帳號:guest(18.119.213.171)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):狄巴克
作者(外文):Dubey, Deepak Kumar
論文名稱(中文):數種可實現濕製高效率有機發光二極體的方法
論文名稱(外文):Some Approaches for Realizing High Efficiency Solution-Processed Organic Light-Emitting Diodes
指導教授(中文):周卓煇
指導教授(外文):Jou, Jwo-Huei
口試委員(中文):薛景中
蔡永誠
魏茂國
岑尚仁
口試委員(外文):Shyue, Jing-Jong
Tsai, Yung-Cheng
Wei, Mao-Kuo
Chen, Sun-Zen
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031880
出版年(民國):108
畢業學年度:108
語文別:英文
論文頁數:189
中文關鍵詞:有機發光二極體有機電子學元件設計與製作元件物理有機/無機 電洞傳輸層燭光有機發光二極體HLCT濕式製程
外文關鍵詞:Organic light emitting diodeOrganic electronicsDevice design and fabricationDevice physicsOrganic/inorganic HTLExciplex co-host systemCandlelight OLEDHLCTSolution process
相關次數:
  • 推薦推薦:0
  • 點閱點閱:241
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
自1987年鄧青雲和Van Slyke開發最佳的雙層有機發光二極體(OLED)起,有機發光二極體(OLED)因其在次世代平面顯示器和固態照明光源的應用潛力而引起了相當大的關注。在過去三十年中,因化學家在高效率材料的設計,以及設備、製程工程師在新穎元件設計概念和製程研發的努力下,OLED在效率、壽命以及製程上不斷的突破。本論文主要目的為透過簡易的元件結構來發展可濕製的高效率OLED元件,並應用於顯示器和照明領域,其研究目標(SRO)如下:i)透過減少連續層之間的能障以及侷限電荷載子於介面處來管控發光層的放射激子(SRO1)ii)採用高三重態能階和雙極主體來管控發光層的放射激子(SRO)iii)設計以及優化熱活化延遲螢光(TADF)機制,使激發複合體形成共主體系統,以製作高效率低色溫OLED(SRO3)和iv)利用活化的上態三重態激子來實現反向系統間跨越(RISC)和有效率的螢光OLED元件(SRO4)。
為了成功達成SRO1,本研究使用了四種方法。5.1.1節介紹濕式製程的高效率白光OLED,透過白光的兩種互補色所組成的單發光層,以及有著合適的前緣分子軌域(FMO)能階、三重態能量和高電洞遷移率的電洞傳輸材料,來減少電洞注入的能障並增強發光層中的載子平衡。5.1.2節介紹一系列的可濕製電子侷限和電洞傳輸層小分子材料,其以9,9-二乙基芴為中心,並由兩個氟苯基、二氟苯基或三氟苯基片段作為共用封端基團所構成,以應用於高效率OLED。
使用濕式製程來製造多層OLED需克服許多困難,尤其是旋塗時須預防前層薄膜的溶解,5.1.3節介紹一熱交聯電子侷限和電洞傳輸材料9,9′-bis(4-vinylphenylmethylen)[3,3′]- bi-carbazole(VyPyMCz),其已被證實可成功應用於濕式製程的多層OLED。5.1.4節使用可濕式製程的電洞注入/傳輸和電子侷限層的無機p型半導體(CuSCN)作為HTL來改善OLED元件效能,其所製的元在100 cd/m2下,能量效率為66.9 lm/W,電流效率為53.9 cd/A,相較於未使用CuSCN作為電洞傳輸層的元件,能量效率與電流效率分別提升了43.2和44.8%。
傳統上,磷光OLED(PhOLED)的主客體系統常用來避免三重態激子的產生,例如三重態-三重態湮滅、濃度淬熄,因此三重態的激發通常具有較長的激發態壽命。為了達到SRO2,5.2節提出了一個新的濕式製程的供體-受體基小分子,並命名為DT316、309、313、320、321,其具有電子傳遞單元為苯並咪唑,電洞傳輸單元為三苯胺,可作為主體以開發高效率磷光OLED元件。
在5.3節中,以TADF機制形成的激發複合體之共主體系統,以被開發並應用於增強低色溫 OLED的元件表現,因其能提取未放光的三重態激子並完全產生激子於發光層內(SRO3)。最後,通過採用局部的電荷轉移(HLCT)機制實現SRO4,製作出根基於咔唑基的深藍色螢光發光體。所得元件的最大外部量子效率為6.8%,比螢光客體的理論極限(5%)高出1.36倍,CIE坐標為(0.16, 0.06),半峰全寬為48nm。
Organic light emitting diodes (OLEDs) have drawn considerable attention owing to its potential application in next-generation flat-panel displays and solid-state lighting sources, since the foremost efficient double-layered OLEDs were developed by Tang and Van Slyke in 1987. The foremost objective of this thesis is to develop solution process feasible highly efficient OLED devices with simple device structure for display and lighting application, which have following specific research objectives (SRO), i) management of radiative exciton in EML by reducing the energy barriers between consecutive layers and confining the charge carriers at the interfaces (SRO1), ii) management of radiative exciton in EML by employing high-triplet energy and bipolar host matrix (SRO2), iii) design and optimization of thermally activate delayed florescence (TADF) mechanism enabling exciplex forming co-host system for highly efficient low color-temperature (CT) OLEDs (SRO3), and iv) utilization of upper-state hot triplet exciton to enable reverse intersystem crossing (RISC) and efficient florescent OLED devices (SRO4).
In order to successfully accomplish the SRO1, four approaches have been used in this thesis work. Solution-processed highly efficient white OLEDs have been designed and fabricated by employing a single emissive layer consisting of two white light complementary colors and different hole transporting materials with suitable frontier molecular orbital (FMO) energy level, triplet energy and high hole-mobility to reduce the hole injection barrier and enhanced the balance charge carriers in desired emissive zone, as described in section 5.1.1. Section 5.1.2 presents a series of solution processable electron confining and hole transporting small molecules designed by using two fluorophenyl, difluorophenyl or trifluorophenyl fragments as common end capping groups with 9,9-Diethylfluorenes cores for highly efficient OLEDs.
Fabrication of multilayered OLEDs through solution process involves several challenges, especially in preventing dissolution of prior layers during subsequent coating. A thermally cross-linkable electron confining and hole-transporting material, 9,9′-bis(4-vinylphenylmethylen)[3,3′]- bi-carbazole (VyPyMCz) has been characterized and successfully applied to multilayered OLEDs via solution-process, as discussed in section 5.1.3. Section 5.1.4 used a solution-processable hole injecting/transporting and an electron confining inorganic p-type semiconductor as an HTL to improve the OLED device performance. The resultant OLED device displayed a PE of 66.9 lm/W, a CE of 53.9 cd/A at 100 cd/m2, which are 43.2 and 44.8 % higher than that of a control device without CuSCN HTL.
Typically, in phosphorescent OLEDs (PhOLEDs) a host-guest systems are used to avoid competitive de-excitation pathways of triplet excitons, such as triplet–triplet annihilation and/or concentration quenching, since triplet excited states usually have long lifetimes. For completing SRO2, section 5.2 reported a library of new solution-processed donor-acceptor based small molecules namely DT316, 309, 313, 320, 321 comprising of electron transporting unit benzimidazole and hole transporting unit triphenylamine have been used as hosts matrix to develop highly efficient PhOLED devices.
In section 5.3, TADF mechanism enabling exciplex forming co-host system has been developed and used to enhance the performance of low CT OLEDs because of its ability to harvest non-emissive triplet exciton and utilize complete generated exciton within the emissive layer (SRO3). Finally, SRO4 was fulfilled by employing a hybridized local and charge‐transfer (HLCT) mechanism enabling carbazole based deep-blue fluorescent emitter. The resultant device showed a maximum EQE 6.8% i.e. 1.36 time higher than that of theoretical limit of fluorescent emitter (5 %) with CIE coordinates of (0.16, 0.06) and small full-width at half maximum of 48 nm.
Contents

Chinese Abstract ………………………………...……………………………………………..i
English Abstract ……………………………...………………………………………………iii
Acknowledgment ……………..………………………………………………………….…....v
Contents ………………………………………………………………………….…………..vii
Figure Captions …………………………………………………………………………....…xii
Table Captions ……………………………………………………………………….….......xix
Abbreviations ………………………………………………………………………….…....xxi

Chapter 1 Introduction and motivation ………………………………………………….…1

Chapter 2 Fundamental of organic light emitting diode …………………………………..5
2.1 History of electroluminescence materials …………………………….……………….….5
2.2 History and development of OLED ………………………………………………………6
2.3 Device structure and the working mechanism of OLED …………………………………9
2.4 Functional layers in OLED …………………………………………………………...…11
2.4.1 Substrate …………………………………………………………………………..12
2.4.2 Electrodes …………………………………………………………………………12
2.4.3 Charge carrier injecting/transport/confinement layers ……………………………12
2.4.4 Emissive layers ……………………………………………………………………13
2.5 Key parameters of OLEDs ………………………………………………………………14
2.5.1 Operating voltage and luminance …………………………………………...…….14
2.5.2 Power efficiency (PE) ……………………………………………………………..15
2.5.3 Current efficiency (CE) …………………………………………………………...15
2.5.4 External quantum efficiency (EQE) ……………………………………………....15
2.5.5 CIE color coordinates ……………………………………………………………..15
2.5.6 Color rendering Index (CRI) ………………………………………………………16
2.5.7 Spectrum resemblance index (SRI) ……………………………………………….18
2.5.8 Colour-temperature (CT) ………………………………………………………….19

Chapter 3 Approaches for fabricating high-efficiency OLEDs ………………………….20
3.1 Material design approaches ……………………………………………………....………20
3.1.1 Basic fundamental of OLED materials ……………………………………………..20
3.1.2 Material design approaches to enhance OLED performance ………………………20
3.1.2.1 TADF ………………………………………………………………………22
3.1.2.2 Triplet–triplet annihilation (TTA) ………………………………………….22
3.1.2.3 Singlet fission (SF) ………………………………………………………....22
3.1.2.4 HLCT ………………………………………………………………………22
3.1.3 Impact of singlet-triplet energy gap (ΔEST) ………………………………………..24
3.1.4 Exciton generation and exciton generation efficiency ……………………………..24
3.1.4.1 Excitons generated on the guest ……………………………………………24
3.1.4.2 Excitons generated on the host …………………………………….……….25
3.1.4.3 Excitons generated on both the host and guest …………………………….26
3.2 Device design approaches ………………………………………………………………..26
3.2.1 Thin coating ………………………………………………………………………..26
3.2.2 Low injection energy barrier …………………………………………………….…27
3.2.2.1 Modification of electrode surface …………………………………………..28
3.2.2.2 Addition of charge injection layer ………………………………………….28
3.2.2.3 Addition of charge transport layer …………………………………………28
3.2.3 Balanced charge injection ………………………………………………………….28
3.2.3.1 By employing high mobility HTMs and ETMs …………………………….28
3.2.3.2 By employing carrier modulation layer ……………………………………28
3.2.3.3 By selecting suitable host ………………………………………………….29
3.2.4 Effective confinement of the carriers ………………………………………………29
3.2.5 Effective host-to-guest energy transfer …………………………………………….31
3.2.6 Wider recombination zone …………………………………………………………31
3.2.7 Effective exciton generation ……………………………………………………….33
3.2.8 P-I-N structure …………………………………………………………………..…34
3.2.9 Tandem structure …………………………………………………………………..36
3.3 Efficiency Record …………………………………………………………………..……36


Chapter 4 Experimental details …………………………………………………………....38
4.1 OLED Materials used in this thesis work ……………….………………………………..38
4.1.1 Anode and HIL materials …………………………………………………………..38
4.1.2 Cathode and EIL materials …………………………………………………………38
4.1.3 HTL and ETL materials ……………………………………………………………38
4.1.4 Host materials ……………………………………………………………………...39
4.1.5 Emitters …………………………………………………………………………….39
4.2 Materials characterization ………………………………………………………………43
4.2.1 Ultraviolet visible (UV-Vis) and Photo-luminescent (PL) spectrum ………...……43
4.2.2 Photoluminescent quantum yield measurements (PLQY) ………………………...44
4.2.3 Cyclic voltammetry (CV) …………...……………………………………….……44
4.2.4 Thermal characteristics ………………………..………………………….……….45
4.2.5 Atomic force microscopy (AFM) ……...……………………………………….…45
4.2.6 Carrier mobility measurement ………………………..……………………….…..44
4.2.7 Time resolved photo luminescent measurements (TRPL) ………………………..45
4.2.8 X-Ray Photoelectron Spectroscopy (XPS) ………………………...……..……….45
4.2.9 Ultraviolet photoelectron spectroscopy (UPS) ……………………….…………...45
4.2.10 Ionization potential measurements (IP) …………………………………………...45
4.3 OLED device fabrication …………………………………………………………….….46
4.3.1 Cleaning and UV-ozone dry ………………………………...……………….…....46
4.3.2 Coating of HIL PEDOT:PSS ………………………………...……………………46
4.3.3 Coating of HTLs ………………………….……………………………………….46
4.3.4 Coating of emissive layer …………………………………………………………47
4.3.5 Deposition of ETL, EIL and Al ……………………………………………………47
4.4 OLED device characterization …………………………………………………………..47

Chapter 5 Result and discussion …………………………..……………………………….48

5.1 Management of radiative exciton in EML by reducing the energy barriers between consecutive layers and confining the charge carriers at the interfaces (SRO1) ……...48
5.1.1 Effect of hole injection barrier and high hole mobility of hole transporting layer on OLED device performance …………………………...……...……………………48
5.1.1.1 Objective ………………………………...………………………………..48
5.1.1.2 Result and discussion ………………………………………………..……49
5.1.1.2.1 Device design concept ……………...………………………….49
5.1.1.2.2 White OLED without HTM ………………………...………….50
5.1.1.2.3 White OLED with HTMs ………………………………………50
5.1.1.2.4 Analysis of EL spectra …………………………………………57
5.1.1.2.5 Morphology analysis of HTMs ……………………………..….59
5.1.1.2.6 Prototype and digital image of designed white OLED …………59
5.1.2 Effect of solution-processable Fluorene-based amorphous hole-transporting and electron confining materials on OLED device performance ……………………....62
5.1.2.1 Objective ………………………………………………………….....……62
5.1.2.2 Result and discussion …………………………………………………..….63
5.1.2.2.1 Photophysical properties …………………………………….....63
5.1.2.2.2 Electrochemical properties …………………………….………63
5.1.2.2.3 Theoretical study of the materials …………………….………..63
5.1.2.2.4 Ionization potentials …………………………………………....68
5.1.2.2.5 Hole-only device of HTMs ………………………………….….71
5.1.2.2.6 Electroluminescent properties ………….………………………72
5.1.3 Effect of thermally cross-linkable hole-transporting and electron blocking small molecule on OLED device performance …………………………………………79
5.1.3.1 Objective ……………………………………………………………….....79
5.1.3.2 Result and discussion ………………………………………….…………..80
5.1.3.2.1 Photophysical and electrochemical properties ……………...….80
5.1.3.2.2 Theoretical study of the materials …………………………...…80
5.1.3.2.3 Thermal properties ……………………………….…………….80
5.1.3.2.4 Surface morphology ………………………………………...….82
5.1.3.2.5 Ionization potential …………………………………………….82
5.1.3.2.6 Carrier mobility measurement by time of flight method ……….85
5.1.3.2.7 Electroluminescent properties ………………………………….85
5.1.4 Effect of solution-processable hole-injecting and electron confining inorganic hole transporting material CuSCN on OLED device performance ……………………..95
5.1.4.1 Objective ……………………………………………………………...…..95
5.1.4.2 Result and discussion …………...…………………………………………95
5.1.4.2.1 CuSCN thinfilm coating and device design ……………………..95
5.1.4.2.2 XPS analysis ……………………………………………………97
5.1.4.2.3 Electroluminescent properties …………………………….…….98
5.2 Solution-processable novel small molecular hosts for highly efficient OLED devices ……………………………………………………………..………………………… 103
5.2.1 Objective …………………………………………….………………………….103
5.2.2 Result and discussion ……………………………………...……………………104
5.2.2.1 Physical properties of host materials ………………………………...…….103
5.2.2.2 Carrier-Transporting Properties ……………………………………..…….106
5.2.2.3 Electroluminescence properties ………………………………………..…..108
5.3 Solution-processed TADF mechanism enabling exciplex forming co-host systems for highly efficient low color temperature OLED devices ………………..……………134
5.3.1 Objective ………………………………………………………………………..134
5.3.2 Result and discussion ………………………………………….………………..135
5.3.2.1 Device design concept and selection of materials ………………….……135
5.3.2.2 Photophysical and TRPL analysis of systems ………………..…………139
5.3.2.3 Electroluminescent properties ………………………………..…………139
5.4 Solution-processed hybridized local and charge transfer fluorescence for highly efficient deep-blue OLED devices ……………….………………………………… 148
5.4.1 Objective …………………………..……………………………………………148
5.4.2 Result and discussion ………………………………………………….………. 149
5.4.2.1 Photophysical properties …………………………………………………..149
5.4.2.2 Theoretical study………………………….………………………………..151
5.4.2.3 Electrochemical properties …………….…………………………………..155
5.4.2.4 Thermal study ………………………………………...……………………157
5.4.2.5 Electroluminescent properties ……………………………………………..157
Chapter 6 Summary and outlook …………………………………………………………160
6.1 Summary ……………………………………………………………………………..…160
6.2 Outlook ………………………………………………………………………………....163
References ………………………………………………………………………………….166
Curriculum Vitae of the Author ……………………….………………………………….180
References

[1] J.A. Castellano, Handbook of Display Technology. Amsterdam, The Netherlands: Elsevier. 2012.
[2] B. Geffroy, P. Le Roy P, Prat C. Organic light‐emitting diode (OLED) technology: materials, devices and display technologies. Polym Int 55: 572–582, 2006.
[3] A. Buckley, Organic Light-Emitting Diodes (OLEDs): Materials, Devices and Applications. Amsterdam, The Netherlands: Elsevier. 2013.
[4] T. Tsujimura, OLED Display: Fundamentals and Applications 2nd edn.Hoboken, NJ, USA: John Wiley & Sons. 2017.
[5] D. Barnes, LCD or OLED: who wins? SID Symp Dig Tech Pap, 44: 26–27, 2013.
[6] J. A. Rogers, T. Someya, Y. Huang, Science 2010, 327, 1603.
[7] M. C. Gather, A. Köhnen, K. Meerholz, Adv. Mater. 2011, 23, 233.
[8] J. H. Jou, S. Kumar, A. Agrawal, T. H. Li, S. Sahoo, J. Mater. Chem. C 2015, 3, 2974.
[9] R. P. Xu, Y. Q. Li, J. X. Tang, J. Mater. Chem. C 2016, 4, 9116.
[10] Z. Wu, D. Ma, Mater. Sci. Eng. R Reports 2016, 107, 1.
[11] Z. Wu, D. Ma, Mater. Sci. Eng. R Reports 2016, 107, 1.
[12] J. H. Jou, S. Sahoo, D. K. Dubey, R. A. K. Yadav, S. S. Swayamprabha, S. D. Chavhan, J. Mater. Chem. C 2018, 6, 11492.
[13] S. Reineke, M. Thomschke, B. Lüssem, K. Leo, Rev. Mod. Phys. 2013, 85, 1245.
[14] M. Singh, J.H. Jou, S. Sahoo, Sujith S. S., Z.K. He, G. Krucaite, S. Grigalevicius, and C.W. Wang Scientific reports, 2018, 8, 7133.
[15] R. Das, K. Ghaffarzadeh and X. He, Flexible & Foldable OLED Displays 2019-2029: Te Rise of Plastic and Flexible Displays, IDTechEx,
http://www.idtechex.com/research/reports/oled-display-forecasts-2016-2026-the-rise-of-plastic-and-fexible-displays-000477.asp (2017).
[16] https://pi-scale.eu/oled-display-market-to-reach-25-5bn-in-2018/
[17] https://www.ledinside.com/news/2018/2/opportunities_and_challenges_in_oled_lighting_market
[18] https://www.verifiedmarketresearch.com/product/global-light-control-switches-market-size-and-forecast-to-2025/
[19] K. Ghafarzadeh and N. Bardsley OLED Lighting Opportunities 2017–2027: Forecasts, Technologies, Players, IDTechEx,
http://www.idtechex.com/en/research-report/oled-lighting-opportunities-2017-2027-forecasts-technologies-players/526
[20] S. Scholz, D. Kondakov, B. Lüssem, K. Leo, Chem. Rev. 2015, 115, 8449.
[21] D. Y. Kondakov, J. R. Sandifer and C. W. Tang, J. Appl. Phys., 2003, 93, 1108.
[22] DuPont’s OLED material hits million-hour lifetime, Nat. Photonics, 2009, 3, 441.
[23] L. Duan, L. Hou, T.-W. Lee, J. Qiao, D. Zhang, G. Dong, L. Wang, Y. Qiu, J. Mater. Chem., 2010, 20, 6392–6407.
[24] T.-W. Lee, T. Noh, H.-W. Shin, O. Kwon, J.-J. Park, B.-K. Choi, M.-S. Kim, D. W. Shin, Y.-R. Kim, Adv. Funct. Mater., 2010, 19, 1625–1630.
[25] M. Singh, H. M. Haverinen, P. Dhagat, G. E. Jabbour, Adv. Mater.,2010, 22, 673–685.
[26] T.-H. Han, M.-R. Choi, C.-W. Jeon, Y.-H. Kim, S.-K. Kwon, T.-W. Lee, Sci. Adv., 2016, 2, e1601428.
[27] J. Destirau et al, J. Chem. Phys., 1936, 33, 587.
[28] A. Bernanose, M. Comte, P. Vouaux, J. Chim. Phys. 1953, 50, 64.
[29] A. Bernanose, P. Vouaux, J. Chim. Phys. 1953, 50, 261.
[30] A. Bernanose, J. Chim. Phys. 1955, 52, 396.
[31] A. Bernanose, P. Vouaux, J. Chim. Phys. 1955, 52, 509.
[32] M. Pope, H. P. Kallmann, P. Magnante, The Journal of Chemical Physics,1963, 38 (8): 2042
[33] H. Kallmann, M. Pope, The Journal of Chemical Physics, 1963, 32: 300.
[34] H. Kallmann, M. Pope, Nature, 1960. 186 (4718): 31.
[35] M. Sano, M. Pope, H. Kallmann, The Journal of Chemical Physics, 1965 43 (8): 2920
[36] W. Helfrich, and W. Schneider, Physical Review Letters, 1963, 14 (7): 229.
[37] E. Gurnee, R. Fernandez, U.S. Patent 3,172,862.
[38] R. Partridge, Polymer, 1983, 24 (6): 733.
[39] R. Partridge, Polymer, 1983, 24 (6): 739.
[40] R. Partridge, Polymer, 1983, 24 (6): 748
[41] R. Partridge, Polymer, 1983, 24 (6): 755.
[42] P. S. Vincent, W. A. Barlow, R. A. Hann, G. G. Roberts, Thin Solid Films, 1982, 94, 476.A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki and C. Adachi, Appl. Phys. Lett., 2011, 98, 083302.
[43] Q. S. Zhang, B. Li, S. P. Huang, H. Nomura, H. Tanaka and C. Adachi, Nat. Photonics, 2014, 8, 326–332.
[44] S. Hirata, Y. Sakai, K. Masui, H. Tanaka, S. Y. Lee, H. Nomura, N. Nakamura, M. Yasumatsu, H. Nakanotani, Q. S. Zhang, K. Shizu, H. Miyazaki and C. Adachi, Nat. Mater., 2015, 14, 330–336.
[45] H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi, Nature, 2012, 492, 234–238.
[46] K. Suzuki, S. Kubo, K. Shizu, T. Fukushima, A. Wakamiya, Y. Murata, C. Adachi and H. Kaji, Angew. Chem., Int. Ed., 2015, 54, 15231–15235.
[47] C. W. Tang, S. A. Vanslyke, Applied Physics Letters, 1987, 51 (12): 913.
[48] J. H. Burroughes, D. D. C. Bradley, A .R. Brown, R. N. Marks, K. MacKay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature, 1990, 347 (6293): 539.
[49] https://www.oled-info.com/pmoled-vs-amoled-whats-difference
[50] https://www.cashify.in/blog/amoled-vs-oled-which-is-better-and-why/
[51] https://global.pioneer/en/info/globalnetwork/japan/tohokupioneer/mainbusinesses/oled/
[52] https://www.digitaltrends.com/photography/kodak-brands-oled-displays/ .
[53] https://www.sony.net/SonyInfo/News/Press_Archive/200409/04-048E END?>/ .
[54] https://www.oled-info.com/sony-xel-1 .
[55] https://www.oled-info.com/oled_devices/tv?page=1 .
[56] https://www.oled-info.com/samsung-launches-55-curved-oled-tvs-korea-13000-will-not-ship-regular-oled-tvs-2013
[57] https://www.oled-info.com/lg-launches-77-65-and-55-4k-and-fhd-oled-tvs-korea
[58] https://www.oled-info.com/lg-launch-its-rollable-65-4k-and-its-88-8k-oled-tvs-second-half-2019
[59] https://www.oled-info.com/boe-unveiles-new-oled-displays-sid-2019
[60] https://www.oled-info.com/report-korea-claims-apple-contracted-joled-produce-97-amoleds-next-gen-ipad-tablets
[61] https://support.apple.com/en-bw/HT208191
[62] https://www.oled-info.com/samsung-galaxy-s8
[63] https://www.oled-info.com/google-pixel-2-pixel-2-xl
[64] https://www.oled-info.com/tianma-establish-6-gen-flexible-oled-fab-xiamen-68-billion-investment
[65] https://www.oled-info.com/audi-and-oledworks-co-develop-and-implement-oled-lighting-solutions-automotive-market
[66] https://www.oled-info.com/acuity-brands-expand-its-oled-lighting-portfolio-exclusively-oledworks.
[67] https://www.oled-info.com/nthu-and-first-o-lite-candle-light-oled-lamp-hands-review
[68] J. H. Jou, C. Y. Hsieh, J. R. Tseng, S. H. Peng, Y. C. Jou, J. H. Hong, S. M. Shen, M. C. Tang, P. C. Chen, C. H. Lin, Adv. Funct. Mater. 2013, 23, 2750.
[69] J. H. Jou, Y. T. Su, S. H. Liu, Z. K. He, S. Sahoo, H. H. Yu, S. Z. Chen, C. W. Wang, J. R. Lee, J. Mater. Chem. C 2016, 4, 6070.
[70] N. Thejo Kalyani, S.J. Dhoble, Renewable and Sustainable Energy Reviews, 2012, 16, 2696–2723.
[71] A. Wang, N.L. Edleman, J.R. Babcock, T.J. Marks, M.A. Lane, P.W. Brazis, C.R. Kannewurf, Mater. Res. Soc. Symp. Proc., 2000, 607, 345.
[72] A. Wang, S.C. Cheng, J.A. Belot, R.J. Mcneely, J. Cheng, B. Marcordes, T.J. Marks, J.Y. Dai, R.P.H. Chang, J.L. Schindler, M.P. Chudzik, C.R. Kannewurf Mater. Res. Soc. Symp. Proc., 1998, 495, 3.
[73] A. Wang, J. Dai, J.C. Cheng, M.P. Chudzik, T.J. Marks, R.P.H. Chang, C.R. Kannewurf Appl. Phys. Lett., 1998, 73, 327.
[74] D. S. Hecht, L. Hu, and G. Irvin, Adv. Mater., 2011, 23, 1482–1513.
[75] J. Tang, Q. Cao, G. Tulevski, K. A. Jenkins, L. Nela, D. B. Farmer, S. J. Han, Nature Electronics, 2018, 1, 191–196.
[76] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature, 2009, 457, 706–710.
[77] T. H. Han, Y. B. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn and T. W. Lee, Nat. Photonics, 2012, 6, 105–110.
[78] S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan , T. Lei , H.R. Kim , Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, S. Iijima. Nature Nanotechnology, 2010, 5, 574-578.
[79] W. G. Song, H.J. Kwon, J. Park, J. Yeo, M. Kim, S. Park, S. Yun, K. U. Kyung, C. P. Grigoropoulos, S. Kim, Y. K. Hong, Adv. Funct. Mater. 2016, 26, 2426–2434.
[80] M. Choi, Y. J. Park, B. K. Sharma1, S. R. Bae, S. Y. Kim, and J. H. Ahn., Sci. Adv. 2018, 4, e8721.
[81] W. Gaynor, S. Hofmann, M. G. Christoforo, C. Sachse, A. Salleo, M. D. McGehee, M. C. Gather, B. Lüssem, L. Müller-Meskamp, P. Peumans, & K. Leo, Advanced Materials, 2014 25, 4006-4013.
[82] H. An, T. Habib, S. Shah, H. Gao, M. Radovic, M. J. Greenand, J. L. Lutkenhaus. Sci. Adv., 2018, 4, e0118.
[83] A. Lipatov1, H. Lu, M. Alhabeb, B. Anasori, A Gruverman, Y. Gogotsi, A. Sinitskii. Sci. Adv., 2018, 4, e0491.
[84] Y. Cai, J. Shen, G. Ge, Y. Zhang, W. Jin, W. Huang, J. Shao, J. Yang, X. Dong, ACS Nano, 2017, 12, 56-62.
[85] Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, Adv. Funct. Mater. 21, 1076–1081 (2011).
[86] J. Xu, S. Wang, G. N. Wang, C. Zhu, S. Luo, L. Jin, X. Gu, S. Chen, V. R. Feig, J. W. To, S. Rondeau-Gagné, J. Park, B. C. Schroeder, C.Lu, J. Y. Oh, Y. Wang, Y. H. Kim, H. Yan, R. Sinclair, D. Zhou, G. Xue, B. Murmann, C. Linder, W. Cai, J. B. Tok, J. W. Chung, Z. Bao. Science, 2017, 355, 59–64.
[87] J. Y. Oh, S. Rondeau-Gagné, Y. C. Chiu, A. Chortos, F. Lissel, G. N. Wang, B. C. Schroeder, T. Kurosawa, J. Lopez, T. Katsumata, J. Xu, C. Zhu, X. Gu, W. G. Bae, Y. Kim, L. Jin, J. W. Chung, J. B. Tok, Z. Bao. Nature, 2016, 539, 411-415.
[88] M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M. W. Barsoum. ACS Nano, 2012, 6, 1322–1331.
[89] J. Xu, J. Shim, J. H. Park, S. Lee. Adv. Funct. Mater., 2016, 26, 5328–5334.
[90] L. Duan, X. Kai and Y. Qiu Journal of the Society for Information Display, 2011, 19.6: 453-461.
[91] S. Jhulki and J. N. Moorthy, J. Mater. Chem. C, 2018, 6, 8280-8325.
[92] T. H. Han, W. Song, and T. W. Lee, ACS Appl. Mater. Interfaces, 2015, 7 (5), pp 3117–3125.
[93] Y. Chen, X. Wei, Z. Li, Y. Liu, J. Liu, R. Wang, P. Wang, Y. Y. Takamura, Y. Wang, J. Mater. Chem. C, 2017,5, 8400-8407.
[94] S. Kumar, C. C. An, S. Sahoo, R. Griniene, D. Volyniuk, J. V. Grazulevicius, S. Grigalevicius and J. H. Jou, J. Mater. Chem. C, 2017, 5, 9854-9864.
[95] K. Sun, D. Chu, Y. Cui, W. Tian, Y. Sun and W. Jiang, Org. Electron., 2017, 48, 389
[96] J. H. Jou, Y. T. Lin, Y. T. Su, W. C. Song, S. Kumar, D. K. Dubey, J. J. Shyue, H. Y. Chang, Y. W. You, T. W. Liang, Organic Electronics, 2019, 67, 222–231.
[97] Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi and M. P. Aldred, Chem. Soc. Rev., 2017, 46, 915.
[98] K. Hashimoto , T. Yano , M. Shimizu , Y. Nayatani , Color Res. Appl. 2007, 32, 361.
[99] C. Li , M. R. Luo , G. H. Cui , C. J. Li , Color Technol. 2011, 127, 129.
[100] M. R. Luo , Color Technol. 2011, 127, 75.
[101] N. Sandor , J. Schanda , Lighting Res. Technol. 2006 , 38, 225.
[102] J. H. Jou , K. Y. Chou , F. C. Yang , A. Agrawal , S. Z. Chen , J. R. Tseng , C. C. Lin, P. W. Chen , K. T. Wong , Y. Chi , Appl. Phys. Lett. 2014, 104 , 203304.
[103] J. H. Jou, K. Y. Chou, F. C. Yang, C. H. Hsieh, S. Kumar, A. Agrawal, S. Z. Chen, T. H. Li, H. H. Yu, Adv. Opt. Mater. 2015, 3, 95–102.
[104] https://richbrilliantwilling.com/blogs/light-reading/7988231-understanding-color-temperature-of-led-lighting
[105] N. J. Turro, V. Ramamurthy and J. C. Scaiano, Photochem. Photobiol., 2012, 88, 1033.
[106] A. Ko¨hler and H. Ba¨ssler, Electronic Processes in Organic Semiconductors: An Introduction, John Wiley & Sons, 2015.
[107] https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Electronic_Structure_of_Atoms_and_Molecules/Electronic_Configurations/Electronic_Configurations_Intro
[108] https://en.wikipedia.org/wiki/Hund%27s_rule_of_maximum_multiplicity
[109] https://chem-guide.blogspot.com/2010/04/hunds-rule-of-maximum-multiplicity.html
[110] https://www.embibe.com/study/hund-s-rule-of-maximum-multiplicity-concept
[111] Y. Cao, I. Parker, G. Yu, Z. C. and A. Heeger, Nature, 1999, 397, 414.
[112] M. A. Baldo, D. F. O’Brien, M. E. Thompson, and S. R. Forrest, Phys. Rev. B, 1999, 60, 14 422.
[113] M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, and Z. V. Vardeny, Nature, 2001, 409, 494.
[114] J. S. Wilson, A. S. Dhoot, A. J. A. B. Seeley, M. S. Khan, A. Ko¨hler, and R. H. Friend, Nature, 2001, 413, 828.
[115] L. Chen, S. Zhang, H. Li, R. Chen, L. Jin, K. Yuan, H. Li, P. Lu, B. Yang and W. Huang, J. Phys. Chem. Lett. 2018, 9, 5240−5245.
[116] K. P. Klubek, S.-C. Dong, L.-S. Liao, C. W. Tang, L. J. Rothberg, Org. Electron. 2014, 15, 3127.
[117] Y. Zhang, J. Lee, S. R. Forrest, Nat. Commun., 2014, 5 , 5008
[118] K. Udagawa, H. Sasabe, F. Igarashi, and J. Kido, Adv. Optical Mater., 2016, 4, 86–90
[119] Sei-Yong Kim , Won-Ik Jeong , Christian Mayr , Young-Seo Park , Kwon-Hyeon Kim , Jeong-Hwan Lee , Chang-Ki Moon , Wolfgang Brütting , and Jang-Joo Kim, Adv. Funct. Mater. 2013, 23, 3896–3900
[120] Turro, Nicholas J., Ramamurthy, V., Scaiano, J.C., 2010, Modern Molecular Photochemistry of Organic Molecules, University Science Books, ISBN 978-1-891389-25-2
[121] D. Y. Kondakov, Phil. Trans. R. Soc., 2015, A 373: 20140321
[122] P.-Y. Chou, H.-H. Chou, Y.-H. Chen, T.-H. Su, C.-Y. Liao, H.-W. Lin, W.-C. Lin, H.-Y. Yen, I.-C. Chena and C.-H. Cheng Chem. Commun., 2014, 50, 6869
[123] M. B. Smith, J. Michl, Chemical Reviews., 2010, 110 (11): 6891–936.
[124] D. N. Congreve, Science, 2013, 340, 334–337.
[125] B. J. Walker, M. J. Musser, D. Beljonne, R. H. Friend,Nature Chemistry, 2013, 5 (12): 1019–1024.
[126] R. Nagata, H. Nakanotani, W. J. Potscavage and C. Adachi, Adv. Mater. 2018, 30, 1801484
[127] W. Li, D. Liu, F. Shen, D. Ma, Z. Wang, T. Feng, Y. Xu, B. Yang and Y. Ma, Adv. Funct. Mater., 2012, 22, 2797.
[128] L. Yao, S. Zhang, R. Wang, W. Li, F. Shen, B. Yang and Y. Ma, Angew. Chem., Int. Ed., 2014, 53, 2119.
[129] W. Li, Y. Pan, R. Xiao, Q. Peng, S. Zhang, D. Ma, F. Li, F. Shen, Y. Wang, B. Yang and Y. Ma, Adv. Funct. Mater., 2014, 24, 1609.
[130] S. Zhang, L. Yao, Q. Peng, W. Li, Y. Pan, R. Xiao, Y. Gao, C. Gu, Z. Wang, P. Lu, F. Li, S. Su, B. Yang and Y. Ma, Adv. Funct. Mater., 2015, 25, 1755.
[131] B. Li, G. Tang, L. Zhou, D. Wu, J. Lan, L. Zhou, Z. Lu and J. You, Adv. Funct. Mater., 2017, 27, 1605245.
[132] M .J. Leitl, V .A. Krylova, P. I. Djurovich, M. E. Thompson, H. Yersin, Am. Chem. Soc., 2014, 45, 16032–16038.
[133] C. A. Parker, C. G. Hatchard, Trans. Faraday Soc., 1961, 57, 1894–1904.
[134] J. Zhou, J. et al.. Chem. Commun., 2014, 50, 7586–7589.
[135] M. B. Smith, J. Michl, Chem. Rev., 2010,110, 6891–6936 .
[136] S. K. So, W. K. Choi, L. M. Leung and K. Neyts, Appl. Phys. Lett., 1999, 74, 1939.
[137] F. Li, H. Tang, J. Anderegg and J. Shinar, Appl. Phys. Lett., 1997, 70, 1233.
[138] H. Becker, S. E. Burns and R. H. Friend, Phys. Rev. B: Condens. Matter Mater. Phys., 1997, 56, 1893.
[139] J. Gruener, M. Remmers and D. Neher, Adv. Mater., 1997, 9, 964.
[140] J. H. Jou, S. M. Shen, S. H. Chen, M. H. Wu, W. B. Wang, H. C. Wang, C. R. Lin, Y. C. Chou, P. H. Wu and J. J. Shyue, Appl. Phys. Lett., 2010, 96, 143306.
[141] J. H. Jou, Y. S. Wang, C. H. Lin, S. M. Shen, P. C. Chen, M. C. Tang, Y. Wei, F. Y. Tsai and C. T. Chen, J. Mater. Chem., 2011, 21, 12613.
[142] J. Lee, B. J. Jung, J. K. Lee, H. Y. Chu, L. M. Do and H. K. Shim, J. Mater. Chem., 2002, 12, 3494–3498
[143] A. Gankin Evgeniy, M. Israel, A. Jörg, B. Arezoo, D. Rafael, G. Gianaurelio, C. R. SfezS. Yitzchaik, Langmuir, 2019, 35, 8, 2997-3004
[144] J. H. Jou , S. H. Chen, S. M. Shen, Y. C. Jou, C. H. Lin, S. H. Peng, S. P. Hsia, C. W. Wang, C. C. Chen, and C. C. Wang, Journal of Materials Chemistry, 21, 17850-17854, 2011
[145] S. A. Choulis, Y. Kim, J. Nelson, D. D. C. Bradley, M. Giles, M. Shkunov and I. McCulloch, Appl. Phys. Lett., 2004, 85, 3890.
[146] G. G. Malliaras and J. C. Scott, J. Appl. Phys., 1998, 83, 5399.
[147] T. Fo¨rster, Discuss. Faraday Soc., 1959, 27, 7.
[148] D. L. Dexter, J. Chem. Phys., 1953, 21, 836.
[149] C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest, J. Appl. Phys., 2001, 90, 5048
[150] B. P. Lyons and A. P. Monkman, Phys. Rev. B, 2005, 71, 235201.
[151] C. Harris Daniel, Quantitative Chemical Analysis (8th ed.). New York: W. H. Freeman and Co. pp. 419-44, 2010.
[152] Dexter Energy Transfer, chemwiki.ucdavis.edu. Retrieved 8 July 2014.
[153] J. H. Jou, H. H. Yu, F. C. Tung, C. H. Chiang, Z. K. He and M. K. Wei J. Mater. Chem. C, 2016, 5, 176-182
[154] J.-H. Lee, J.-I. Lee, J.-Y. Lee, and H.-Y. Chu, Appl. Phys. Lett., 2009, 94, 193305.
[155] P. I. Shih, C .F. Shu, Y. L. Tung, Y. Chi, Y. Appl. Phys. Lett., 2006, 88, 251110.
[156] L. D. Hou, L. Duan, J. Qiao, D. Q. Zhang, G. F. Dong, L. D. Wang, Y. Qiu, Org. Electron. 2010, 11, 1344– 1350
[157] Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson and S. R. Forrest, Nature, 2006, 440, 908;
[158] J. H. Jou, J. R. Tseng, K. Y. Tseng, W. B. Wang, Y. C. Jou, S. M. Shen, Y. L. Chen, W. Y. Hung, S. Z. Chen, T. Y. Ding and H. C. Wang, Org. Electron., 2012, 13, 2893.
[159] Q. Wang, C. L. Ho, Y. Zhao, D. Ma, W. Y. Wong and L. Wang, Org. Electron., 2010, 11, 238.
[160] J. H. Seo, J. S. Park, S. J. Lee, B. M. Seo, K. H. Lee, J. K. Park, S. S. Yoon and Y. K. Kim, Jpn. J. Appl. Phys., 2010, 49, 090203.
[161] D. Zhang, L. Duan, D. Zhang, J. Qiao, G. Dong, L. Wang, Y. Qiu, Org. Electron. 2013, 14, 260.
[162] D. D. Zhang, L. Duan, C. Li, Y. L. Li, H. Y. Li, D. Q. Zhang, Y. Qiu, Adv. Mater. 2014, 26, 5050.
[163] H. Nakanotani, T. Higuchi, T. Furukawa, K. Masui, K. Morimoto, M. Numata, H. Tanaka, Y. Sagara, T. Yasuda, C. Adachi, Nat. Commum., 2014, 5, 4016.
[164] D. Zhang, X. Song, M. Cai, L. Duan, Adv. Mater., 2018, 30, 1705250.
[165] M. A. Baldo, M. E. Thompson, S. R. Forrest, Nature, 2000, 403, 750.
[166] H. G. Kim, K. H. Kim, C. K. Moon, J. J. Kim, Adv. Optical Mater., 2017, 5, 1600749.
[167] H. G. Kim, K. H. Kim, J. J. Kim, Adv. Mater., 2017, 1702159.
[168] H. G. Kim, H. Shin, Y. H. Ha, R. Kim, S. K. Kwon, Y. H. Kim, J. J. Kim, ACS Appl. Mater. Interfaces, 2019, 11, 26.
[169] P. Heimel, A. Mondal, F. May, W. Kowalsky, C. Lennartz, D. Andrienko, R. Lovrincic, Nat. Commum., 2018, 9, 4990.
[170] J. M. Kim, C .H. Lee, J. J. Kim, J.-J. Appl. Phys. Lett. 2017, 111, 203301.
[171] W. Song, J. Y. Lee, Org. Electron. 2017, 48, 285−290.
[172] D. Zhang, M. Cai, Y. Zhang, Z. Bin, D. Zhang, L. Duan, L. ACS Appl. Mater. Interfaces 2016, 8, 3825−3832.
[173] D. Zhang, X. Song, M. Cai, L. Duan, Adv. Mater. 2018, 30, 1705250.
[174] S. J. He, D. K. Wang, N. Jiang, J. S. Tse, Z. H. Lu, Adv. Mater. 2016, 28, 649−654.
[175] D. Chen, G. Xie, X. Cai, M. Liu, Y. Cao, S. J. Su, Adv. Mater. 2016, 28, 239−244.
[176] L. Chen, S. Zhang, H. Li, R. Chen, L. Jin, K. Yuan, H. Li, P. Lu, B. Yang, and W. Huang, J. Phys. Chem. Lett. 2018, 9, 5240−5245.
[177] G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich and J. Salbeck, Appl. Phys. Lett., 2004, 85, 3911
[178] J. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo and S. Liu, Appl. Phys. Lett., 2002, 80, 139.
[179] M. Pfeiffer, S. R. Forrest, K. Leo and M. E. Thompson, Adv. Mater., 2002, 14, 1633.
[180] X. Guo, G. D. Shen, G. H. Wang, W. J. Zhu, J. Y. Du, G. Gao and D. S. Zou, Appl. Phys. Lett., 2001, 79, 2985.
[181] J. K. Kim, E. Hall, O. Sjolund and L. A. Coldren, Appl. Phys. Lett., 1999, 74, 3251.
[182] M. F. Lamorte and D. Abbott, Solid-State Electron., 1979, 22, 467.
[183] H. Zhang, Y. Dai and D. Ma, Appl. Phys. Lett., 2007, 91, 123504.
[184] M. W. Lee, O. K. Song, Y. M. Koo, Y. H. Lee, H. K. Chung and S. S. Kim, SID Int. Symp. Dig. Tech. Pap., 2010, 41, 1800.
[185] J. Kido, M. Kimura, K. Nagai, 1995, Science 267.
[186] J. P. Yang. Y.D. Jin, P.L Heremans, R Hoefnagels, P. Dieltiens, F. Blockhuys, H. J. Geise, M. Van der Auweraer, G. Borghs, Chemical Physics Letters, 2000, 325, 251.
[187] C. W. Ko and Y. T. Tao, Appl. Phys. Lett., 2001, 79, 4234
[188] Y. S. Huang, J. H. Jou, W. K. Weng, and J. M. Liu. H. Jou, Applied Physics Letters, 2002, 80, 15.
[189] C. H. Chuen and Y. T. Tao Applied Physics Letters, 2002, 81, 24.
[190] V. Adamovich, J. Brooks, A. Tamayo, A. M. Alexander, P. I. Djurovich, B. W. D’Andrade, C. Adachi, S. R. Forrest and M. E. Thompson, New J. Chem., 2002, 26, 1171
[191] G. Cheng, F. Li, Y. Duan, J. Feng, S. Liu, S. Qiu, D. Lin, Y. Ma, and S. T. Lee, Applied Physics Letters, 2003, 82, 24.
[192] J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang, and H. C. Hu, Applied Physics Letters, 2006, 88, 193501.
[193] J. H. Jou, Y. S. Chiu, R. Y. Wang, H. C. Hu, C. P. Wang and H. W. Lin, Org. Electron., 2006, 7, 8
[194] J. H. Jou, C. P. Wang, M. H. Wu, P. H. Chiang, H. W. Lin, H. C. Li and R. S. Liu, Org. Electron., 2007, 8, 29;
[195] J.H. Jou, M.H. Wu, C.P. Wang, Y.S. Chiu, P.H. Chiang, H.C. Hu, R.Y.Wang, Org. Electronics 8, 735 (2007)
[196] Q. X. Tong, S. L. Lai, M. Y. Chan, J. X. Tang, H. L. Kwong, C. S. Lee, and S. T. Lee, Applied Physics Letters, 2007, 91, 023503.
[197] S. L. Lai, M. Y. Chan, M. K. Fung, C. S. Lee, and S. T. Lee, Applied Physics Letters, 2007, 90, 203510.
[198] J. H. Jou, C. C. Chen, Y. C. Chung, M. F. Hsu, C. H. Wu, S. M. Shen, M. H. Wu, W. B. Wang, Y. C. Tsai, C. P. Wang and J. J. Shyue, Adv. Funct. Mater., 2008, 18, 121
[199] B.W. D’Andrade J. Brooks V. Adamovich M.E. Thompson S.R. Forrest. Adv. Mater., 2002, 14, No.15.
[200] V. I. Adamovich, S. R. Cordero, Peter I. Djurovich, A. Tamayo, M. E. Thompson, B. W. D’Andrade, S. R. Forrest. Org. Electronics, 2003, 4, 77.
[201] R. F. Service in Science 310, 1762 (2005)
[202] S. Tokito, T. Tsuzuki, F. Sato and T. Iijima, Curr. Appl. Phys., 2005, 5, 331
[203] Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson and S. R. Forrest, Nature, 2006, 440, 908
[204] Y. Sun and S. R. Forrest, Nat. Photonics, 2008, 2, 483
[205] S. J. Su, E. Gonmari, H. Sasabe and J. Kido, Adv. Mater., 2008, 20, 4189
[206] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lu¨ssem and K. Leo, Nature, 2009, 459, 234;
[207] H. Sasabe, J. I. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast, N. Langer, O. Molt, E. Funchs, C. Lennartz and J. Kido, Adv. Mater., 2010, 22, 5003.
[208] S. Gong, Y. Chen, C. Yang, C. Zhong, J. Qin and D. Ma, Adv. Mater., 2010, 22, 5370.
[209] Y. Wang, et al. J. Mater. Chem. 21, 3551-3553 (2011)
[210] T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn and T. W. Lee, Nat. Photonics, 2012, 6, 105;
[211] T. Komoda, et al. J. Photo. Sci. Tec. 25, 321-326 (2012)
[212] H. Tsuji, J. Photopolym. Sci. Technol., 2013, 26, 415X. Song, D. Zhang, Y. Lu, C. Yin, and L. Duan, Adv. Mater., 2019, 31, 1901923.
[213] H. Ye, D. Chen, M. Liu, S. J. Su, Y. F. Wang, C. C. Lo, A. Lien, J. Kido, Adv. Funct. Mater., 2014, 24, 3268
[214] H. Sasabe, N. Onuma, Y. Nagai, T. Ito, J. Kido, Chem. - An Asian J. 2017, 12, 648.
[215] Y. K. Wang, S. H. Li, S. F. Wu, C. C. Huang, S. Kumar, Z. Q. Jiang, M. K. Fung, L. S. Liao, Adv. Funct. Mater. 2018, 28, 1706228.
[216] Y. Wang, W. Wang, Z. Huang, H. Wang, J. Zhao, J. Yu, D. Ma, J. Mater. Chem. C 2018, 6, 7042.
[217] L. H. Xu, Q. D. Ou, Y. Q. Li, Y. B. Zhang, X. D. Zhao, H. Y. Xiang, J. De Chen, L. Zhou, S. T. Lee, J. X. Tang, ACS Nano 2016, 10, 1625.
[218] Z. Wu, L. Yu, F. Zhao, X. Qiao, J. Chen, F. Ni, C. Yang, T. Ahamad, S. M. Alshehri, D. Ma, Adv. Opt. Mater. 2017, 5, 1700415.
[219] C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, Appl. Phys. Lett. 70, 11 (1997).
[220] H. T. Lu and M. Yokoyama, Journal of Crystal Growth, 2004, 260, 1-2.
[221] Zhong Zhi You, and Jiang Ya Dong, Applied Surface Science, 2005, 249, 1-4.
[222] D. K. Dubey, S. S. Swayamprabha, R. A. K. Yadav, D. Tavgeniene, D. Volyniuk, S. Grigaleviciusb, J. H. Jou, Organic Electronics, 2019, 73, 94–101.
[223] P. Strohriegl, J.V. Grazulevicius, J. Pielichowski, K. Pielichowski, Prog. Polym. Sci., 2003, 28,1297-1353.
[224] S. Grigalevicius, J.V. Grazulevicius, V. Gaidelis, V. Jankauskas, Compounds Polymer, 2002, 43 (2002), 2603-2608.
[225] Z. Jiang, Z. Zhong, S.F. Xue, Y. Zhou, Y. Meng, Z.H. Hu, N. Ai, J. Wang, L. Wang, J. Peng, Y. Ma, J. Pei, J. Wang, Y. Cao, ACS Appl. Mater. Interfaces, 2014, 6, 8345–8352.
[226] J. Huang, W.J. Hou, J.H. Li, G. Li, Y. Yang, Appl. Phys. Lett., 2006, 89,133509.
[227] B. Zhang, G. Tan, C.S. Lam, B. Yao, C.L. Ho, L. Liu, Z. Xie, W.Y. Wong, J. Ding, L. Wang, Adv. Mater., 2012, 24, 1873–1877.
[228] J.H. Jou, C.C. Chen, Y.C. Chung, M.F. Hsu, C.H. Wu, S.M. Shen, M.H. Wu, W.B. Wang, Y.C. Tsai, C.P. Wang, J.J. Shyue, Adv. Funct. Mater., 2008, 18, 121–126.
[229] C.C. Fan, M.H. Huang, W.C. Lin, H.W. Lin, Y. Chi, H.F. Meng, T.C. Chao, M.R. Tseng, Org. Electron., 2014, 15, 517–523.
[230] S. Hu, M. Zhu, Q.H. Zou, H.B. Wu, C.L. Yang, W.Y. Wong, W. Yang, J.B. Peng,
[231] Y. Cao, Appl. Phys. Lett., 2012, 100, 063304.
[232] C. Fan, Y. Lei, Z. Liu, R. Wang, Y.L. Lei, G. Li, Z. Xiong, X. Yang, ACS Appl. Mater. Interfaces, 2015, 7, 20769–20778.
[233] D. K. Dubey, S. Sahoo, C. W. Wang, J. H. Jou, Organic Electronics, 2019, 69, 232–240.
[234] M. J. Frisch et.al, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.
[235] X. J. Xu, S. Y. Chen, G. Yu, C. Di, H. You, D. G. Ma, Y. Q. Liu, Adv. Mater., 2007, 19, 1281–1285.
[236] C. Murawski, C. Fuchs, S. Hofmann, K. Leo, M. C. Gather, Appl. Phys. Lett., 2014, 105, 113303.
[237] S. M. Park, Y.H. Kim, Y. Yi, H. Y. Oh, J. Kim, Appl. Phys. Lett., 2010, 97, 063308.
[238] Y. Kawamura, K. Goushi, J. Brooks, J. J. Brown, H. Sasabe, C. Adachi, Appl. Phys. Lett., 2005, 86, 071104.
[239] Y. Kawamura, J. Brooks, J. J. Brown, H. Sasabe, C. Adachi, Phys. Rev. Lett., 2006, 96, 017404.
[240] S. J. Su, T. Chiba, T. Takeda, J. Kido, Adv. Mater., 2008, 20, 2125–2130.
[241] W. Li, D. Liu, F. Shen, D. Ma, Z. Wang, T. Feng, Y. Xu, B. Yang, Y. Ma, Adv. Funct. Mater., 2012, 22, 2797–2803.
[242] J. Lee, N. Chopra, S. H. Eom, Y. Zheng, J. Xue, F. So, J. Shi, Appl. Phys. Lett., 2008, 93, 123306.
[243] K. Goushi, R. Kwong, J. J. Brown, H. Sasabe, C. Adachi, J. Appl. Phys., 2004, 95, 7798–7802.
[244] P. Görrn, M. Sander, J. Meyer, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Riedl, Adv. Mater., 2006, 18, 738–741.
[245] P. Strohriegl, J.V. Grazulevicius, J. Pielichowski, K. Pielichowski, Prog. Polym. Sci. 28 , 2003, 1297–1353.
[246] S. Grigalevicius, J.V. Grazulevicius, V. Gaidelis, V. Jankauskas, Compounds Polymer, 2002, 43, 2603–2608.
[247] D. Aldakov, C. C. Gillot, R. Salazar, V. Delaye, K. A. Welsby, V. Ivanova, and P. R. Dunstan, J. Phys. Chem. C, 2014, 118, 16095−16103.
[248] Z. Zhao, H. Yang, Y. Zhu, S. Luo and J. Ma Nanoscale, 2019, 11, 12938
[249] H. Wang, Z. Yu, J. Lai, X. Song, X. Yang, A. Hagfeldt and L. Sun, J. Mater. Chem. A, 2018, 6, 21435.
[250] S. Kumar, P. Singh, R. Srivastava, R. R. Koner, A. Pramanik, J. Mathew, S. Sinha, M. Rawat, R. Anand and S. Ghosh, Journal of Materials Chemistry C, 2014, 2, 6637-6647.
[251] D. Thakur, D. K. Dubey, R. A. K. Yadav, M. Venkateswarulu, S. Banik, J. H. Jou, S. Ghosh, Solution-Processed Hybrid Hosts: A Way to Clinch High Triplet Energy with Admirable Current and Power Efficiency Devoiding Outcoupling Mode for Phosphorescent OLED, J. Mat. Chem. C, 2019 (Just accepted).
[252] H. Chen, Y. Guo, G. Yu, Y. Zhao, J. Zhang, D. Gao, H. Liu and Y. Liu, Advanced materials, 2012, 24, 4618-4622.
[253] J. S. Lee, S. K. Son, S. Song, H. Kim, D. R. Lee, K. Kim, M. J. Ko, D. H. Choi, B. Kim and J. H. Cho, Chemistry of Materials, 2012, 24, 1316-1323.
[254] I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. MacDonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner and W. Zhang, Nature materials, 2006, 5, 328.
[255] Z. Liu, G. Zhang and D. Zhang, Accounts of chemical research, 2018, 51, 1422-1432.
[256] J.-H. Jou, T.-H. Li, S. Kumar, C.-C. An, A. Agrawal, S.-Z. Chen, P.-H. Fang, G. Krucaite, S. Grigalevicius, J. Grazulevicius and C.-F. Sung, Org. Electron., 2015, 24, 254.
[257] M. Sarma and K. T. Wong, ACS Appl. Mater. Interfaces, 2018, 10, 19279−19304.
[258] Y. C. Lo, T. H. Yeh, C. K. Wang, B. J. Peng, J. H. Hsieh, C. C. Lee, S. W. Liu, and K. T. Wong, ACS Appl. Mater. Interfaces, 2019, 11, 23417−23427.
[259] J. W. Sun, J. H. Lee, C. K. Moon, K. H. Kim, H. Shin, J. J. Kim, Adv. Mater., 2014, 26, 5684−5688.
[260] K. H. Kim, C. K. Moon, J. H. Lee, S. Y. Kim, J. J. Kim, Adv. Mater., 2014, 26, 3844−3847.
[261] H. Shin, S. Lee, K. H. Kim, C. K. Moon, S. J. Yoo, J. H. Lee, J. J. Kim, Adv. Mater., 2014, 26, 4730−4734.
[262] S. Ying, Q. Sun, Y. Dai, D. Yang, X. Qiao and D. Ma, Mater. Chem. Front., 2019, 3, 640
[263] W. Li, D. Liu, F. Shen, D. Ma, Z. Wang, T. Feng, Y. Xu, B. Yang and Y. Ma, Adv. Funct. Mater., 2012, 22, 2797.
[264] S. Zhang, L. Yao, Q. Peng, W. Li, Y. Pan, R. Xiao, Y. Gao, C. Gu, Z. Wang, P. Lu, F. Li, S. Su, B. Yang and Y. Ma, Adv. Funct. Mater., 2015, 25, 1755
[265] X. Tang, Q. Bai, Q. Peng, Y. Gao, J. Li, Y. Liu, L. Yao, P. Lu, B. Yang and Y. Ma, Chem. Mater., 2015, 27, 7050
[266] W. C. Chen, X. Yuan, S. F. Ni, Q. X. Tong, F. L. Wong and C. S. Lee, Chem. Sci., 2017, 8, 3599.
[267] R. K. Konidena, K. R. J. Thomas, D. K. Dubey, S. Sahoo and J. H. Jou, Chem. Commun., 2017, 53, 11802.
(此全文20241022後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *