帳號:guest(13.59.3.29)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賈普
作者(外文):JAPPE, Gireg
論文名稱(中文):有基海綿吸附高密度二氧化鈦之光 催化裂解水產氫研究
論文名稱(外文):Study and implementation of a 3D biofoam with high density nanoparticles for water splitting
指導教授(中文):陳力俊
指導教授(外文):Chen, Lih-Juann
口試委員(中文):廖建能
口試委員(外文):Liao, Chien-Neng
Gilles, Lerondel
Rodolphe, Jaffiol
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031710
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:68
中文關鍵詞:水分裂生物泡沫二氧化鈦光催化
外文關鍵詞:water splittingbiofoamTiO2hydrogenphoto-catalysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:75
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
此論文為有機複合物吸附二氧化鈦作為光催化材料應用於裂解水
產氫之研究,主要選用蠶絲蛋白作為有機載體,二氧化鈦作為吸附
材料,而二氧化鈦結構分別以奈米顆粒、奈米柱及介孔晶體附著於
孔洞內,並比較三種異質結構之產氫效果。本實驗先使用氫氧化鈉
與溴化鋰溶解蠶絲蛋白,由透析法萃取出蠶絲溶液,經由膠化作用
後低溫乾燥得到多孔之蠶絲外殼;製作出載體後,再使用水熱法在不
同前驅物及改變加熱溫度和持溫時間下,得到三種不同結構之二氧
化鈦,主要以掃描式及穿透式電子顯微鏡觀察其結構變化、X-射線
繞射儀鑑定晶體結構,最後利用氣相層析儀比較在太陽光下不同形
態之二氧化鈦附著於有機體的光催化能力。結果顯示介孔晶體之二
氧化鈦整體表現能力最佳,其製程手法簡易、光催化能力良好並且
能高密度附著於孔洞有機複合物內。
除了不同結構之二氧化鈦研究外,如何增加二氧化鈦吸附在孔洞
表面也是另一項探討的議題,本研究分別在蠶絲溶液膠化前後加入
二氧化鈦及改變二氧化鈦濃度比較附著情形,結果顯示在膠化前二
氧化鈦(1.063 g/L)能達到最高密度的吸附,進而增加接觸面積提升
光催化能力之效果。
This thesis has been carried out at the National Tsing Hua University (Hsinchu,
Taiwan), in the Department of Materials Sciences and Engineering. This thesis consisted
of the study and development of an organic porous structure used as a matrix
for the incorporation of titanium dioxide in the purpose of water photo-catalysis to
produce hydrogen. The main organic compound studied was silk fibroin from silkworm.
The titanium dioxide has been synthesized in different forms: nanoparticles,
nanorods and mesocrystals. The working steps were:
• Theoretical study: chemical/physical reaction, existing photocatalysts, previous
work.
• Extraction, purification of the fibroin, gelation and lyophilisation.
• Characterization: SEM, TEM, XRD, spectrophotometer and measure of the
hydrogen production by gas chromatography.
The main issue is the design of a system linking the ease of production of the nanoparticles,
of the organic matrix, and allowing a surface yield increased by the high threedimensional
density of the photo-catalysts.
Introduction 1
1 Theory of photo-chemical water splitting 3
1.1 Chemical reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 System design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Choice of the photo-catalyst . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Design prospect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Photo-catalysts 10
2.1 Nanorods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Mesocrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Nanowires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Titanium dioxide doping . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Hydrogen treatment . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Modified mesocrystals . . . . . . . . . . . . . . . . . . . . . . 20
3 Porous materials 24
3.1 Inorganic materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Organic materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Silk biofoam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Bacterial nanocellulose . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.2 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 30
4 Combinations of composites materials 31
4.1 Gelation with photo-catalysts . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Photo-catalysts solution incubation . . . . . . . . . . . . . . . . . . . 35
5 Performance Evaluation 37
5.1 Hydrogen production . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Photo-degradation of dye . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.1 Manual experiment . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.2 Automated experiment . . . . . . . . . . . . . . . . . . . . . . 40
6 Economics and cost analysis 46
6.1 Raw materials availability . . . . . . . . . . . . . . . . . . . . . . . . 46
6.1.1 Titanium dioxide . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.1.2 Silk fibroin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2 Cost estimation of the raw materials . . . . . . . . . . . . . . . . . . 47
Conclusions 49
Appendices 51
A Photo-catalysts 51
B Porous materials 52
B.1 Silk biofoam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
B.2 Bacterial nanocellulose synthesis . . . . . . . . . . . . . . . . . . . . 53
C Combination of composites materials 54
D Performance evaluation 54
D.1 Hydrogen measurement . . . . . . . . . . . . . . . . . . . . . . . . . 54
D.2 Automatic photo-degradation measurement . . . . . . . . . . . . . . 56
E Cost analysis 62
F Equipments 63
References 64
References
1. FUJISHIMA, AKIRA; HONDA, KENICHI. Electrochemical Photolysis of Water at
a Semiconductor Electrode. Nature. 1972, vol. 238, no. 5358, pp. 37–38. ISBN
0028-0836. ISSN 0028-0836. Available from DOI: 10.1038/238037a0.
2. COLÓN, Gerardo. Towards the hydrogen production by photocatalysis. Applied Catalysis
A: General. 2016, vol. 518, pp. 48–59. ISSN 0926860X. Available from DOI:
10.1016/j.apcata.2015.11.042.
3. MACQUEEN, D Brent. Photoelectrochemical Water Splitting. Photoelectrochemical
Water Splitting. Stanford: SRI International, 2016. Available also from: https:
/ / energy . gov / eere / fuelcells / downloads / advanced - water - splitting -
materials-workshop.
4. MCKONE, James R.; LEWIS, Nathan S.; GRAY, Harry B.; DEVICES, Will Solardriven
Water-splitting; MCKONE, James R.; LEWIS, Nathan S.; GRAY, Harry
B. Will Solar-Driven Water-Splitting Devices See the Light of Day? Chemistry of
Materials. 2013, vol. 26, no. 1, pp. 407–414. ISBN 0897-4756\r1520-5002. ISSN
08974756. Available from DOI: dx.doi.org/10.1021/cm4021518.
5. PINAUD, Blaise A. et al. Technical and economic feasibility of centralized facilities for
solar hydrogen production via photocatalysis and photoelectrochemistry. Energy
& Environmental Science. 2013, vol. 6, no. 7, pp. 1983–2002. ISBN 1754-5692.
ISSN 1754-5692. Available from DOI: 10.1039/C3EE40831K.
6. WANG, Gongming et al. Significantly Enhanced Visible Light Photoelectrochemical
Activity in TiO2 Nanowire Arrays by Nitrogen Implantation. Nano Letters. 2015,
vol. 15, no. 7, pp. 4692–4698. ISBN 1530-6984. ISSN 1530-6984. Available from
DOI: 10.1021/acs.nanolett.5b01547.
7. WANG, Danping et al. Improving photocatalytic H2 evolution of TiO2 via formation
of {001}-{010} quasi-heterojunctions. Journal of Physical Chemistry C. 2013,
vol. 117, no. 44, pp. 22894–22902. ISSN 19327447. Available from DOI: 10.1021/
jp407508n.
8. HUANG, Michael H.; MAO, Samuel; FEICK, Henning; YAN, Haoquan; WU, Yiying;
KIND, Hannes; WEBER, Eicke; RUSSO, Richard; YANG, Peidong. Roomtemperature
ultraviolet nanowire nanolasers. Science (New York, N.Y.) 2001,
vol. 292, no. 5523, pp. 1897–9. ISBN 0036-8075 (Print)\r0036-8075 (Linking). ISSN
0036-8075. Available from DOI: 10.1126/science.1060367.
9. ZHU, Kai; NEALE, Nathan R.; MIEDANER, Alexander; FRANK, Arthur J. Enhanced
Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar
Cells Using Oriented TiO2 Nanotubes Arrays. Nano Letters. 2007, vol. 7, no. 1, pp.
69–74. ISBN 1530-6984 (Print)\r1530-6984 (Linking). ISSN 1530-6984. Available
from DOI: 10.1021/nl062000o.
10. 1280px-Solar_spectrum_en.svg.png (1280×960). Available also from: https://upload.
wikimedia.org/wikipedia/commons/thumb/e/e7/Solar{\_}spectrum{\_}en.
svg/1280px-Solar{\_}spectrum{\_}en.svg.png.
11. RODRIGUEZ, Claudia A.; MODESTINO, Miguel A.; PSALTIS, Demetri; MOSER,
Christophe. Design and cost considerations for practical solar-hydrogen generators.
Energy Environ. Sci. 2014, vol. 7, no. 12, pp. 3828–3835. ISBN 1754-5692. ISSN
1754-5692. Available from DOI: 10.1039/C4EE01453G.
12. PANAYOTOV, Dimitar A.; DESARIO, Paul A.; PIETRON, Jeremy J.; BRINTLINGER,
Todd H.; SZYMCZAK, Lindsey C.; ROLISON, Debra R.; MORRIS, John R. Ultraviolet
and Visible Photochemistry of Methanol at 3D Mesoporous Networks:
TiO2 and Au–TiO2. The Journal of Physical Chemistry C. 2013, vol. 117, no. 29,
pp. 15035–15049. ISBN 19327447. ISSN 1932-7447. Available from DOI: 10.1021/
jp312583w.
13. DA SILVA, Rafael O.; HEILIGTAG, Florian J.; KARNAHL, Michael; JUNGE, Henrik;
NIEDERBERGER, Markus; WOHLRAB, Sebastian. Design of multicomponent
aerogels and their performance in photocatalytic hydrogen production. Catalysis
Today. 2015, vol. 246, pp. 101–107. ISBN 0920-5861. ISSN 09205861. Available
from DOI: 10.1016/j.cattod.2014.08.028.
14. TIAN, Limei; LUAN, Jingyi; LIU, Keng Ku; JIANG, Qisheng; TADEPALLI, Sirimuvva;
GUPTA, Maneesh K.; NAIK, Rajesh R.; SINGAMANENI, Srikanth.
Plasmonic Biofoam: A Versatile Optically Active Material. Nano Letters. 2016,
vol. 16, no. 1, pp. 609–616. ISBN 1530-6992 (Electronic) 1530-6984 (Linking).
ISSN 15306992. Available from DOI: 10.1021/acs.nanolett.5b04320.
15. DI PAOLA, Agatino; BELLARDITA, Marianna; PALMISANO, Leonardo. Brookite,
the Least Known TiO2 Photocatalyst. Catalysts. 2013, vol. 3, no. 1, pp. 36–73.
ISBN 3909170250. ISSN 2073-4344. Available from DOI: 10.3390/catal3010036.
16. File:Anatase-unit-cell-3D-balls.png - Wikimedia Commons. 2007. Available also from:
https : / / commons . wikimedia . org / wiki / File : Anatase - unit - cell - 3D -
balls.png.
17. File:Rutile-unit-cell-3D.png - Wikimedia Commons. 2006. Available also from: https:
//commons.wikimedia.org/wiki/File:Rutile-unit-cell-3D.png{\#}.
18. File:Brookite.png - Wikimedia Commons. 2014. Available also from: https://commons.
wikimedia.org/wiki/File:Brookite.png.
19. LIU, Bin; AYDIL, Eray S. Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods
on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. Journal of
the American Chemical Society. 2009, vol. 131, no. 11, pp. 3985–3990. ISBN 1520-
5126 (Electronic)\r0002-7863 (Linking). ISSN 0002-7863. Available from DOI: 10.
1021/ja8078972.
20. JIA, Kun; BIJEON, Jean Louis; ADAM, Pierre Michel; IONESCU, Rodica Elena.
Large Scale Fabrication of Gold Nano-Structured Substrates Via High Temperature
Annealing and Their Direct Use for the LSPR Detection of Atrazine. Plasmonics.
2013, vol. 8, no. 1, pp. 143–151. ISBN 1557-1955. ISSN 15571955. Available
from DOI: 10.1007/s11468-012-9444-3.
21. YE, Jianfeng; LIU, Wen; CAI, Jinguang; CHEN, Shuai; ZHAO, Xiaowei; ZHOU,
Henghui; QI, Limin. Nanoporous anatase TiO2 mesocrystals: Additive-free synthesis,
remarkable crystalline-phase stability, and improved lithium insertion behavior.
Journal of the American Chemical Society. 2011, vol. 133, no. 4, pp. 933–
940. ISBN 1520-5126 (Electronic)\n0002-7863 (Linking). ISSN 00027863. Available
from DOI: 10.1021/ja108205q.
22. HONG, Zhensheng; WEI, Mingdeng; LAN, Tongbin; JIANG, Lilong; CAO, Guozhong.
Additive-free synthesis of unique TiO2 mesocrystals with enhanced lithium-ion
intercalation properties. Energy Environ. Sci. 2012, vol. 5, no. 1, pp. 5408–5413.
ISBN 1754-5692 1754-5706. ISSN 1754-5692. Available from DOI: 10.1039/C1EE02551A.
23. WANG, Zhong Lin. Nanowires and Nanobelts : Materials, Properties and Devices. Volume
1: Metal and Semiconductor Nanowires. Springer US, 2003. ISBN 0387287477.
24. MENG, Xiangdong; WANG, Dazhi; LIU, Jinhua; LIN, Bixia; FU, Zhuxi. Effects of titania
different phases on the microstructure and properties of K2Ti6O13 nanowires.
Solid State Communications. 2006, vol. 137, no. 3, pp. 146–149. ISSN 00381098.
Available from DOI: 10.1016/j.ssc.2005.11.004.
25. CHEN, Xiaobo; LIU, Lei; HUANG, Fuqiang. Black titanium dioxide (TiO2) nanomaterials.
Chemical Society reviews. 2015, vol. 44, no. 7, pp. 1861–1885. ISBN
0306-0012. ISSN 1460-4744. Available from DOI: 10.1039/c4cs00330f.
26. DATYE, Abhaya K.; RIEGEL, Georg; BOLTON, James R.; HUANG, Min; PRAIRIE,
Michael R. Microstructural Characterization of a Fumed Titanium Dioxide Photocatalyst.
Journal of Solid State Chemistry. 1995, vol. 115, no. 1, pp. 236–239.
ISBN 0022-4596. ISSN 00224596. Available from DOI: 10.1006/jssc.1995.1126.
27. WEI, Wang; YARU, Ni; CHUNHUA, Lu; ZHONGZI, Xu. Hydrogenation of TiO2
nanosheets with exposed {001} facets for enhanced photocatalytc activity. RSC
Advances. 2012, vol. 2, no. 22, pp. 8286–8288. ISBN 8625835872. ISSN 2046-2069.
Available from DOI: 10.1039/c2ra21049e.
28. XIA, Ting; CHEN, Xiaobo. Revealing the structural properties of hydrogenated black
TiO2 nanocrystals. Journal of Materials Chemistry A. 2013, vol. 1, no. 9, pp. 2983.
ISSN 2050-7488. Available from DOI: 10.1039/c3ta01589k.
29. ZUO, Fan; BOZHILOV, Krassimir; DILLON, Robert J; WANG, Le; SMITH, Phillip;
ZHAO, Xiang; BARDEEN, Christopher; FENG, Pingyun. Active Facets on Titanium(III)-
Doped TiO(2) : An Effective Strategy to Improve the Visible-Light Photocatalytic
Activity. Angewandte Chemie International Edition. 2012, vol. 51, no. Iii, pp. 1–
5. ISBN 1521-3773 (Electronic)\r1433-7851 (Linking). ISSN 1521-3773. Available
from DOI: 10.1002/anie.201202191.
30. PESCI, Federico M.; WANG, Gongming; KLUG, David R.; LI, Yat; COWAN, Alexander
J. Efficient suppression of electron-hole recombination in oxygen-deficient
hydrogen-treated TiO2 nanowires for photoelectrochemical water splitting. Journal
of Physical Chemistry C. 2013, vol. 117, no. 48, pp. 25837–25844. ISBN 1932-7447.
ISSN 19327447. Available from DOI: 10.1021/jp4099914.
31. J. ROUQUEROLT (FRANCE, Chairman); D. Avnir (Israel); C. W. Fairbridge (Canada);
FRANCE); D. H. Everett (Uk); J. H. Haynes (Uk); N. Pernicone (Italy); J. D.
F. Ramsay (Uk; (FRG)., K. S. W. Sing (Uk); UNGER, K. K.; J. ROUQUEROL;
D. AVNIR; C. W. FAIRBRIDGE; D. H. EVERETT; J. H. HAYNES; N. PERNICONE;
J. D. F. RAMSAY; K. S. W. SING AND K. K. UNGER. Recommendations
for the characterization of porous solids. Pure and Applied Chemistry. 1994,
vol. 66, no. 8, pp. 1739–1758. ISBN 0033-4545. ISSN 0033-4545. Available from
DOI: 10.1351/pac199466081739.
32. URMANN, Katharina; TENENBAUM, Elena; WALTER, Johanna Gabriela; SEGAL,
Ester. Springer Series in Materials Science. Vol. 220, Electrochemically Engineered
Nanoporous Materials. 2015. ISBN 978-3-319-20345-4. ISSN 0933033X. Available
from DOI: 10.1007/978-3-319-20346-1.
33. DESARIO, Paul a; PIETRON, Jeremy J; DEVANTIER, Devyn E; BRINTLINGER,
Todd H; STROUD, Rhonda M; ROLISON, Debra R. Plasmonic enhancement of
visible-light water splitting with Au–TiO2 composite aerogels. Nanoscale. 2013,
vol. 5, no. 17, pp. 8073. ISBN 2040-3364. ISSN 2040-3364. Available from DOI:
10.1039/c3nr01429k.
34. LIU, Xinfang; ZHANG, Ke-Qin. Oligomerization of Chemical and Biological Compounds.
Oligomerization of Chemical and Biological Compounds. Ed. by LESIEUR,
Claire. InTech, 2014. ISBN 978-953-51-1617-2. ISSN 978-953-51-1617-2. Available
from DOI: 10.5772/57075.
35. ROCKWOOD, Danielle N.; PREDA, Rucsanda C.; YÜCEL, Tuna; WANG, Xiaoqin;
LOVETT, Michael L.; KAPLAN, David L. Materials fabrication from Bombyx
mori silk fibroin. Nature Protocols. 2011, vol. 6, no. 10, pp. 1612–1631. ISBN 1750-
2799 (Electronic)\r1750-2799 (Linking). ISSN 1754-2189. Available from DOI: 10.
1038/nprot.2011.379.
36. PARTLOW, Benjamin P. et al. Highly tunable elastomeric silk biomaterials. Advanced
Functional Materials. 2014, vol. 24, no. 29, pp. 4615–4624. ISBN 1616-3028. ISSN
16163028. Available from DOI: 10.1002/adfm.201400526.
37. ECHLIN, Patrick. Handbook of Sample Preparation for Scanning Electron Microscopy
and X-Ray Microanalysis. 2011. ISBN 0387857311. Available from DOI: 10.1007/
978-0-387-85731-2.
38. GATENHOLM, Paul et al. Bacterial Nanocellulose as a Renewable Material for
Biomedical Applications. MRS Bulletin. 2010, vol. 35, no. 03, pp. 208–213. ISSN
0883-7694. Available from DOI: 10.1557/mrs2010.653.
39. SCHRAMM, M.; HESTRIN, S. Factors affecting Production of Cellulose at the Air/
Liquid Interface of a Culture of Acetobacter xylinum. Journal of General Microbiology.
1954, vol. 11, no. 1, pp. 123–129. ISBN 0022-1287 (Print)\r0022-1287
(Linking). ISSN 0022-1287. Available from DOI: 10.1099/00221287-11-1-123.
40. YAN, Runyu et al. Bio-inspired Plasmonic Nanoarchitectured Hybrid System Towards
Enhanced Far Red-to-Near Infrared Solar Photocatalysis. Scientific Reports. 2016,
vol. 6, no. October 2015, pp. 20001. ISSN 2045-2322. Available from DOI: 10.
1038/srep20001.
41. WU, N. Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous
methanol solution. International Journal of Hydrogen Energy. 2004, vol. 29, no.
15, pp. 1601–1605. ISBN 8862236271. ISSN 03603199. Available from DOI: 10.
1016/j.ijhydene.2004.02.013.
42. KHAN, Mohammad Mansoob; ANSARI, Sajid A.; PRADHAN, D.; ANSARI, M.
Omaish; HAN, Do Hung; LEE, Jintae; CHO, Moo Hwan. Band gap engineered
TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic
studies. J. Mater. Chem. A. 2014, vol. 2, no. 3, pp. 637–644. ISBN 2050-7488.
ISSN 2050-7488. Available from DOI: 10.1039/C3TA14052K.
43. MIHAI, S.; CURSARU, D. L.; GHITA, D.; DINESCU, A. Morpho ierarhic TiO2 with
plasmonic gold decoration for highly active photocatalysis properties. Materials
Letters. 2016, vol. 162, pp. 222–225. ISSN 18734979. Available from DOI: 10 .
1016/j.matlet.2015.10.012.
44. SATHISH, M.; VISWANATHAN, B.; VISWANATH, R. P.; GOPINATH, Chinnakonda
S. Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity
of Nitrogen-Doped TiO2 Nanocatalyst. Chemistry of Materials. 2005, vol. 17, no.
25, pp. 6349–6353. ISBN 08974756. ISSN 0897-4756. Available from DOI: 10 .
1021/cm052047v.
45. ROCHKIND, Malka; PASTERNAK, Sagi; PAZ, Yaron. Using Dyes for Evaluating
Photocatalytic Properties: A Critical Review. Molecules. 2014, vol. 20, no. 1,
pp. 88–110. ISBN 1420-3049 (Electronic)\r1420-3049 (Linking). ISSN 1420-3049.
Available from DOI: 10.3390/molecules20010088.
46. VESBORG, Peter C. K.; JARAMILLO, Thomas F. Addressing the terawatt challenge:
scalability in the supply of chemical elements for renewable energy. RSC Advances.
2012, vol. 2, no. 21, pp. 7933. ISBN 2046-2069. ISSN 2046-2069. Available from
DOI: 10.1039/c2ra20839c.
47. File:Elemental abundances.svg - Wikimedia Commons. Available also from: https:
//commons.wikimedia.org/wiki/File:Elemental{\_}abundances.svg{\#}.
48. TAYYIB, Mr. Salar. (FAO), Food and Agriculture Organization of the United Nations.
Value of Agricultural Production - silk-worm cocoon, reelable. 2015. Available also
from: http://www.fao.org/faostat/en/{\#}data/QV/visualize.
49. INTERNATIONAL SERICULTURAL COMMISSION (INSERCO). Statistics | INTERNATIONAL
SERICULTURAL COMMISSION. 2015. Available also from:
http://inserco.org/en/?q=statisticshttp://inserco.org/en/statistics.
50. DATTA, R K. FAO Electronic Conference on Mulberry For Anımal Productıon (Morus-
L). Mulberry Cultivation and Utilization in India. 2002. ISBN 92-5-104568-2.
Available also from: http://www.fao.org/docrep/005/X9895E/x9895e04.htm.
51. CARLSON, G.; LEWIS, D.; MCKINLEY, K.; RICHARDSON, J.; TILLOTSON,
T. Aerogel commercialization: technology, markets and costs. Journal of Non-
Crystalline Solids. 1995, vol. 186, pp. 372–379. ISSN 00223093. Available from
DOI: 10.1016/0022-3093(95)00069-0.
52. UNISS. Available also from: http://www.uniss.com.tw/Product{\_}Detail.aspx?
ClassID=d18331d5-2cd1-4a15-b513-2c41a2c04680{\&}ID=91b15372-6278-
4a4c-8bf7-06dff48ece3c.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *