|
1. Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666. 2. Lee, C., et al., Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano, 2010. 4(5): p. 2695-2700. 3. Lee, Y.-H., et al., Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Advanced Materials, 2012. 24(17): p. 2320-2325. 4. Chhowalla, M., et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem, 2013. 5(4): p. 263-275. 5. Gutiérrez, H.R., et al., Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers. Nano Letters, 2013. 13(8): p. 3447-3454. 6. Yun, W.S., et al., Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-$M{X}_{2}$ semiconductors ($M$ $=$ Mo, W; $X$ $=$ S, Se, Te). Physical Review B, 2012. 85(3): p. 033305. 7. RadisavljevicB, et al., Single-layer MoS2 transistors. Nat Nano, 2011. 6(3): p. 147-150. 8. Zhang, Y., et al., Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary. ACS Nano, 2013. 7(10): p. 8963-8971. 9. Mak, K.F., et al., Atomically Thin ${\mathrm{MoS}}_{2}$: A New Direct-Gap Semiconductor. Physical Review Letters, 2010. 105(13): p. 136805. 10. McCreary, K.M., et al., The Effect of Preparation Conditions on Raman and Photoluminescence of Monolayer WS(2). Scientific Reports, 2016. 6: p. 35154. 11. Berkdemir, A., et al., Identification of individual and few layers of WS(2) using Raman Spectroscopy. Scientific Reports, 2013. 3: p. 1755. 12. Wang, Y., et al., Raman Spectroscopy Study of Lattice Vibration and Crystallographic Orientation of Monolayer MoS2 under Uniaxial Strain. Small, 2013. 9(17): p. 2857-2861. 13. Bao, W., et al., Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide. Nature Communications, 2015. 6: p. 7993. 14. Lee, Y., et al., Characterization of the structural defects in CVD-grown monolayered MoS2 using near-field photoluminescence imaging. Nanoscale, 2015. 7(28): p. 11909-11914. 15. Lee, Y., et al., Near-field spectral mapping of individual exciton complexes of monolayer WS2 correlated with local defects and charge population. Nanoscale, 2017. 9(6): p. 2272-2278. 16. Park, K.-D., et al., Hybrid Tip-Enhanced Nanospectroscopy and Nanoimaging of Monolayer WSe2 with Local Strain Control. Nano Letters, 2016. 16(4): p. 2621-2627. 17. Gong, Y., et al., Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials, 2014. 13: p. 1135. 18. Heo, H., et al., Rotation-Misfit-Free Heteroepitaxial Stacking and Stitching Growth of Hexagonal Transition-Metal Dichalcogenide Monolayers by Nucleation Kinetics Controls. Advanced Materials, 2015. 27(25): p. 3803-3810. 19. Chen, K., et al., Lateral Built-In Potential of Monolayer MoS2–WS2 In-Plane Heterostructures by a Shortcut Growth Strategy. Advanced Materials, 2015. 27(41): p. 6431-6437. 20. Zhang, X.-Q., et al., Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers. Nano Letters, 2015. 15(1): p. 410-415. 21. Li, M.-Y., et al., Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science, 2015. 349(6247): p. 524. 22. Zheng, S., et al., Monolayers of WxMo1−xS2 alloy heterostructure with in-plane composition variations. Applied Physics Letters, 2015. 106(6): p. 063113. 23. Kobayashi, Y., et al., Bandgap-tunable lateral and vertical heterostructures based on monolayer Mo1-x W x S2 alloys. Nano Research, 2015. 8(10): p. 3261-3271. 24. Chen, Y., et al., Tunable Band Gap Photoluminescence from Atomically Thin Transition-Metal Dichalcogenide Alloys. ACS Nano, 2013. 7(5): p. 4610-4616. 25. Song, J.-G., et al., Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer. Nature Communications, 2015. 6: p. 7817. 26. Wang, Z., et al., Chemical Vapor Deposition of Monolayer Mo1−xWxS2 Crystals with Tunable Band Gaps. Scientific Reports, 2016. 6: p. 21536. 27. Maragliano, C., et al., Quantifying charge carrier concentration in ZnO thin films by Scanning Kelvin Probe Microscopy. Scientific Reports, 2014. 4: p. 4203. 28. Chen, K., et al., Electronic Properties of MoS2–WS2 Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy. ACS Nano, 2015. 9(10): p. 9868-9876. 29. Huang, C., et al., Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nature Materials, 2014. 13: p. 1096. 30. Duan, X., et al., Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nature Nanotechnology, 2014. 9: p. 1024. 31. Gong, Y., et al., Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures. Nano Letters, 2015. 15(9): p. 6135-6141. 32. Yoo, Y., Z.P. Degregorio, and J.E. Johns, Seed Crystal Homogeneity Controls Lateral and Vertical Heteroepitaxy of Monolayer MoS2 and WS2. Journal of the American Chemical Society, 2015. 137(45): p. 14281-14287. 33. Chen, J., et al., Lateral Epitaxy of Atomically Sharp WSe2/WS2 Heterojunctions on Silicon Dioxide Substrates. Chemistry of Materials, 2016. 28(20): p. 7194-7197. 34. http://www.nanoscience.com/technology/afm-technology/afm-modes-2/. 35. Hui, X., et al., A nondestructive calibration method for maximizing the range and accuracy of AFM force measurement. Journal of Micromechanics and Microengineering, 2014. 24(2): p. 025005. 36. Eaton, P.W., Paul, Atomic Force Microscopy. 2010, Oxford Univ Pr. 37. Marrese, M., V. Guarino, and L. Ambrosio, Atomic Force Microscopy: A Powerful Tool to Address Scaffold Design in Tissue Engineering. Journal of Functional Biomaterials, 2017. 8(1). 38. R. Vidyasagar , B.C., E. Pelegova , K. Romanyuk , and A.L. Kholkin Controlling Surface Potential of Graphene Using dc Electric Field. Knowledge E | Engaging Minds, 2016. 39. Melitz, W., et al., Kelvin probe force microscopy and its application. Surface Science Reports, 2011. 66(1): p. 1-27. 40. 國科會精密儀器中心, 奈米檢測技術. 2009, 全華圖書. 41. Loh, T.A.J., M. Tanemura, and D.H.C. Chua, Ultrathin MoS2 and WS2 layers on silver nano-tips as electron emitters. Applied Physics Letters, 2016. 109(13): p. 133102. 42. Schlaf, R., et al., Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule. Journal of Applied Physics, 1999. 85(5): p. 2732-2753. 43. Gong, C., et al., Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Applied Physics Letters, 2013. 103(5): p. 053513. 44. Nemes-Incze, P., et al., Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon, 2008. 46(11): p. 1435-1442. 45. Kobayashi, Y., et al., Growth and Optical Properties of High-Quality Monolayer WS2 on Graphite. ACS Nano, 2015. 9(4): p. 4056-4063. 46. Kim, M.S., et al., Biexciton Emission from Edges and Grain Boundaries of Triangular WS2 Monolayers. ACS Nano, 2016. 10(2): p. 2399-2405. 47. Mak, K.F., et al., Tightly bound trions in monolayer MoS2. Nature Materials, 2012. 12: p. 207. 48. Hong, X., et al., Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nature Nanotechnology, 2014. 9: p. 682. 49. Pant, A., et al., Fundamentals of lateral and vertical heterojunctions of atomically thin materials. Nanoscale, 2016. 8(7): p. 3870-3887.
|