帳號:guest(18.222.21.85)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):關大興
作者(外文):Kuan, Da-Hsing
論文名稱(中文):根基於單一元件類自然光有機發光二極體
論文名稱(外文):A Single Device Based Natural-Light Organic Light-Emitting Diodes
指導教授(中文):周卓煇
指導教授(外文):Jou, Jwo-Huei
口試委員(中文):岑尚仁
蔡永誠
金志龍
薛景中
王欽戊
口試委員(外文):Chen, Sun-Zen
Tsai, Yung-Cheng
Chin, Chih-Lung
Shyue, Jing-Jong
Wang, Ching-Wu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031602
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:103
中文關鍵詞:有機發光二極體自然光色溫
外文關鍵詞:Organic Light-emitting DiodeNatural-lightColor-temperature
相關次數:
  • 推薦推薦:0
  • 點閱點閱:109
  • 評分評分:*****
  • 下載下載:23
  • 收藏收藏:0
太陽光應是最佳的照明光源,從日出到日落,其色溫與亮度,會隨著時間而改變,人們所使用的人造光源,其色溫與亮度亦應如自然光般,能隨著時間而有所變化;為此,本研究利用先前發明的類太陽光有機發光二極體(Organic Light-Emitting Diode, OLED)技術,以製作一元件,使能有極廣色溫與亮度變化之類自然光光源;其中,一元件的色溫變化範圍,可從2,550 K 變化至 21,800 K,其亮度從10 cd/m2變化到2,500 cd/m2,可涵蓋不同地區、不同時間的太陽與天空的光色,像是日出時的太陽3,230 K、天空8,410 K,中午時的太陽6,620 K、天空17,830 K,下午時分的太陽5,650 K、天空10,300 K,適合白天工作時使用;此外,其具有超高自然光譜相似指數(Spectrum resemblance index, SRI)與中高顯色指數(Color rendering index, CRI),在亮度1,000 cd/m2時,其分別為92與72。此類自然光OLED能具有極寬廣的色溫變化範圍,乃可歸因於使用紅、綠、藍三發光層結構,並於其中加入一載子調制層,有效控制電洞傳輸量,使元件之再結合區,能隨電壓之提升而顯著移動,並依序放出不同色溫的光色;為降低藍光可能導致的傷害,我們藉由染料摻雜比例的改變,以及使用雙層載子調制層,以使元件色溫變化範圍改變為 1,680 K 至 5,430 K,以放出如夕陽般的色溫,以期降低對褪黑激素的抑制影響,以1,700 K的OLED而言,其較5,500 K白光安全8倍,可大幅增加夜晚使用照明光源的安全性。
Sunlight is the best lighting source, and its varying color and illuminance changes from sunrise to sunset. Artificial light sources should have these characteristics which enable to change the color temperature and illuminance with time. In response to a positive demand, we demonstrate here a natural-light organic light-emitting diode (OLED)which extends the previous research, Sun-light OLED, to fabricate a single device that can widely change its color temperature and illuminance. While the variation range of the color temperature of a device can vary from 2,550 K to 21,800 K, its brightness changes from 10 cd / m2 to 2,500 cd / m2, covering the sun and the sky light color at different regions and times, such as sunrise 3,230 K, sky 8,410 K, noon sun 6,620 K, sky 17,830 K, afternoon sun 5,650 K and sky 10,300 K, which is suitable for daytime lighting. In addition, it has an ultra-high spectrum resemblance index(SRI)and a high color rendering index (CRI), which are 92 and 72 at a illuminance of 1,000 cd / m2.
This natural-light OLED with very wide range of color temperature can be attributed to the use of three emissive layer structures and a carrier modulation layer. The carrier modulation layer can control the hole transmission, so that the recombination zone could be moved by voltage to emit different color temperature in turn. In order to reduce the possible damage caused by blue light, we changed the dye doping concentration and use a double carrier modulation layer to change the variation range of the device’s color temperature from 1,680 K to 5,430 K which can emit as sunset light, and it is expected to decrease the melatonin secretion. In terms of 1,700 K OLED, it is 11 times safer than 5,500 K white light so that can significantly increase the safety of night use of lighting.
目錄
中文摘要 I
英文摘要 III
致謝 V
目錄 X
表目錄 XIV
圖目錄 XV
壹、緒論 1
貳、文獻回顧 3
2-2、OLED的發展歷史 3
2-2、OLED的發光原理 20
2-3、OLED的基本結構 27
2-4、OLED的能量傳遞機制 28
2-5、OLED的元件效率 31
2-6、OLED之發展 33
2-6-1、陽極材料 33
2-6-2、電洞注入材料 34
2-6-3、電洞傳輸材料 34
2-6-4、電子傳輸材料 35
2-6-5、電子傳輸材料 35
2-6-6、陰極材料 36
2-7、色溫可調OLED的進展 37
2-8、光色定義 40
2-9、色溫與黑體輻射 41
參、理論計算 43
3-1、自然光譜相似性指數 (SRI) 的計算 43
3-2、演色性 (CRI) 的計算 44
3-3、元件效率的計算 46
3-4、視網膜最大可忍受之曝光極限 (MPL) 的計算 47
3-5、褪黑激素抑制程度 (MSS) 的計算 48
肆、實驗方法 50
4-1、元件結構與使用材料 50
4-2-1、材料功能、全名及簡稱 50
4-2-1、本研究所使用有機材料之化學結構式 55
4-2、元件設計與製備 59
4-2-1、元件電路設計 59
4-2-2、基材清洗 60
4-2-3、發光層之製備 60
4-2-4、旋轉塗佈製程 61
4-2-5、熱蒸鍍製程 61
4-2-6、成膜鍍率測定 62
4-2-7、有機層之製備 63
4-2-8、無機層之製備 63
4-3、元件特性量測 64
4-3-1、發光效率之量測 64
4-3-2、電致發光光譜量測 65
伍、結果與討論 66
5-1 自然光的特性 66
5-1-1、太陽、天空光色與時間的關係 66
5-1-2、太陽、天空色溫與時間的關係 68
5-1-3、太陽、天空照度與時間的關係 69
5-2、超廣色溫類自然光OLED 72
5-2-1、載子調制層厚度對元件色溫的影響 72
5-2-2、紅光染料濃度對元件色溫的影響 77
5-2-3、藍光染料對元件的影響 81
5-3、低藍害類自然光OLED 84
5-3-1、載子調制層層數與厚度對元件色溫的影響 84
5-3-2、低藍害類自然光OLED之健康特質MPL/MSS 88
5-4、類自然光OLED元件的發光特性 76
陸、結論 91
柒、參考資料 93
[1] Tang, Ching W., and Steven A. VanSlyke. "Organic electroluminescent diodes." Applied physics letters 51.12 (1987): 913-915.
[2] Kido, Junji, Masato Kimura, and Katsutoshi Nagai. "Multilayer white light-emitting organic electroluminescent device." Science 267.5202 (1995): 1332.
[3] D'Andrade, Brian W., and Stephen R. Forrest. "White organic light‐emitting devices for solid‐state lighting." Advanced Materials 16.18 (2004): 1585-1595.
[4] Forrest, Stephen R. "The path to ubiquitous and low-cost organic electronic appliances on plastic." Nature 428.6986 (2004): 911-918.
[5] So, Franky, Junji Kido, and Paul Burrows. "Organic light-emitting devices for solid-state lighting." Mrs Bulletin 33.07 (2008): 663-669.
[6] Judd, Deane B., et al. "Spectral distribution of typical daylight as a function of correlated color temperature." Josa 54.8 (1964): 1031-1040.
[7] Das, S. R., and V. D. P. Sastri. "Spectral distribution and color of tropical daylight." JOSA 55.3 (1965): 319-323.
[8] Jou, Jwo-Huei, et al. "Artificial dusk-light based on organic light emitting diodes." ACS Photonics 1.1 (2013): 27-31.
[9] Mills, Peter R., Susannah C. Tomkins, and Luc JM Schlangen. "The effect of high correlated colour temperature office lighting on employee wellbeing and work performance." Journal of circadian rhythms 5.1 (2007): 2.
[10] Scheer, Frank AJL, Lorenz JP van Doornen, and Ruud M. Buijs. "Light and diurnal cycle affect autonomic cardiac balance in human; possible role for the biological clock." Autonomic neuroscience 110.1 (2004): 44-48.
[11] Van Bommel, Wout JM. "Non-visual biological effect of lighting and the practical meaning for lighting for work." Applied ergonomics 37.4 (2006): 461-466.
[12] Brainard, George C., et al. "The influence of different light spectra on the suppression of pineal melatonin content in the Syrian hamster." Brain research294.2 (1984): 333-339.
[13] Lockley, Steven W., George C. Brainard, and Charles A. Czeisler. "High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light." The Journal of clinical endocrinology & metabolism 88.9 (2003): 4502-4502.
[14] Pauley, Stephen M. "Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue." Medical hypotheses63.4 (2004): 588-596.
[15] Hätönen, Taina, et al. "Suppression of melatonin by 2000-lux light in humans with closed eyelids." Biological psychiatry 46.6 (1999): 827-831.
[16] Sato, Mika, Toshihiko Sakaguchi, and Takeshi Morita. "The effects of exposure in the morning to light of different color temperatures on the behavior of core temperature and melatonin secretion in humans." Biological Rhythm Research36.4 (2005): 287-292.
[17] Zeitzer, Jamie M., et al. "Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression." The Journal of physiology 526.3 (2000): 695-702.
[18] Navara, Kristen J., and Randy J. Nelson. "The dark side of light at night: physiological, epidemiological, and ecological consequences." Journal of pineal research 43.3 (2007): 215-224.
[19] KNAUER, RICHARD S. "Light Suppresses Melatonm Secretion in Humans." Science 210 (1980): 12.
[20] Brainard, George C., et al. "Human melatonin regulation is not mediated by the three cone photopic visual system." The Journal of Clinical Endocrinology & Metabolism 86.1 (2001): 433-436.
[21] Funato, M., et al. "Emission color tunable light-emitting diodes composed of InGaN multifacet quantum wells." Applied Physics Letters 93.2 (2008): 021126.
[22] Hoelen, C., et al. "Color tunable LED spot lighting." SPIE Optics+ Photonics. International Society for Optics and Photonics, 2006.
[23] Speier, Ingo, and Marc Salsbury. "Color temperature tunable white light LED system." SPIE Optics+ Photonics. International Society for Optics and Photonics, 2006.
[24] Jou, Jwo-Huei, et al. "Sunlight-style color-temperature tunable organic light-emitting diode." Applied Physics Letters 95.1 (2009): 184.
[25] Bernanose, Andre, Marcel Comte, and Paul Vouaux. "Sur un nouveau mode d'emission lumineuse chez certains composes organiques." Journal de Chimie Physique 50 (1953): 64-68.
[26] Pope, M., H. P. Kallmann, and P. Magnante. "Electroluminescence in organic crystals." The Journal of Chemical Physics 38.8 (1963): 2042-2043.
[27] Helfrich, W., and W. G. Schneider. "Recombination radiation in anthracene crystals." Physical Review Letters 14.7 (1965): 229.
[28] Helfrich, W., and W. G. Schneider. "Transients of volume‐controlled current and of recombination radiation in anthracene." The Journal of Chemical Physics44.8 (1966): 2902-2909.
[29] Williams, D. F., and M. Schadt. "A simple organic electroluminescent diode." Proceedings of the IEEE 58.3 (1970): 476-476.
[30] Vincett, P. S., et al. "Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films." Thin solid films 94.2 (1982): 171-183.
[31] Partridge, R. H. "Electroluminescence from polyvinylcarbazole films: 1. Carazole cations." SPIE MILESTONE SERIES MS 151 (1998): 396-401.
[32] Tang, Ching W., and Steven A. VanSlyke. "Organic electroluminescent diodes." Applied physics letters 51.12 (1987): 913-915.
[33] VanSlyke, Steven A., Ching W. Tang, and Luther C. Roberts. "Electroluminescent device with organic luminescent medium." U.S. Patent No. 4,720,432. 19 Jan. 1988.
[34] Adachi, Chihaya, Tetsuo Tsutsui, and Shogo Saito. "Organic electroluminescent device having a hole conductor as an emitting layer." Applied Physics Letters55.15 (1989): 1489-1491.
[35] Tang, Ching Wan, Steven A. VanSlyke, and C. H. Chen. "Electroluminescence of doped organic thin films." Journal of Applied Physics 65.9 (1989): 3610-3616.
[36] Burroughes, J. H., et al. "Light-emitting diodes based on conjugated polymers." nature 347.6293 (1990): 539-541.
[37] Richard H. Friend JHB, Conal D. Bradley. Electroluminescent Device. United States Patent 1993: 5247190.
[38] Era, Masanao, et al. "Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter." Chemical physics letters 178.5-6 (1991): 488-490.
[39] Kido, Junji, et al. "1, 2, 4-triazole derivative as an electron transport layer in organic electroluminescent devices." Japanese journal of applied physics 32.7A (1993): L917.
[40] Kido, J., H. Shionoya, and K. Nagai. "Single‐layer white light‐emitting organic electroluminescent devices based on dye‐dispersed poly (N‐vinylcarbazole)." Applied Physics Letters 67.16 (1995): 2281-2283.
[41] Kido, Junji, Masato Kimura, and Katsutoshi Nagai. "Multilayer white light-emitting organic electroluminescent device." Science 267.5202 (1995): 1332.
[42] Hung, L. S., Ching Wan Tang, and Monica Gary Mason. "Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode." Applied Physics Letters 70.2 (1997): 152-154.
[43] Baldo, Marc A., et al. "Highly efficient phosphorescent emission from organic electroluminescent devices." Nature 395.6698 (1998): 151-154.
[44] Liao, L. S., Kevin P. Klubek, and Ching Wan Tang. "High-efficiency tandem organic light-emitting diodes." Applied physics letters 84.2 (2004): 167-169.
[45] Shao, Yan, and Yang Yang. "White organic light-emitting diodes prepared by a fused organic solid solution method." Applied Physics Letters 86.7 (2005): 073510.
[46] Jou, Jwo-Huei, et al. "Efficient, color-stable fluorescent white organic light-emitting diodes with single emission layer by vapor deposition from solvent premixed deposition source." Applied physics letters 88.19 (2006): 193501.
[47] Sun, Yiru, and Stephen R. Forrest. "Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids." Nature Photonics 2.8 (2008): 483-487.
[48] Reineke, Sebastian, et al. "White organic light-emitting diodes with fluorescent tube efficiency." Nature 459.7244 (2009): 234-238.
[49] Wang, Z. B., et al. "Unlocking the full potential of organic light-emitting diodes on flexible plastic." Nature Photonics 5.12 (2011): 753-757.
[50] Uoyama, Hiroki, et al. "Highly efficient organic light-emitting diodes from delayed fluorescence." Nature 492.7428 (2012): 234-238.
[51] Jou, Jwo‐Huei, et al. "Candle Light‐Style Organic Light‐Emitting Diodes." Advanced Functional Materials 23.21 (2013): 2750-2757.
[52] Jou, Jwo-Huei, et al. "Enabling high-efficiency organic light-emitting diodes with a cross-linkable electron confining hole transporting material." Organic Electronics 24 (2015): 254-262.
[53] Baldo, Marc A., et al. "Highly efficient phosphorescent emission from organic electroluminescent devices." Nature 395.6698 (1998): 151-154.
[54] Thompson, Linda G., and S. E. Webber. "External heavy atom effect on the phosphorescence spectra of some halonaphthalenes." The Journal of Physical Chemistry 76.2 (1972): 221-224.
[55] Gill, W. D. "Drift mobilities in amorphous charge‐transfer complexes of trinitrofluorenone and poly‐n‐vinylcarbazole." Journal of Applied Physics 43.12 (1972): 5033-5040.
[56] Wolf, Ulrich, Vladimir I. Arkhipov, and Heinz Bässler. "Current injection from a metal to a disordered hopping system. I. Monte Carlo simulation." Physical Review B 59.11 (1999): 7507.
[57] Bulović, V., et al. "Weak microcavity effects in organic light-emitting devices." Physical Review B 58.7 (1998): 3730.
[58] Williams, Christopher D., et al. "Multiwalled carbon nanotube sheets as transparent electrodes in high brightness organic light-emitting diodes." Applied physics letters 93.18 (2008): 183506.
[59] Lampert, Murray A., and Peter Mark. "Current injection in solids." (1970).
[60] Murgatroyd, P. N. "Theory of space-charge-limited current enhanced by Frenkel effect." Journal of Physics D: Applied Physics 3.2 (1970): 151.
[61] Förster, Th. "Zwischenmolekulare energiewanderung und fluoreszenz." Annalen der physik 437.1‐2 (1948): 55-75.
[62] Dexter, David L. "A theory of sensitized luminescence in solids." The Journal of Chemical Physics 21.5 (1953): 836-850.
[63] Miyata, Seizo. Organic electroluminescent materials and devices. Crc press, 1997.
[64] Williams, Christopher D., et al. "Multiwalled carbon nanotube sheets as transparent electrodes in high brightness organic light-emitting diodes." Applied physics letters 93.18 (2008): 183506.
[65] Zhang, Daihua, et al. "Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes." Nano letters 6.9 (2006): 1880-1886.
[66] Van Slyke, Steven A., C. H. Chen, and Ching Wan Tang. "Organic electroluminescent devices with improved stability." Applied physics letters69.15 (1996): 2160-2162.
[67] Elschner, A., et al. "PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes." Synthetic metals 111 (2000): 139-143.
[68] Higginson, Keith A., Xian-Man Zhang, and Fotios Papadimitrakopoulos. "Thermal and morphological effects on the hydrolytic stability of aluminum tris (8-hydroxyquinoline)(Alq3)." Chemistry of materials 10.4 (1998): 1017-1020.
[69] Sakamoto, Gosuke, et al. "Significant improvement of device durability in organic light-emitting diodes by doping both hole transport and emitter layers with rubrene molecules." Applied Physics Letters 75.6 (1999): 766-768.
[70] Giebeler, Carsten, et al. "Influence of the hole transport layer on the performance of organic light-emitting diodes." Journal of Applied Physics 85.1 (1999): 608-615.
[71] Mäkinen, A. J., et al. "Hole injection barriers at polymer anode/small molecule interfaces." Applied Physics Letters 79.5 (2001): 557-559.
[72] Wakimoto, Takeo, et al. "Organic EL cells using alkaline metal compounds as electron injection materials." IEEE Transactions on electron devices 44.8 (1997): 1245-1248.
[73] Ganzorig, C., K. Suga, and M. Fujihira. "Alkali metal acetates as effective electron injection layers for organic electroluminescent devices." Materials Science and Engineering: B 85.2 (2001): 140-143.
[74] Hung, L. S. "Efficient and stable organic light-emitting diodes with a sputter-deposited cathode." Thin Solid Films 363.1 (2000): 47-50.
[75] Burrows, P. E., et al. "Color‐tunable organic light‐emitting devices." Applied physics letters 69.20 (1996): 2959-2961.
[76] Lee, S. S., T. J. Song, and S. M. Cho. "Organic white-light-emitting devices based on balanced exciton-recombination-zone split using a carrier blocking layer." Materials Science and Engineering: B 95.1 (2002): 24-28.
[77] Chen, Chia-Hsun, and Hsin-Fei Meng. "Recombination distribution and color tuning of multilayer organic light-emitting diode." Applied Physics Letters 86.20 (2005): 201102.
[78] Li, W. X., et al. "Color tunable organic light emitting diodes using Eu complex doping." Solid-state electronics 51.3 (2007): 500-504.
[79] Jou, Jwo-Huei, et al. "Highly efficient color-temperature tunable organic light-emitting diodes." Journal of Materials Chemistry 22.16 (2012): 8117-8120.
[80] C.I.D. L’Eclairage, “Colorimetry (Second Edition)-Publication CIE 15.2, “Central Bureau of CIE, Viena Austria1986.
[81] Planck, Max. "On the law of distribution of energy in the normal spectrum." Annalen der Physik 4.553 (1901): 1.
[82] 周卓煇, OLED導論:高立出版社, 2015.
[83] Jou, Jwo-Huei, et al. "A universal, easy-to-apply light-quality index based on natural light spectrum resemblance." Applied Physics Letters 104.20 (2014): 76_1.
[84] J. H. Jou. "The Eighth Chapter." OLED Introdcution. Taiwan, Gau Li, 2015. Print.
[85] "Photobiological safety of lamps and lamp systems,” Patent IEC 62471, 2006.
[86] J. H. Jou, “Melatonin suppression extent measuring device.” National Tsing Hua University, Patent US20120303282 A1, 2012.
[87] Hanifin, John P., et al. "High‐intensity red light suppresses melatonin." Chronobiology international 23.1-2 (2006): 251-268.
[88] Brainard, George C., et al. "Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor." Journal of Neuroscience 21.16 (2001): 6405-6412.
[89] Thapan, Kavita, Josephine Arendt, and Debra J. Skene. "An action spectrum for melatonin suppression: evidence for a novel non‐rod, non‐cone photoreceptor system in humans." The Journal of physiology 535.1 (2001): 261-267.
[90] Jou, Jwo-Huei, et al. "Wet-process feasible candlelight OLED." Journal of Materials Chemistry C 4.25 (2016): 6070-6077.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *