. Acs Appl Mater Inter 2013, 5 (6), 1892-1895.
[49] Wang, G. M.; Wang, H. Y.; Ling, Y. C.; Tang, Y. C.; Yang, X. Y.; Fitzmorris, R. C.; Wang, C. C.; Zhang, J. Z.; Li, Y., Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Lett. 2011, 11 (7), 3026-3033.
[50] Liu, G.; Wang, L. Z.; Yang, H. G.; Cheng, H. M.; Lu, G. Q., Titania-based photocatalysts-crystal growth, doping and heterostructuring. J. Mater. Chem. 2010, 20 (5), 831-843.
[51] Sun, W. T.; Yu, Y.; Pan, H. Y.; Gao, X. F.; Chen, Q.; Peng, L. M., CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J. Am. Chem. Soc. 2008, 130 (4), 1124-+.
[52] Brahimi, R.; Bessekhouad, Y.; Bouguelia, A.; Trari, M., Improvement of eosin visible light degradation using PbS-sensititized TiO2. J. Photochem. Photobiol. 2008, 194 (2-3), 173-180.
[53] Long, M.; Cai, W. M.; Cai, J.; Zhou, B. X.; Chai, X. Y.; Wu, Y. H., Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J. Phys. Chem. B 2006, 110 (41), 20211-20216.
[54] Zang, L.; Macyk, W.; Lange, C.; Maier, W. F.; Antonius, C.; Meissner, D.; Kisch, H., Visible-light detoxification and charge generation by transition metal chloride modified titania. Chemistry-a European Journal 2000, 6 (2), 379-384.
[55] Senevirathna, M. K. I.; Pitigala, P.; Tennakone, K., Water photoreduction with Cu2O quantum dots on TiO2 nano-particles. J. Photochem. Photobiol. 2005, 171 (3), 257-259.
[56] Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V., Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J. Am. Chem. Soc. 2008, 130 (12), 4007-4015.
[57] Sayama, K.; Yoshida, R.; Kusama, H.; Okabe, K.; Abe, Y.; Arakawa, H., Photocatalytic decomposition of water into H-2 and O-2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system. Chem. Phys. Lett. 1997, 277 (4), 387-391.
[58] Abe, R.; Sayama, K.; Domen, K.; Arakawa, H., A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3-/I- shuttle redox mediator. Chem. Phys. Lett. 2001, 344 (3-4), 339-344.
[59] Gratzel, M., Photoelectrochemical cells. Nature 2001, 414 (6861), 338-344.
[60] Wang, X. W.; Liu, G.; Chen, Z. G.; Li, F.; Wang, L. Z.; Lu, G. Q.; Cheng, H. M., Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chem. Commun. 2009, (23), 3452-3454.
[61] Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K., All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nat. Mater. 2006, 5 (10), 782-786.
[62] Osterloh, F. E., Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 2008, 20 (1), 35-54.
[63] Li, J. T.; Cushing, S. K.; Zheng, P.; Senty, T.; Meng, F. K.; Bristow, A. D.; Manivannan, A.; Wu, N. Q., Solar Hydrogen Generation by a CdS-Au-TiO2 Sandwich Nanorod Array Enhanced with Au Nanoparticle as Electron Relay and Plasmonic Photosensitizer. J. Am. Chem. Soc. 2014, 136 (23), 8438-8449.
[64] Zhang, C.; Fan, W. Q.; Bai, H. Y.; Yu, X. Q.; Chen, C.; Zhang, R. X.; Shi, W. D., Sandwich-Nanostructured NiO-ZnO Nanowires@alpha-Fe2O3 Film Photoanode with a Synergistic Effect and p-n Junction for Efficient Photoelectrochemical Water Splitting. Chemelectrochem 2014, 1 (12), 2089-2097.
[65] F., A. J. B. L. R., Electrochemical Method Fundamentals and Applications. John Wiley & Sons 2001.
[66] Raja, K. S.; Mahajan, V. K.; Misra, M., Determination of photo conversion efficiency of nanotubular titanium oxide photo-electrochemical cell for solar hydrogen generation. J. Power Sources 2006, 159 (2), 1258-1265.
[67] Chen, B.; Beach, J. A.; Maurya, D.; Moore, R. B.; Priya, S., Fabrication of black hierarchical TiO2 nanostructures with enhanced photocatalytic activity. Rsc Adv 2014, 4 (56), 29443-29449.
[68] Pottier, A.; Chaneac, C.; Tronc, E.; Mazerolles, L.; Jolivet, J. P., Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media. Journal of Materials Chemistry 2001, 11 (4), 1116-1121.
[69] Andersson, M.; Osterlund, L.; Ljungstrom, S.; Palmqvist, A., Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol. J. Phys. Chem. B 2002, 106 (41), 10674-10679.
[70] Xie, Y. R.; Wei, L.; Wei, G. D.; Li, Q. H.; Wang, D.; Chen, Y. X.; Yan, S. S.; Liu, G. L.; Mei, L. M.; Jiao, J., A self-powered UV photodetector based on TiO2 nanorod arrays. Nanoscale Research Letters 2013, 8.
[71] Kim, H. S.; Lee, J. W.; Yantara, N.; Boix, P. P.; Kulkarni, S. A.; Mhaisalkar, S.; Gratzel, M.; Park, N. G., High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer. Nano Lett. 2013, 13 (6), 2412-2417.
[72] Kim, W. S.; Jang, Y. G.; Kim, D. H.; Kim, H. C.; Hong, S. H., Hetero-epitaxial growth of vertically-aligned TiO2 nanorods on an m-cut sapphire substrate with an (001) SnO2 buffer layer. Crystengcomm 2012, 14 (15), 4963-4966.
[73] Liu, B.; Aydil, E. S., Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2009, 131 (11), 3985-3990.
[74] Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K., Raman spectrum of graphene and graphene layers. Phys Rev Lett 2006, 97 (18).
[75] Wu, M. B.; Wang, Y.; Wu, W. T.; Hu, C.; Wang, X. N.; Zheng, J. T.; Li, Z. T.; Jiang, B.; Qiu, J. S., Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke. Carbon 2014, 78, 480-489.
[76] John, F. W. F. P. E. K. D., Handbook of X-ray Photoelectron Spectroscopy. 1995, 42-43.
[77] Jiang, G. H.; Jiang, T. T.; Zhou, H. J.; Yao, J. M.; Kong, X. D., Preparation of N-doped carbon quantum dots for highly sensitive detection of dopamine by an electrochemical method. Rsc Adv 2015, 5 (12), 9064-9068.
[78] Yeh, T. F.; Teng, C. Y.; Chen, S. J.; Teng, H. S., Nitrogen-Doped Graphene Oxide Quantum Dots as Photocatalysts for Overall Water-Splitting under Visible Light Illumination. Adv. Mater. 2014, 26 (20), 3297-+.
[79] Park, J. Y.; Back, S. H.; Chang, S. J.; Lee, S. J.; Lee, K. G.; Park, T. J., Dopamine-Assisted Synthesis of Carbon-Coated Silica for PCR Enhancement. Acs Appl Mater Inter 2015, 7 (28), 15633-15640.
[80] Rajamanickam, A. T.; Thirunavukkarasu, P.; Dhanakodi, K., A simple route to synthesis of carbon doped TiO2 nanostructured thin film for enhanced visible-light photocatalytic activity. J. Mater. Sci. - Mater. Electron. 2015, 26 (6), 4038-4045.
[81] Kumar, S.; Asokan, K.; Singh, R. K.; Chatterjee, S.; Kanjilal, D.; Ghosh, A. K., Investigations on structural and optical properties of ZnO and ZnO:Co nanoparticles under dense electronic excitations. Rsc Adv 2014, 4 (107), 62123-62131.
[82] Samsudin, E. M.; Hamid, S. B. A.; Juan, J. C.; Basirun, W. J.; Kandjani, A. E., Surface modification of mixed-phase hydrogenated TiO2 and corresponding photocatalytic response. Appl Surf Sci 2015, 359, 883-896.
[83] Li, B. B.; Zhao, Z. B.; Gao, F.; Wang, X. Z.; Qiu, J. S., Mesoporous microspheres composed of carbon-coated TiO2 nanocrystals with exposed {001} facets for improved visible light photocatalytic activity. Appl Catal B-Environ 2014, 147, 958-964.
[84] Warkhade, S. K.; Gaikwad, G. S.; Zodape, S. P.; Pratap, U.; Maldhure, A. V.; Wankhade, A. V., Low temperature synthesis of pure anatase carbon doped titanium dioxide: An efficient visible light active photocatalyst. Mat Sci Semicon Proc 2017, 63, 18-24.
[85] Zhang, J. F.; Zhou, P.; Liu, J. J.; Yu, J. G., New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. PCCP 2014, 16 (38), 20382-20386.
[86] Folli, A.; Bloh, J. Z.; Lecaplain, A.; Walker, R.; Macphee, D. E., Properties and photochemistry of valence-induced-Ti3+ enriched (Nb, N)-codoped anatase TiO2 semiconductors. PCCP 2015, 17 (7), 4849-4853.
[87] Zhang, X.; Bao, Z. Q.; Tao, X. Y.; Sun, H. X.; Chen, W.; Zhou, X. F., Sn-doped TiO2 nanorod arrays and application in perovskite solar cells. Rsc Adv 2014, 4 (109), 64001-64005.
[88] Luo, J. S.; Ma, L.; He, T. C.; Ng, C. F.; Wang, S. J.; Sun, H. D.; Fan, H. J., TiO2/(CdS, CdSe, CdSeS) Nanorod Heterostructures and Photoelectrochemical Properties. J. Phys. Chem. C 2012, 116 (22), 11956-11963.
[89] Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V., Effect of Nature and Location of Defects on Bandgap Narrowing in Black TiO2 Nanoparticles. J. Am. Chem. Soc. 2012, 134 (18), 7600-7603.
[90] Yu, H. J.; Zhao, Y. F.; Zhou, C.; Shang, L.; Peng, Y.; Cao, Y. H.; Wu, L. Z.; Tung, C. H.; Zhang, T. R., Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2014, 2 (10), 3344-3351.
[91] Zhu, G. L.; Shan, Y. F.; Lin, T. Q.; Zhao, W. L.; Xu, J. J.; Tian, Z. L.; Zhang, H.; Zheng, C.; Huang, F. Q., Hydrogenated blue titania with high solar absorption and greatly improved photocatalysis. Nanoscale 2016, 8 (8), 4705-4712.
[92] Sadhu, S.; Poddar, P., Growth of oriented single crystalline La-doped TiO2 nanorod arrays electrode and investigation of optoelectronic properties for enhanced photoelectrochemical activity. Rsc Adv 2013, 3 (26), 10363-10369.
[93] Wu, M. C.; Chen, C. H.; Huang, W. K.; Hsiao, K. C.; Lin, T. H.; Chan, S. H.; Wu, P. Y.; Lu, C. F.; Chang, Y. H.; Lin, T. F.; Hsu, K. H.; Hsu, J. F.; Lee, K. M.; Shyue, J. J.; Kordas, K.; Su, W. F., Improved Solar-Driven Photocatalytic Performance of Highly Crystalline Hydrogenated TiO2 Nanofibers with Core-Shell Structure. Sci. Rep. 2017, 7.
[94] Li, H. P.; Liu, J. Y.; Hou, W. G.; Du, N.; Zhang, R. J.; Tao, X. T., Synthesis and characterization of g-C3N4/Bi2MoO6 heterojunctions with enhanced visible light photocatalytic activity. Appl Catal B-Environ 2014, 160, 89-97.
[95] Zhang, J. M.; Vasei, M.; Sang, Y. H.; Liu, H.; Claverie, J. P., TiO2@Carbon Photocatalysts: The Effect of Carbon Thickness on Catalysis. Acs Appl Mater Inter 2016, 8 (3), 1903-1912.
[96] Devarapalli, R. R.; Debgupta, J.; Pillai, V. K.; Shelke, M. V., C@SiNW/TiO2 Core-Shell Nanoarrays with Sandwiched Carbon Passivation Layer as High Efficiency Photoelectrode for Water Splitting. Sci. Rep. 2014, 4.
[97] Bian, J. C.; Huang, C.; Wang, L. Y.; Hung, T. F.; Daoud, W. A.; Zhang, R. Q., Carbon Dot Loading and TiO2 Nanorod Length Dependence of Photoelectrochemical Properties in Carbon Dot/TiO2 Nanorod Array Nanocomposites. Acs Appl Mater Inter 2014, 6 (7), 4883-4890.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *