帳號:guest(3.137.183.210)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡宜芳
作者(外文):Tsai, Yi-Fang
論文名稱(中文):根基於LED/OLED之高效率、高光質光源製造指引探究
論文名稱(外文):An Exploration of Fabrication Guidelines for High-Efficiency and High-Light Quality Light Sources Based on LED/OLED
指導教授(中文):周卓煇
指導教授(外文):Jou, Jwo-Huei
口試委員(中文):蔡永誠
岑尚仁
董福慶
石陞旭
口試委員(外文):Tsai, Yung-Cheng
TSEN, SHANG-REN
DUNG, FU-CHING
SHI, SHENG-XU
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031810
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:83
中文關鍵詞:有機發光二極體OLED無藍害類太陽光高效率高光質色溫可調
外文關鍵詞:OLEDPseudo-sunlightblack-body-radiation styleblue light hazardanti-pseudo-sunlightHigh-efficient lighting
相關次數:
  • 推薦推薦:0
  • 點閱點閱:74
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
長時間暴露在富含藍光的白光下,可能會引起健康問題,例如:視網膜損傷和褪黑激素抑制;因此,除了節能和高品質之外,我們應該重新定義什麼是對人類友善的照明。在第一次,全球能源危機出現以來,節能是一個最最重要的問題;高效照明,因此成為人們關注的重點,這也使得節能的固態照明技術,成為現代照明的主流;具有相對較高的效率,以及相對較高光質的光源,則被認為是好光;直到出現“藍害”一詞時,人類開始意識到,富含藍光的照明,對人類眼睛、健康的威脅,越來越大;因此,所謂的“好光”,至少應該包含上述特質,譬如對視網膜友善,對褪黑激素的自然友善。

在這裡,我們使用一種設計方法,以實現友善的照明;首先,我們以LED及OLED為驗證例子,在同樣的色溫下,比較其光色落在(1)黑體輻射軌跡上、(2)類太陽光光色軌跡上以及(3)反類太陽光光色軌跡上時,其藍害或是友善度的差異表現;結果發現,無論是LED或OLED,在節能特性、光質表現和友善度上,都是以光色落在”類太陽光”軌跡上的為最好。

此外,色溫較低的光源,對褪黑激素的自然分泌更友善;值得注意的是,雖有相同的色溫,不同的光源,仍會顯示不同的褪黑激素抑制效果,尤其當色溫在 3,000K或以上時;先以2,000K等低色溫為例,光色像太陽光的LED和OLED,其抑制敏感度分別為2%和3%;在5,000K時,類太陽光LED和OLED的褪黑激素抑制敏感度,分別為14%和18%;在8,000K時,它們的抑制敏感度分別為20%和28%。

類太陽光LED,在所研究的整個色溫範圍內,顯示出相對較高的自然光譜相似指標(SRI),除了2,000K;在2,000K 時,三種類型的LED ,均顯示91的 SRI;若是為5,000K時,其類太陽光、類黑體輻射和反類太陽光的SRI,則分別為93、92和86;在8,000K等高色溫下,則分別為90、88和 78。

無論何種色溫LED,類太陽光型,其能量效度,都顯著高於類黑體輻射型,而黑體輻射型的,又高於反類太陽光型;若為2,000K時,類太陽光、類黑體輻射和反類太陽光的功率,分別為 285、270 和 255 lm/W;3,000 K時,則為285、265和250 lm/W;5,000K,則為260、240和210 lm/W。
當為OLED,類太陽光型的,則較其他兩種類型的,有更高的能量效度;以 3,000K為例,類太陽光、類黑體輻射型和反類太陽光 OLED的能量效度,分別為280、267和253 lm/W;5,000 K時,則分別為 290、264和238 lm/W。
Chronic exposure to blue-enriched white light can cause health problems, such as retinal damage and melatonin suppression. Therefore, we should redefine what human-friendly lighting is, in addition to energy-saving and high quality. Since the first global energy crisis, energy-saving has become a crucial issue. High-efficient lighting has been the focus of attention, so that energy-saving solid-state lighting technology becomes the mainstream of modern lighting. Light sources with high efficiency and high light quality are considered good light. However, as the concept of blue hazard emerges, people realize that blue-enriched lighting threatens human eyes and health. Hence, the so-called "good light" should include some characteristics, such as being friendly to the retina and to melatonin secretion at night.

In this thesis, we find a method to fabricate relatively friendly light sources by using LEDs and OLEDs. They are operated with the same color temperature, and compare their difference in performance of blue light hazard or friendliness, as the photochromic falls on (1) black-body-radiation style, (2) pseudo-sunlight and (3)anti-pseudo-sunlight. The results show that the best performance of both LEDs and OLEDs occur when the photochromic falls on "pseudo-sunlight", in terms of energy saving characteristic, light quality performance and friendliness.

Moreover, light sources with lower color temperature are more friendly to natural secretion of melatonin. It is worth noting that, different light sources with the same color temperature show different effects of melatonin suppression. Especially, when the color temperature is at or above 3,000K. For example, when using LEDs and OLEDs with low color temperature, such as 2,000K, which their photochromic falls on pseudo-sunlight, sensitivities of melatonin suppression are 2% and 3%, respectively. While color temperature reach 5,000K, the sensitivities of melatonin suppression are 14% and 18%, respectively. At 8,000K, the sensitivities of melatonin suppression are 20% and 28%, respectively.

Within the entire range of color temperature used in this thesis, pseudo-sunlight LEDs show relatively high natural spectral similarity index (SRI), except 2,000K. At 2,000K, the SRI for three types of LEDs are 91. Besides the SRI of pseudo-sunlight LEDs, black-body-radiation style LEDs and anti-pseudo-sunlight LEDs are 93, 92, and 86, respectively, at 5,000K and 90, 88, and 78, respectively, at 8,000K or other high color temperatures.

Regardless of the color temperature, the power efficiency of pseudo-sunlight LEDs is significantly higher than that of black-body-radiation style LEDs; the exposure limit of black-body-radiation style LEDs is higher than that of anti-pseudo-sunlight LEDs. At 2,000K, the power of pseudo-sunlight LEDs, black-body-radiation style LEDs and anti-pseudo-sunlight LEDs are 285, 270 and 255 lm/W, respectively. Furthermore, the power of pseudo-sunlight LEDs, black-body-radiation style LEDs and anti-pseudo-sunlight LEDs are 285, 265 and 250 lm/W, respectively, at 3,000 K, and 260, 240 and 210 lm/W, respectively, at 5,000 K.

In terms of OLEDs, the power efficiency of pseudo-sunlight OLEDs is higher than the other two types of OLEDs. For instance, the exposure limit of pseudo-sunlight OLEDs, black-body-radiation style OLEDs and anti-pseudo-sunlight OLEDs are 280, 267 and 253 lm/W, respectively, at 3,000 K, and 290, 264 and 238 lm/W, respectively, at 5,000 K.
摘要 I
Abstract III
誌謝 VI
目錄 VIII
表目錄 X
圖目錄 XI
壹、緒論 1
貳、文獻回顧 4
2-1、有機發光二極體之發展歷史 4
2-2、OLED之發光原理 20
2-3、藍光傷害 22
2-4、無藍害燭光OLED的興起 25
參、理論基礎 30
3-1、褪黑激素抑制理論基礎 30
3-1-1、褪黑激素抑制作用光譜 32
3-1-2、曝照量與褪黑激素抑制之關聯 35
肆、理論計算 37
4-1、演色性指數的定義與計算(CRI) 37
4-2、自然光譜相似性指數的定義與計算(SRI) 39
4-3、褪黑激素抑制程度的計算(MSS) 41
4-4、視網膜最大可忍受之曝光極限(MPE)之計算 42
伍、結果與討論 43
5.1 、人體友善光源設計 43
5.1.1 、從視網膜保護之角度觀點 43
5.1.1.1、光譜帶寬之影響 43
5.1.1.2、光譜範圍對曝光極限之影響 47
5.1.1.3、擬自然光之影響 50
5.1.2、 從褪黑激素分泌之角度觀點 52
5.1.2.1、照明技術之影響 52
5.1.2.2、光譜範圍對 MLT 抑制之影響 53
5.1.2.3、照明技術光色之影響 53
5.2 、高品質光源之設計 55
5.2.1、 從 SRI 之角度觀點 55
5.2.1.1、照明技術之影響 55
5.2.1.2、黑體輻射光譜範圍對SRI之影響 56
5.2.1.3、照明技術光色對 SRI之影響 57
5.2.2、從CRI之角度觀點 59
5.2.2.1、照明技術對CRI之影響 59
5.2.2.2、黑體輻射光譜範圍對 CRI 之影響 60
5.2.2.3、照明技術光色對CRI之影響 61
5.3 、節能光源設計 63
5.3.1、照明技術對效度之影響 63
5.3.2、黑體輻射光譜範圍對效度之影響 64
5.3.3、照明技術光色對效度之影響 65
陸、結論 67
柒、參考資料 69
附錄,個人著作 83

柒、參考資料
1. 全球油價 2014年跌幅最大。美國之音。https://www.voacantonese.com/a/world-oil-prices-20150102/2583188.html
2. The-First-Global-Energy. https://www.abbitumikasa.com/forums/showthread.php/49587-History-of-Crises-The-First-Global-Energy-Crisis-of-1973-1974
3. https://web.archive.org/web/20110523062242/http://www.eia.doe.gov/emeu/
25opec/anniversary.html
4. http://www.history.com/topics/energy-crisis
5. Department of energy. Energy Savings Potential of Solid-State Lighting in General Illumination Applications 2010 to 2030, Lighting. Research and Development Building Technologies Program, February (2010).
6. Department of energy. Energy Savings Potential of Solid-State Lighting in General Illumination Applications. Building technologies program, January (2012).
7. Steven Van Slyke Invented OLED Technology, Increasing Efficiency. https://www.invent.org/inductees/steven-van-slyke.
8. OLED Displays and Their Applications | Learning Corner for Beginners. https://www.electronicsforu.com/resources/oled-displays-applications.
9. Sony OLED | OLED-Info. https://www.oled-info.com/sony-oled.
10. AUO. https://www.auo.com/en-global/New_Archive/detail/
News_Archive_Technology_190823.
11. BOE demonstrates a 55" 8K ink-jet printed OLED TV prototype | OLED-Info. https://www.oled-info.com/boe-demonstrates-55-8k-ink-jet-printed-oled-tv-prototype.
12. LG OLED TV 2016 Display Technology Shoot-Out. https://www.displaymate.com/OLED_TV2016_ShootOut_1.htm.
13. Kosai, S. et al. Evaluation of resource use in the household lighting sector in Malaysia considering land disturbances through mining activities. Resources, Conservation and Recycling 166, 105343 (2021).
14. Shahnawaz et al. Highly Efficient Candlelight Organic Light-Emitting Diode with a Very Low Color Temperature. Molecules 2021, Vol. 26, Page 7558 26, 7558 (2021).
15. Jou, J. et al. Wet-process feasible candlelight OLED. pubs.rsc.org.
16. Jou, J.-H. et al. Candle light‐style organic light‐emitting diodes. Wiley Online Library 23, 2750–2757 (2013).
17. Jou, J., Hsieh, C., Chen, P., … S. K.-J. of P. & 2014, undefined. Candlelight style organic light-emitting diode: a plausibly human-friendly safe night light. spiedigitallibrary.org doi:10.1117/1.JPE.4.043598.
18. Jou, J. et al. Blue-hazard-free Candlelight OLED. jove.com.
19. Sasabe, H. & Kido, J. Development of high performance OLEDs for general lighting. Journal of Materials Chemistry C 1, 1699–1707 (2013).
20. Reineke, S. et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234–238 (2009).
21. Panasonic developed a 114 lm/W OLED panel - claims world’s most efficient panel | OLED-Info. https://www.oled-info.com/panasonic-developed-114-lmw-oled-panel-claims-worlds-most-efficient-panel.
22. Panasonic Develops World’s Highest Efficiency White OLED for Lighting | Headquarters News | Panasonic Newsroom Global. https://news.panasonic.com/global/press/data/2013/05/en130524-6/en130524-6.html.
23. Kato, K., Iwasaki, T. & Tsujimura, T. Over 130 lm/W all-phosphorescent white OLEDs for next-generation lighting. Journal of Photopolymer Science and Technology 28, 335–340 (2015).
24. Forrest, S.R., The road to high efficiency organic light emitting devices. Organic Electronics, 2003. 4(2-3): p. 45-48.
25. http://www.cree.com/News-and-Events/Cree-News/Press-Releases/2010/
February/100203-200-Lumen-Per-Watt。
26 S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459, 234-238 (2009).
27. L. Zhou, H. Y. Xiang, S. Shen, Y. Q. Li, J. D. Chen, H. J. Xie, I. A. Goldthorpe, L. S. Chen, S. T. Lee, and J. X. Tang, “High-Performance Flexible Organic Light-Emitting Diodes Using Embedded Silver Network Transparent Electrodes,” ACS nano 8, 12796-12805 (2014).
28. K. Kato, T. Iwasaki, and T. Tsujimura, “Over 130 lm/W All-Phosphorescent White OLEDs for Next-generation Lighting,” Journal of Photopolymer Science and Technology 28 , 335-340 (2015)。
29. H. Y. Lin, S. W. Wang, C. C. Lin, Z. Y. Tu, H. H. Tu, T. M. Chen, M. H. Shih, H. M. Chen, and H. C. Kuo, “Excellent Color Quality of White-Light-Emitting Diodes by Embedding Quantum Dots in Polymers Material,” IEEE Journal of Selected Topics in Quantum Electronics 22, 35-41 (2016).
30. W. S. Song, S. H. Lee, and H. Yang, “Fabrication of warm, high CRI white LED using non-cadmium quantum dots,” Optical Materials Express 3, 1468-1473 (2013).
31. A. M. Srivastava, A. R. Duggal, H. A. Comanzo, and W. W. Beers, “Single phosphor for creating white light with high luminosity and high CRI in a UV led device,” U.S. Patent No. 6,522,065. 18 Feb. (2003).
32 . T. Zhang, S. J. He, D. K. Wang, N. Jiang, and Z. H. Lu, “A multi-zoned white organic light-emitting diode with high CRI and low color temperature,” Scientific reports 6, 20517 (2016).
33. N. Sun, Y. Zhao, F. Zhao, Y. Chen, D. Yang, J. Chen, and D. A. Ma, “white organic light-emitting diode with ultra-high color rendering index, high efficiency, and extremely low efficiency roll-off,” Appl. Phys. Lett. 105, 013303 (2014).
34. A. A. Setlur, W. J. Heward, M. E. Hannah, and U. Happek, “Incorporation of Si4+–N3- into Ce3+ -Doped Garnets for Warm White LED Phosphors”, Chem. Mater. 20, 6277–6283 (2008).
35. J. K. Park, K. J. Choi, J. H. Yeon, S. J. Lee, and C. H. Kim, “Embodiment of the warm white-light-emitting diodes by using a Ba2+ codoped Sr3SiO5 :Eu phosphor,” Appl. Phys. Lett. 88, 043511 (2006).
36. V. Cherpak, P. Stakhira, B. Minaev, G. Baryshnikov, E. Stromylo, I. Helzhynskyy, M. Chapran, D. Volyniuk, D. T. Luksiene, T. Malinauskas, V. Getautis, A. Tomkeviciene, J. Simokaitiene, and J. V. Grazulevicius, “Efficient “Warm-White” OLEDs Based on the Phosphorescent bis-Cyclometalated iridium(III) Complex,” J. Phys. Chem. C 118, 11271−11278 (2014).
37. T. W. Kuo, W. R. Liu, and T. M. Chen, High color rendering white light-emitting-diode illuminator using the red-emitting Eu2+-activated CaZnOS phosphors excited by blue LED,” Optics express 18, 8187-8192 (2010).
38. A. A. Setlur, E. V. Radkov, C. S. Henderson, J. H. Her, A. M. Srivastava, N. Karkada, M. S. Kishore, N. P. Kumar, D. Aesram, A. Deshpande, B. Kolodin, L. S. Grigorov, and U. Happek, “ Energy-Efficient, High-Color-Rendering LED Lamps Using Oxyfluoride and Fluoride Phosphors,” Chem. Mater. 22, 4076–4082 (2010).
39. https://www.osram.com/osram_com/press/press-releases/_trade_press/2014/
osram-constructs-the-worlds-most-efficient-led-lamp/index.jsp
40. C. H. Chang, K. C. Tien, C. C. Chen, M. S. Lin, H. C. Cheng, S. H. Liu, C. C. Wu, J. Y. Hung, Y. C. Chiu, and Y. Chi, “Efficient phosphorescent white OLEDs with high color rendering capability,” Organic Electronics 11, 412–418 (2010).
41. T. Komoda, N. Ide, K. Varutt, K. Yamae, H. Tsuji, and Y. Matsuhisa, “High‐performance white OLEDs with high color‐rendering index for next‐generation solid‐state lighting,” Journal of the Society for Information Display 19, 838-846 (2011).
42. H. Zhu, C. C. Lin, W. Luo, S. Shu, Z. Liu, Y. Liu, J. Kong, E. Ma, Y. Cao, R. S. Liu, and X. Chen, “Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes,” Nature communications 5, 4312 (2014).
43. R. M. Mach, G. Mueller, M. R. Krames, H. A. Höppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, “Highly efficient all‐nitride phosphor‐converted white light emitting diode," physica status solidi (a) 202, 1727-1732 (2005).
44. A. Michiue, T. Miyoshi, T. Yanamoto, T. Kozaki, S. I. Nagahama, Y. Narukawa, M. Sano, T. Yamada, and T. Mukai, “Recent development of nitride LEDs and LDs,” SPIE OPTO: Integrated Optoelectronic Devices. International Society for Optics and Photonics (2009).
45. J. H. Jou, K. Y. Chou, F. C. Yang, A. Agrawal, S. Z. Chen, J. R. Tseng, C. C. Lin, P. W. Chen, K. T. Wong, and Y. Chi, “A universal, easy-to-apply light-quality index based on natural light spectrum resemblance,” Appl. Phys. Lett. 104, 203304 (2014).
46. J. A. Borton, and K. A. Daley, “A comparison of light sources for the petrochemical industry,” IEEE Ind. Appl. Mag. 3, 54–62 (1997).
47. J. H. Jou, K. Y. Chou, F. C. Yang, C. H. Hsieh, S, Kumar, A. Agrawal, S. Z. Chen, T. H. Li, H. H. Yu, “Pseudo‐natural Light for Displays and Lighting,” Advanced Optical Materials 3(1), 95-102 (2015).
48. F. So, J. Kido, and P. Burrows, “Organic Light Emitting Devices for Solid-State Lighting,” MRS bulletin 33 (7), 663-669 (2008).
49. N. Kimura, K. Sakuma, S. Hirafune, and K. Asano, “Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode,” Appl. Phys. Lett. 90, 051109 (2007).
50. J. H. Jou, S. M. Shen, C. R. Lin, Y. S. Wang, Y. C. Chou, S. Z. Chen, and Y. C. Jou, “Efficient very-high color rendering index organic light-emitting diode,” Organic Electronics 12, 865–868 (2011).
51. Kyba, Christopher. "Is light pollution getting better or worse?." Nature Astronomy 2.4 (2018): 267-269.
52. BAJYA, MAMTA, et al. "Effect of artificial light on plant ecology and physiology: A review." The Indian Journal of Agricultural Sciences 92.2.
53. Chaney, William R. "Does night lighting harm trees." Purdue University, Forestry and Natural Resources, FAQ 17 (2002): 1-4.
54. Tosini, Gianluca, Ian Ferguson, and Kazuo Tsubota. "Effects of blue light on the circadian system and eye physiology." Molecular vision 22 (2016): 61.
55. Ouyang, X. I. N. L. I., et al. "Mechanisms of blue light-induced eye hazard and protective measures: A review." Biomedicine & Pharmacotherapy 130 (2020): 110577.
56. Godley, Bernard F., et al. "Blue light induces miochondrial DNA damage and free radical production in epithelial cells." Journal of Biological Chemistry 280.22 (2005): 21061-21066.
57. Algvere, Peep V., John Marshall, and Stefan Seregard. "Age‐related maculopathy and the impact of blue light hazard." Acta Ophthalmologica Scandinavica 84.1 (2006): 4-15.
58. Park, Sung Jun, Hyun Kyoung Yang, and Byung Kee Moon. "Ultraviolet to blue blocking and wavelength convertible films using carbon dots for interrupting eye damage caused by general lighting." Nano Energy 60 (2019): 87-94.
59. Sparrow, Janet R., Koji Nakanishi, and Craig A. Parish. "The lipofuscin fluorophore A2E mediates blue light–induced damage to retinal pigmented epithelial cells." Investigative ophthalmology & visual science 41.7 (2000): 1981-1989.
60. West, Kathleen E., et al. "Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans." Journal of applied physiology (2011).
61. Figueiro, Mariana G., Barbara Plitnick, and Mark S. Rea. "Pulsing blue light through closed eyelids: effects on acute melatonin suppression and phase shifting of dim light melatonin onset." Nature and Science of Sleep 6 (2014): 149.
62. Wood, Brittany, et al. "Light level and duration of exposure determine the impact of self-luminous tablets on melatonin suppression." Applied ergonomics 44.2 (2013): 237-240.
63. Wahl, Siegfried, et al. "The inner clock—Blue light sets the human rhythm." Journal of biophotonics 12.12 (2019): e201900102.
64. Figueiro, Mariana G., and Mark S. Rea. "The effects of red and blue lights on circadian variations in cortisol, alpha amylase, and melatonin." International journal of endocrinology 2010 (2010).
65. Figueiro, Mariana G., Andrew Bierman, and Mark S. Rea. "A train of blue light pulses delivered through closed eyelids suppresses melatonin and phase shifts the human circadian system." Nature and Science of Sleep 5 (2013): 133.
66. Shechter, Ari, et al. "Blocking nocturnal blue light for insomnia: A randomized controlled trial." Journal of psychiatric research 96 (2018): 196-202.
67. Janků, Karolina, et al. "Block the light and sleep well: Evening blue light filtration as a part of cognitive behavioral therapy for insomnia." Chronobiology international 37.2 (2020): 248-259.
68. Hatori, Megumi, et al. "Global rise of potential health hazards caused by blue light-induced circadian disruption in modern aging societies." npj Aging and Mechanisms of Disease 3.1 (2017): 1-3.
69. Park, Yong-Moon Mark, et al. "Association of exposure to artificial light at night while sleeping with risk of obesity in women." JAMA internal medicine 179.8 (2019): 1061-1071.
70. Mineshita, Yui, et al. "Screen time duration and timing: effects on obesity, physical activity, dry eyes, and learning ability in elementary school children." BMC Public Health 21.1 (2021): 1-11.
71. Holzman, David C. "What’s in a color? The unique human health effects of blue light." (2010): A22-A27.
72. Holzman, David C. "What’s in a color? The unique human health effects of blue light." (2010): A22-A27.
73. Stevens, Richard G., et al. "Breast cancer and circadian disruption from electric lighting in the modern world." CA: a cancer journal for clinicians 64.3 (2014): 207-218.
74. https://health.gvm.com.tw/article/65056
75. Karasek, M. &Winczyk, K. Melatonin in humans. J. Physiol. Pharmacol. 57 Suppl 5, 19-39 (2006)
76. Kloog, I., Haim, A.,Stevens, R.G.,Barchana, M.&Portnov, B.A. Light at Night Co‐distributes with Incident Breast but not Lung Cancer in the Female Population of Israel. Chronobiology Int. 25, 65-81 (2008)
77. Schernhammer, E.S. et al. Epidemiology of urinary melatonin in women and its relation to other hormones and night work.Cancer Epidem. Biomar.13(6), 936-43 (2004)
78. Pauley, S.M. Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue. Med. Hypotheses. 63, 588–596 (2004)
79. Tala, A. Lack of Sleep, Light at Night Can Raise Cancer RiskAvailable at: http://www.medicaldaily.com/lack-sleep-light-night-can-raise-cancer-risk-238184 (Accessed: 11th October 2011)
80. Jou, J. et al. "OLEDs with Candle-Like Emission"
81. https://ejournal.stpi.narl.org.tw/sd/download?source=10805-09.pdf&vlId=744d20a3f16042e8abd0435006dac0cf&nd=1&ds=1
82. W. T. Ham, H. A. Mueller, D. H. Sliney, “Retinal sensitivity to damage from short wavelength light,” Nature 260.5547 (1976).
83. D. T. Organisciak, and D. K. Vaughan, “Retinal light damage: mechanisms and protection,” Progress in retinal and eye research 29.2, 113-134 (2010).
84. A. V. Rukmini, D. Milea, M. Baskaran, A. C. How, S. A. Perera, T. Aung, and J. J. Gooley, “Pupillary responses to high-irradiance blue light correlate with glaucoma severity,” Ophthalmology 122(9), 1777-1785 (2015).
85. D. P. Walker, H. R. Vollmer-Snarr, C. L. Eberting, “Ocular hazards of blue-light therapy in dermatology,” J. Am. Acad. Dermatol 66(1), 130-135 (2012).
86. J. E. Roberts, “Ocular phototoxicity,” Journal of Photochemistry and Photobiology B: Biology 64.2-3, 136-143 (2001).
87. H. R. Taylor, S. West, B. Muñoz, F. S. Rosenthal, S. B. Bressler, and N. M. Bressler, “The long-term effects of visible light on the eye,” Archives of ophthalmology 110.1, 99-104 (1992).
88. S. Roh, and J. J. Weiter, “Light damage to the eye,” The Journal of the Florida Medical Association 81.4, 248 (1994).
89. Yu-Chi Liu, M. Wilkins, T. Kim, B. Malyugin, and J. S. Mehta, “Cataracts.” The Lancet 390(10094) 600-612 (2017).
90. C. W. Pan, C. Y. Cheng, S. M. Saw, J. J. Wang, and T. Y. Wong, “Myopia and age-related cataract: a systematic review and meta-analysis,” American journal of ophthalmology 156(5), 1021-1033 (2013).
91. P. Mitchell, F. Hourihan, J. Sandbach, and J. J. Wang, “The relationship between glaucoma and myopia: the Blue Mountains Eye Study,” Ophthalmology 106(10), 2010-2015 (1999).
92. M. W. Marcus, M. M. de Vries, F. G. J. Montolio, and N. M. Jansonius, “Myopia as a risk factor for open-angle glaucoma: a systematic review and meta-analysis,” Ophthalmology 118(10), 1989-1994 (2011).
93. G. Ripandelli, A. M. Coppé, V. Parisi, and M. Stirpe, “Fellow eye findings of highly myopic subjects operated for retinal detachment associated with a macular hole,” Ophthalmology 115(9), 1489-1493 (2008).
94. M. Takano, and S. Kishi, “Foveal retinoschisis and retinal detachment in severely myopic eyes with posterior staphyloma,” Am. J. Ophthalmol. 128(4), 472-476 (1999).
95. M. F. Rabb, I. Garoon, and F. P. LaFranco, “Myopic macular degeneration.” Int Ophthalmol Clin 21(3), 51-69 (1981).
96 W. T. Ham, R. C. Williams, W. J. Geeraets, R. S. Ruffin, and H. A. Mueller, “Optical. masers (lasers),” Acta Ophthalmol 76, 60–78 (1963).
97. W. T. Ham Jr, H. A. Mueller, J. J. Ruffolo Jr, and A. M. Clarke, “Sensitivity of the retina to radiation damage as a function. of wavelength,” Photochemistry and photobiology 29.4, 735-743 (1979).
98. W. T. Ham Jr, H. A. Mueller, J.J. Ruffolo Jr, D. Guerry 3rd, and R. K. Guerry, “Action spectrum for retinal injury from near-ultraviolet. radiation in the aphakic monkey,” American journal of ophthalmology 93.3, 299-306 (1982).
99. R.D. Glickman, “Phototoxicity to the retina: mechanisms of damage,” International journal of toxicology 21.6, 473-490 (2002).
100. D. H. Sliney, and M. Bitran, “The ACGIH action spectra for hazard assessment: The TLV's,” Measurements of Optical Radiation Hazards, 241-259 (1998).
101. International Commission on Non-Ionizing Radiation Protection, “Guidelines on limits of exposure to broad-band incoherent optical radiation (0. 38 to 3 μm),” Health Phys 73.3, 539-554 (1997).
102. W. T. Ham Jr, and H. A. Mueller, “The photopathology and nature of the. blue light and near-UV retinal lesions produced by lasers and other optical sources,” Laser applications in medicine and biology. Springer, Boston, MA, 191-246 (1989).
103. Worldwide - LED lighting market size 2021 | Statista. https://www.statista.com/statistics/753939/global-led-luminaire-market-size/.
104. ElectroniCast sees a fast growing OLED lighting market starting in 2015 | OLED-Info. https://www.oled-info.com/electronicast-sees-fast-growing-oled-lighting-market-starting-2015.
105. Steven Van Slyke Invented OLED Technology, Increasing Efficiency. https://www.invent.org/inductees/steven-van-slyke.
106. OLED Displays and Their Applications | Learning Corner for Beginners. https://www.electronicsforu.com/resources/oled-displays-applications.
107. Sony OLED | OLED-Info. https://www.oled-info.com/sony-oled.
108. AUO. https://www.auo.com/englobal/New_Archive/detail/
News_Archive_Technology_190823.
109. BOE demonstrates a 55" 8K ink-jet printed OLED TV prototype | OLED-Info. https://www.oled-info.com/boe-demonstrates-55-8k-ink-jet-printed-oled-tv-prototype.
110. LG OLED TV 2016 Display Technology Shoot-Out. https://www.displaymate.com/OLED_TV2016_ShootOut_1.htm.
111. G. Destriau, Journal de Chimie Physique, 1936, 33, 587‐625.
112. Bernanose, A., M. Comte, and P. Vouaux, Sur un nouveau mode d'émission lumineuse chez certains composés organiques. Journal de Chimie Physique, 1953. 50: p. 64-68.
113. Pope, M., H. Kallmann, and P. Magnante, Electroluminescence in organic crystals. The Journal of Chemical Physics, 1963. 38(8): p. 2042-2043.
114. W. Helfrich and W. Schneider, Physical Review Letters, 1965, 14, 229.
115. W. Helfrich and W. Schneider, The Journal of Chemical Physics, 1966, 44, 2902‐2909.
116. Helfrich, W. and W. Schneider, Recombination radiation in anthracene crystals. Physical Review Letters, 1965. 14(7): p. 229.
117. Helfrich, W. and W. Schneider, Transients of volume‐controlled current and of recombination radiation in anthracene. The Journal of Chemical Physics, 1966. 44(8): p. 2902-2909.
118. Vincett, P., et al., Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films. Thin solid films, 1982. 94(2): p. 171-183.
119. Partridge, R., Electroluminescence from polyvinylcarbazole films: 2. Polyvinylcarbazole films containing antimony pentachloride. Polymer, 1983. 24(6): p. 739-747.
120. C. W. Tang and S. A. VanSlyke, Applied physics letters, 1987, 51, 913‐915.
121. Tang, C., S. VanSlyke, and C. Chen, Electroluminescence of doped organic thin films. Journal of Applied Physics, 1989. 65(9): p. 3610-3616.
122. Tang, C.W., Organic electroluminescent cell. 1982, Google Patents.
123. Friend, R.H., J.H. Burroughes, and D.D. Bradley, Electroluminescent devices. 1993, Google Patents.
124. Burroughes, J., et al., Light-emitting diodes based on conjugated polymers. nature, 1990. 347(6293): p. 539.
125. Burroughes, J.H., et al., Light-emitting diodes based on conjugated polymers. nature, 1990. 347(6293): p. 539.
126. Era, M., et al., Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter. Chemical physics letters, 1991. 178(5-6): p. 488-490.
127. Adachi, C., et al., Organic electroluminescent device with a three-layer structure. Japanese journal of applied physics, 1988. 27(4A): p. L713.
128. Kido, J., et al., White light‐emitting organic electroluminescent devices using the poly (N‐vinylcarbazole) emitter layer doped with three fluorescent dyes. Applied Physics Letters, 1994. 64(7): p. 815-817.
129. Kido, J., M. Kimura, and K. Nagai, Multilayer white light-emitting organic electroluminescent device. Science, 1995. 267(5202): p. 1332-1334.
130. Hung, L., C. Tang, and M. Mason, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Applied Physics Letters, 1997. 70(2): p. 152-154.
131. Jabbour, G., et al., Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices. Applied physics letters, 1998. 73(9): p. 1185-1187.
132. Baldo, M.A., et al., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998. 395(6698): p. 151.
133. Adachi, C., et al., Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. Journal of Applied Physics, 2001. 90(10): p. 5048-5051.
134. Blochwitz, J., et al., Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material. Applied Physics Letters, 1998. 73(6): p. 729-731.
135. Huang, J., et al., Low-voltage organic electroluminescent devices using pin structures. Applied Physics Letters, 2002. 80(1): p. 139-141.
136. Matsumoto, T., et al. 27.5 L: Late‐News Paper: Multiphoton Organic EL device having Charge Generation Layer. in SID Symposium Digest of Technical Papers. 2003. Wiley Online Library.
137. Liao, L.-S., et al., Cascaded organic electroluminescent devices with improved voltage stability. 2004, Google Patents.
138. Liao, L., K. Klubek, and C. Tang, High-efficiency tandem organic light-emitting diodes. Applied physics letters, 2004. 84(2): p. 167-169.
139. Shao, Y. and Y. Yang, White organic light-emitting diodes prepared by a fused organic solid solution method. Applied Physics Letters, 2005. 86(7): p. 073510.
140. Jou, J.-H., et al., Efficient, color-stable fluorescent white organic light-emitting diodes with single emission layer by vapor deposition from solvent premixed deposition source. Applied physics letters, 2006. 88(19): p. 193501.
141. Wang, Z., et al., Unlocking the full potential of organic light-emitting diodes on flexible plastic. Nature Photonics, 2011. 5(12): p. 753.
142. Uoyama, H., et al., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 2012. 492(7428): p. 234.
143. Jou, J.H., et al., Candle Light‐Style Organic Light‐Emitting Diodes. Advanced Functional Materials, 2013. 23(21): p. 2750-2757.
144. J. Staudigel, M. Stößel, F. Steuber and J. Simmerer, Journal of Applied Physics, 1999, 86,3895‐3910.
145. A. Dodabalapur, Solid state communications, 1997, 102, 259‐267.
146. K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi and K. Seki, Journalof applied physics, 1998, 83, 4928‐4938.
148. https://www.womenshealthmag.com/tw/beauty/skin/g36377420/
photoage-bluray/
149. V. A. Central Bureau of CIE, "Colorimetry (Second Edition)- Publication CIE 15.2," ed, 1986.
150. Jou, j.-h., OLED introduction.
151. https://www.dr-lite.com.tw/post/
_%E5%85%AB%E5%A4%A7%E6%8A%80%E8%A1%93
152. S. M. Pauley, Medical hypotheses, 2004, 63, 588‐596.
153. J. F. Duffy and C. A. Czeisler, Sleep medicine clinics, 2009, 4, 165‐177.
154. S. R. Pandi‐Perumal and A. A. Gonfalone, Journal, 2016, 9, 1‐4.
155. I. C. o. N.‐I. R. Protection, Health Physics, 2013, 105, 74‐96.
156. G. C. Brainard, W. Coyle, M. Ayers, J. Kemp, B. Warfield, J. Maida, C. Bowen, C.Bernecker, S. W. Lockley and J. P. Hanifin, Acta Astronautica, 2013, 92, 21‐28.
157. V. Gabel, M. Maire, C. F. Reichert, S. L. Chellappa, C. Schmidt, V. Hommes, A. U. Viola
158. Holzman, David C. "What’s in a color? The unique human health effects of blue light." (2010): A22-A27.
159. Stevens, Richard G., et al. "Breast cancer and circadian disruption from electric lighting in the modern world." CA: a cancer journal for clinicians 64.3 (2014): 207-218.
160. Barker, Emma, Kairi Kolves, and Diego De Leo. "Rail‐suicide prevention: Systematic literature review of evidence‐based activities." Asia‐Pacific Psychiatry 9.3 (2017): e12246.
161 Bennett, Shoshana, et al. "Use of modified spectacles and light bulbs to block blue light at night may prevent postpartum depression." Medical hypotheses 73.2 (2009): 251-253.
162. J. H. Jou, S. M. Shen, C. R. Lin, Y. S. Wang, Y. C. Chou, S. Z. Chen, and Y. C. Jou, Organic Electronics, 12, 865 (2011).
163. Jou, J.-H., et al., Sunlight-style color-temperature tunable organic light-emitting diode. 2009. 95(1): p. 184.
164. J. H. Jou, S. M. Shen, M. H. Wu, S. H. Peng, and H. C. Wang, Journal of Photonics for Energy, 1, 011021 (2011)
165. Jou, J.-H., et al., OLEDs with chromaticity tunable between dusk-hue and candle-light. 2013. 14(1): p. 47-54.
166. J. H, Jou, M. H. Wu, S. M. Shen, H. C. Wang, S. Z. Chen, S. H. Chen, C. R. Lin, and Y. L. Hsieh, Applied Physics Letters, 95, 013307 (2009).
167. https://www.tiri.narl.org.tw/Files/Doc/Publication/InstTdy/184/01840650.pdf
168. https://www.ezneering.com/led
169. Melatonin. Sleepdex. (2011)
170. Life Science Databases(LSDB). File: Pineal gland.png. Available at: http://www.wikiwand.com/ja/%E6%9D%BE%E6%9E%9C%E4%BD%93 (Accessed: 20th September 2009)
171. R. Hardeland, S. Pandi‐Perumal and D. P. Cardinali, The international journal of biochemistry & cell biology, 2006, 38, 313‐316.
172. M. M. Macchi and J. N. Bruce, Frontiers in neuroendocrinology, 2004, 25, 177‐195
173. Altun, A.&Ugur-Altun, B. Melatonin: therapeutic and clinical utilization. Int. J. Clin. Pract. 61(5), 835-45(2007)
174. Limson, Janice, Nyokong, T. & Oaya, S. The interaction of melatonin and its precursors with aluminium, cadmium, copper, iron, lead, and zinc: an adsorptive voltammetric study. J. pineal Res. 24.1, 15-21 (1998)
175. G. C. Brainard, J. P. Hanifin, J. M.Greeson, B. Byrne, G. Glickman, E. Gerner, M. D. Rollag, J. Neurosci. 2001, 21(16), 6405.
176. K. Thapan, J. Arendt, D. J. Skene, J. Physiol. 2001, 535(1), 261.
177. J. P. Hanifin, K. T. Stewart, P. Smith, R.Tanner, M. Rollag. G. C. Brainard, Chronobiol. Int. 2006, 23(1&2), 251.
178 . J. H. Jou, Melatonin suppression extent measuring device. US patent 20120303282A1 (2012).
179. T. Smith and J. Guild, "The C.I.E. colorimetric standards and their use," Transactions of the Optical Society, vol. 33, no. 3, pp. 73-134, 1931/01/01 1931.
180. J. H. Jou, OLED導論, Gau-lih, 297 (2015).
181. R. Hardeland, S. Pandi‐Perumal and D. P. Cardinali, The international journal of biochemistry & cell biology, 2006, 38, 313‐316.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *