|
1. Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Zaccaria, R. P.; Capiglia, C., Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources 2014, 257, 421-443. 2. Editors, M. Y. R. J. B. A. K., Lithium-Ion Batteries. Science and Technologies 2009. 3. Yao, Y., Carbon based anode materials for lithium-ion batteries. University of Wollongong Theses Collection 2003. 4. Ellis, B. L.; Lee, K. T.; Nazar, L. F., Positive electrode materials for Li-ion and Li-batteries†. Chemistry of Materials 2010, 22 (3), 691-714. 5. Mattson, I. R., Stability of the Graphite Electrode for Li-ion Batteries. the Norwegian University of Science and Technology (NTNU) 2013. 6. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Materials today 2015, 18 (5), 252-264. 7. Agostini, M.; Brutti, S.; Hassoun, J., High voltage Li-ion battery using exfoliated graphite/graphene nanosheets anode. ACS applied materials & interfaces 2016, 8 (17), 10850-10857. 8. Sethuraman, V. A.; Hardwick, L. J.; Srinivasan, V.; Kostecki, R., Surface structural disordering in graphite upon lithium intercalation/deintercalation. Journal of Power Sources 2010, 195 (11), 3655-3660. 9. Profatilova, I. A.; Kim, S.-S.; Choi, N.-S., Enhanced thermal properties of the solid electrolyte interphase formed on graphite in an electrolyte with fluoroethylene carbonate. Electrochimica Acta 2009, 54 (19), 4445-4450. 10. Verma, P.; Maire, P.; Novák, P., A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta 2010, 55 (22), 6332-6341. 11. Gao, J.; Lowe, M. A.; Kiya, Y.; Abruña, H. c. D., Effects of liquid electrolytes on the charge–discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. The Journal of Physical Chemistry C 2011, 115 (50), 25132-25137. 12. Fu, L.; Liu, H.; Li, C.; Wu, Y. P.; Rahm, E.; Holze, R.; Wu, H., Surface modifications of electrode materials for lithium ion batteries. Solid State Sciences 2006, 8 (2), 113-128. 13. Zurich, E., Electrochemical and chemical surface modifications of carbons for Li-ion battery. Université de Toulouse III, France 2011. 14. Rosamaria Fong, U. v. S., Studies of Lithium Intercalation into Carbons Using Nonaqueous q Electrochemical Cells. Journal of Electrochemical Society 1990. 15. Xu, K., Electrolytes and Interphasial Chemistry in Li Ion Devices. energies ISSN 1996-1073 2010. 16. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews 2004, 104 (10), 4303-4418. 17. Aurbach, D., Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources 2000, 89 (2), 206-218. 18. Chen, G.; Weng, W.; Wu, D.; Wu, C., PMMA/graphite nanosheets composite and its conducting properties. European Polymer Journal 2003, 39 (12), 2329-2335. 1. Dash, Ranjan; Panalan, Sreekanth. Theoretical limits of energy density in silicon-carbon composite anode based lithium ion batteries. Scientific reports, 2016, 6: 27449. 2. Wu, Hui; Cui, Yi. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today, 2012, 7.5: 414-429. 3. Su, Xin, et al. Silicon‐based nanomaterials for lithium‐ion batteries: a review. Advanced Energy Materials, 2014, 4.1. 4. Krause, Andreas, et al. High area capacity lithium-sulfur full-cell battery with prelitiathed silicon nanowire-carbon anodes for long cycling stability. Scientific reports, 2016, 6: 27982. 5. Yim, Chae-Ho; Courtel, Fabrice M. Yaser. A high capacity silicon–graphite composite as anode for lithium-ion batteries using low content amorphous silicon and compatible binders. Journal of Materials Chemistry A, 2013, 1.28: 8234-8243. 6. Markerchie, E., et al. Capacity fading of lithiated graphite electrodes studied by a combination of electroanalytical methods, Raman spectroscopy and SEM. Journal of power sources, 2005, 146.1: 146-150. 7. Wu, Yu-Ping; RAHM, Elke; HOLZE, Rudolf. Carbon anode materials for lithium ion batteries. Journal of Power Sources, 2003, 114.2: 228-236. 8. Yao, Yueping. Carbon based anode materials for lithium-ion batteries. 2003. 9. Ko, Minseong; Chae, Sujong; Cho, Jaephil. Challenges in accommodating volume change of Si anodes for Li‐ion batteries. ChemElectroChem, 2015, 2.11: 1645-1651. 10. Chan, Candace K., et al. High-performance lithium battery anodes using silicon nanowires. Nature nanotechnology, 2008, 3.1: 31-35. 11. Lian, Peichao, et al. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochimica Acta, 2010, 55.12: 3909-3914. 12. Ma, Delong; Cao, Zhanyi; Hu, Anming. Si-based anode materials for Li-ion batteries: a mini review. Nano-Micro Letters, 2014, 6.4: 347-358. 13. Jo, Yong Nam, et al. Si–graphite composites as anode materials for lithium secondary batteries. Journal of Power Sources, 2010, 195.18: 6031-6036. 14. Veluchamy, Angathevar; Doh, Chil-Hoon. Silicon Based Composite Anode for Lithium Ion Battery. In: Nanocomposites and Polymers with Analytical Methods. InTech, 2011.
|