帳號:guest(18.217.122.251)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):宋俊德
作者(外文):Sung, Chun-Te
論文名稱(中文):單層二硫化鉬與二硫化鎢側向異質接面的近場影像及光譜研究
論文名稱(外文):Near-field Imaging and Spectroscopic Study of Lateral Hetero-jinction of MoS2/WS2 Monolayer
指導教授(中文):李奕賢
陳祺
指導教授(外文):Lee, Yi-Hsien
Chen, Chi
口試委員(中文):楊志文
林伯彥
口試委員(外文):Yang, Chi-Wen
Lin, Po-Yen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031603
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:116
中文關鍵詞:近場光學側向異質接面二維材料
外文關鍵詞:near field optical microscopylateral heterojunction2D materials
相關次數:
  • 推薦推薦:0
  • 點閱點閱:580
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
過渡金屬硫族化合物之側向異質結構,在基礎科學與奈米元件應用上,具有相當大的潛力,其物理性質、光學和電學特性備受矚目。過去,垂直式二維材料異質結構觀察到許多有趣的物理現象,而側向式異質結構受限於材料合成,仍然是一個相當大的挑戰。其獨特的一維介面,預期將有豐富的物理特性,然而,受限於光學上空間解析度的限制,此一獨特一維異質接面仍未被深入討論。
本論文,主要針對過渡金屬硫族化合物側向式異質結構,藉由掃描式近場光學顯微術深入探討微區下之材料光學性質,透過近場光致螢光光譜及光譜掃描,觀察異質接面上的光學特性及可能的材料性質,如能階差異導致之電荷轉移。藉由化學氣相沉積法獲得之側向二維材料異質接面,其一維異質介面屬於原子級之接合,藉由掃描近場光學顯微術提升量測之空間解析度,以獲得更多局部區域的訊息。相較過去,遠場光學的相關分析,側向二維異質結構可透過近場光學獲得深入的研究。
Recently, lateral heterostructures of monolayer Transition metal dichalcogenides (TMDc) have raised considerable attentions because of their unique physical, optical and electrical properties and great potential on nano-science and nano-electronics. The study of lateral heterostructures is highly hindered because the synthesis of the sample remains a challenge issue and further study on the hetero-interface of the lateral heterostructure requires a professional optical measurement technique with sufficient spatial resolution in optics. Here, we study the optical properties of the lateral heterostructures of the two representative monolayer TMDc by scanning near-field optical microscopy (SNOM). Detailed observations and materials properties over the unique one dimensional hetero-interface, such as charge transfer, are presented with the spectra and mapping of the SNOM-PL spectroscopy. With the successful enhancements on the spatial resolution, detailed information over the localized area of the lateral hetero-junction of monolayer TMDs for its atomically-sharp hetero-interface. Compared to reported studies on confocal PL analysis, some interesting observations have been demonstrated by using SNOM.
摘要 i
Abstract ii
誌謝 iii
目錄 1
圖目錄 5
表目錄 11
第一章 緒論 12
1-1 前言 12
1-2 研究動機 13
第二章 文獻回顧 15
2-1 過渡金屬硫族氧化物(TMDc)的特性 15
2-1-1 晶體結構 15
2-1-2 能帶結構 16
2-2 化學氣相沉積法生長MoS2和WS2單晶 16
2-3 TMDc單層的光譜研究 17
2-3-1 光致螢光光譜(Photoluminescence Spectroscopy,PL)性質 17
2-3-2 拉曼光譜(Raman Spectroscopy)性質 18
2-4 單一成分TMDc單層的近場光譜研究 19
2-4-1 遠場(共軛焦)和近場光學影像解析度差異 20
2-4-2 單晶內部和邊緣的光譜比較及晶粒邊界分析 20
2-4-3 缺陷和激子分析 22
2-5 化學氣相沉積法生長單層側向MoS2/WS2異質結構 23
2-6 TMDc異質結構的光譜研究(far-field) 24
2-6-1 垂直式異質結構的光譜研究 24
2-6-2 側向式異質結構的光譜研究 26
2-6-3 混相(alloy)異質結構的光譜研究 27
2-7 TMDc的表面電位量測 30
2-7-1 載子濃度分析 30
2-7-2 材料異質結構分析 31
第三章 實驗方法 49
3-1 試片製備 49
3-1-1 化學氣相沉積法(CVD)生長 49
3-1-2 試片轉移 50
3-2 原子力顯微鏡(AFM)量測 51
3-2-1 儀器介紹 51
3-2-2 實驗原理 53
3-3 掃描凱爾文探針顯微術(SKPM)量測 55
3-4 遠場光學(Far-field)量測 57
3-4-1 儀器介紹 57
3-4-2 光致螢光光譜(photoluminescence)實驗原理 59
3-4-3 拉曼光譜實驗原理 59
3-5 掃描近場光學顯微術(SNOM)量測 60
3-5-1 實驗原理 60
3-5-2 儀器介紹 62
第四章 TMDc之表面與電性分析 71
4-1 單層WS2之分析 71
4-1-1 AFM表面形貌 71
4-1-2 SKPM電性分析 71
4-2 一階段MoS2(in)/ WS2(out)側向式異質結構之分析 72
4-2-1 AFM表面形貌 72
4-2-2 SKPM電性分析 72
4-3 Mo1-xWxS2混相(alloy)之SKPM電性分析 74
4-4 二階段WS2(in)/ MoS2(out)側向式異質結構之分析 75
4-4-1 AFM表面形貌 75
4-4-2 SKPM電性分析 76
第五章 單層二硫化鎢之光譜性質分析 84
5-1 單層WS2之遠場光學分析 84
5-2 單層WS2之近場光學分析 86
第六章 異質結構之光譜性質分析 91
6-1 一階段MoS2(in)/ WS2(out)側向式異質結構之光譜性質 91
6-1-1 遠場光學(Far-field)分析 91
6-1-2 近場光學(SNOM)分析 92
6-2 Mo1-xWxS2混相(alloy)之遠場與近場光譜性質 94
6-3 二階段WS2(in)/ MoS2(out)側向式異質結構之光譜性質 95
6-3-1 遠場光學(Far-field) 分析 95
6-3-2 近場光學(SNOM) 分析 97
第七章 結論 111
第八章 參考文獻 113

1. Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666.
2. Lee, C., et al., Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano, 2010. 4(5): p. 2695-2700.
3. Lee, Y.-H., et al., Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Advanced Materials, 2012. 24(17): p. 2320-2325.
4. Chhowalla, M., et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem, 2013. 5(4): p. 263-275.
5. Gutiérrez, H.R., et al., Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers. Nano Letters, 2013. 13(8): p. 3447-3454.
6. Yun, W.S., et al., Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-$M{X}_{2}$ semiconductors ($M$ $=$ Mo, W; $X$ $=$ S, Se, Te). Physical Review B, 2012. 85(3): p. 033305.
7. RadisavljevicB, et al., Single-layer MoS2 transistors. Nat Nano, 2011. 6(3): p. 147-150.
8. Zhang, Y., et al., Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary. ACS Nano, 2013. 7(10): p. 8963-8971.
9. Mak, K.F., et al., Atomically Thin ${\mathrm{MoS}}_{2}$: A New Direct-Gap Semiconductor. Physical Review Letters, 2010. 105(13): p. 136805.
10. McCreary, K.M., et al., The Effect of Preparation Conditions on Raman and Photoluminescence of Monolayer WS(2). Scientific Reports, 2016. 6: p. 35154.
11. Berkdemir, A., et al., Identification of individual and few layers of WS(2) using Raman Spectroscopy. Scientific Reports, 2013. 3: p. 1755.
12. Wang, Y., et al., Raman Spectroscopy Study of Lattice Vibration and Crystallographic Orientation of Monolayer MoS2 under Uniaxial Strain. Small, 2013. 9(17): p. 2857-2861.
13. Bao, W., et al., Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide. Nature Communications, 2015. 6: p. 7993.
14. Lee, Y., et al., Characterization of the structural defects in CVD-grown monolayered MoS2 using near-field photoluminescence imaging. Nanoscale, 2015. 7(28): p. 11909-11914.
15. Lee, Y., et al., Near-field spectral mapping of individual exciton complexes of monolayer WS2 correlated with local defects and charge population. Nanoscale, 2017. 9(6): p. 2272-2278.
16. Park, K.-D., et al., Hybrid Tip-Enhanced Nanospectroscopy and Nanoimaging of Monolayer WSe2 with Local Strain Control. Nano Letters, 2016. 16(4): p. 2621-2627.
17. Gong, Y., et al., Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials, 2014. 13: p. 1135.
18. Heo, H., et al., Rotation-Misfit-Free Heteroepitaxial Stacking and Stitching Growth of Hexagonal Transition-Metal Dichalcogenide Monolayers by Nucleation Kinetics Controls. Advanced Materials, 2015. 27(25): p. 3803-3810.
19. Chen, K., et al., Lateral Built-In Potential of Monolayer MoS2–WS2 In-Plane Heterostructures by a Shortcut Growth Strategy. Advanced Materials, 2015. 27(41): p. 6431-6437.
20. Zhang, X.-Q., et al., Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers. Nano Letters, 2015. 15(1): p. 410-415.
21. Li, M.-Y., et al., Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science, 2015. 349(6247): p. 524.
22. Zheng, S., et al., Monolayers of WxMo1−xS2 alloy heterostructure with in-plane composition variations. Applied Physics Letters, 2015. 106(6): p. 063113.
23. Kobayashi, Y., et al., Bandgap-tunable lateral and vertical heterostructures based on monolayer Mo1-x W x S2 alloys. Nano Research, 2015. 8(10): p. 3261-3271.
24. Chen, Y., et al., Tunable Band Gap Photoluminescence from Atomically Thin Transition-Metal Dichalcogenide Alloys. ACS Nano, 2013. 7(5): p. 4610-4616.
25. Song, J.-G., et al., Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer. Nature Communications, 2015. 6: p. 7817.
26. Wang, Z., et al., Chemical Vapor Deposition of Monolayer Mo1−xWxS2 Crystals with Tunable Band Gaps. Scientific Reports, 2016. 6: p. 21536.
27. Maragliano, C., et al., Quantifying charge carrier concentration in ZnO thin films by Scanning Kelvin Probe Microscopy. Scientific Reports, 2014. 4: p. 4203.
28. Chen, K., et al., Electronic Properties of MoS2–WS2 Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy. ACS Nano, 2015. 9(10): p. 9868-9876.
29. Huang, C., et al., Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nature Materials, 2014. 13: p. 1096.
30. Duan, X., et al., Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nature Nanotechnology, 2014. 9: p. 1024.
31. Gong, Y., et al., Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures. Nano Letters, 2015. 15(9): p. 6135-6141.
32. Yoo, Y., Z.P. Degregorio, and J.E. Johns, Seed Crystal Homogeneity Controls Lateral and Vertical Heteroepitaxy of Monolayer MoS2 and WS2. Journal of the American Chemical Society, 2015. 137(45): p. 14281-14287.
33. Chen, J., et al., Lateral Epitaxy of Atomically Sharp WSe2/WS2 Heterojunctions on Silicon Dioxide Substrates. Chemistry of Materials, 2016. 28(20): p. 7194-7197.
34. http://www.nanoscience.com/technology/afm-technology/afm-modes-2/.
35. Hui, X., et al., A nondestructive calibration method for maximizing the range and accuracy of AFM force measurement. Journal of Micromechanics and Microengineering, 2014. 24(2): p. 025005.
36. Eaton, P.W., Paul, Atomic Force Microscopy. 2010, Oxford Univ Pr.
37. Marrese, M., V. Guarino, and L. Ambrosio, Atomic Force Microscopy: A Powerful Tool to Address Scaffold Design in Tissue Engineering. Journal of Functional Biomaterials, 2017. 8(1).
38. R. Vidyasagar , B.C., E. Pelegova , K. Romanyuk , and A.L. Kholkin Controlling Surface Potential of Graphene Using dc Electric Field. Knowledge E | Engaging Minds, 2016.
39. Melitz, W., et al., Kelvin probe force microscopy and its application. Surface Science Reports, 2011. 66(1): p. 1-27.
40. 國科會精密儀器中心, 奈米檢測技術. 2009, 全華圖書.
41. Loh, T.A.J., M. Tanemura, and D.H.C. Chua, Ultrathin MoS2 and WS2 layers on silver nano-tips as electron emitters. Applied Physics Letters, 2016. 109(13): p. 133102.
42. Schlaf, R., et al., Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule. Journal of Applied Physics, 1999. 85(5): p. 2732-2753.
43. Gong, C., et al., Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Applied Physics Letters, 2013. 103(5): p. 053513.
44. Nemes-Incze, P., et al., Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon, 2008. 46(11): p. 1435-1442.
45. Kobayashi, Y., et al., Growth and Optical Properties of High-Quality Monolayer WS2 on Graphite. ACS Nano, 2015. 9(4): p. 4056-4063.
46. Kim, M.S., et al., Biexciton Emission from Edges and Grain Boundaries of Triangular WS2 Monolayers. ACS Nano, 2016. 10(2): p. 2399-2405.
47. Mak, K.F., et al., Tightly bound trions in monolayer MoS2. Nature Materials, 2012. 12: p. 207.
48. Hong, X., et al., Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nature Nanotechnology, 2014. 9: p. 682.
49. Pant, A., et al., Fundamentals of lateral and vertical heterojunctions of atomically thin materials. Nanoscale, 2016. 8(7): p. 3870-3887.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *