帳號:guest(18.119.130.36)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡文心
作者(外文):Tsai, Wen-Hsin.
論文名稱(中文):量子點/二氧化矽奈米複合物之製備與應用
論文名稱(外文):Preparation and Application of Quantum Dot/Silica Nanocomposites
指導教授(中文):陳學仕
指導教授(外文):Chen, Hsueh-Shih
口試委員(中文):吳志明
鍾淑茹
口試委員(外文):Wu, Jyh-Ming
Chung, Shu-Ru
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031601
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:86
中文關鍵詞:量子點二氧化矽鈍化高分子薄膜穩定性
外文關鍵詞:quantum dotssilicapassivationpolymer filmstability
相關次數:
  • 推薦推薦:0
  • 點閱點閱:411
  • 評分評分:*****
  • 下載下載:27
  • 收藏收藏:0
在本篇研究中,主要探討了不同形貌之量子點/二氧化矽對於其應用於高分 子/量子點增色膜性能之影響。首先,藉由 (1) 逆微胞法及 (2) 在甲苯中直接包 覆二氧化矽層於量子點表面兩種不同的製備過程,分別合成出圓球形二氧化矽 層包覆之量子點與薄殼型二氧化矽包覆之量子點,並在此部分探討了不同製備 過程對於量子點光學性質及化學性質之影響。接著我們將此兩種不同量子點/二 氧化矽與未包覆之量子點加入於壓克力單體中並製備成高分子/量子點增色膜, 可發現雖然薄殼型二氧化矽包覆之量子點之發光效率相較於未包覆之量子點下 降約四成,但封裝於高分子基材後卻可保有可與未包覆之量子點比擬之光轉換 效率,在本篇研究中,朝向量子點在高分子基材中的絕對效率與出光性質作深入 的探討,並確認二氧化矽層有效提升了量子點的耐熱性質。
In this study, we make a detailed investigation into the relationship between the different morphologies of silica-coated ZnCdSSe QDs nanocomposites and its performance in quantum dot films. At the beginning, we present two processes to synthesize silica-coated ZnCdSSe QDs nanocomposites and can obtain two significantly different morphologies, one is with sphere-shaped silica layer, and another is with ultra-thin silica layer. Also, the comparison of the optical and chemical properties of these two types of silica-coated ZnCdSSe nanocomposites are what we focused in this study. Next, we apply the uncoated ZnCdSSe QDs and two types of silica-coated ZnCdSSe nanocomposites in the quantum dot films and systematically analyze the factors which influence the optical properties from different aspects, such as the quantum yield after the quantum dots are encapsulated in the films and the possible scattering mechanism of the excitation light and emission light between the polymer matrix and the quantum dots. Finally, the thermal stability and the practical application of the quantum dot films are compared in this study.
Chapter 1 Introduction 6
Chapter 2 Literature Review 9
2.1 Optical properties of quantum dots 9
2.1.1 Quantum confinement effects 9
2.1.2 Radiative and non-radiative recombination 12
2.2 Heterostructure of quantum dots 14
2.2.1 Core-shell structure 16
2.2.2 Organically coated quantum dots 18
2.2.3 Inorganic coated QDs 22
2.3 Synthesis process of silica coated QDs 25
2.3.1 Sol-gel process of SiO2 25
2.3.2 Stöber method 29
2.3.3 Reverse micro-emulsion method 32
2.3.4 Non-chemical process 35
2.4 Quantum dots-polymer film 36
Chapter 3 Experimental Methods 37
3.1 Chemicals 37 3.2 Instruments 37
3.2.1 Photophysical characterization 37
3.2.2 X-ray Powder Diffraction 39
3.2.3 High Resolution Transmission Electron Microscopy 40
3.2.4 Particle Size Analyzer 41
3.2.5 Fourier-Transform Infrared Spectrometer 41
3.3 Synthesis of multiple-type silica-coated QDs 42
3.4 Synthesis of sphere-type silica-coated QDs 42
3.5 The chemical stability test 44
3.6 Fabrication of QD films 44
Chapter 4 Results and Discussion 45
4.1 Characterization of uncoated ZnCdSSe QDs 45
4.2 Characterization of sphere-type silica-coated ZnCdSSe QDs 48
4.2.1 Optical properties 48
4.2.2 Characterization of silica layer 50
4.3 Characterization of multiple-type silica-coated ZnCdSSe QDs 54
4.3.1 Optical properties 54
4.3.2 Characterization of silica layer 57
4.4 Comparison of two different morphologies of silica-coated ZnCdSSe QDs 61 4.5 The application of silica-coated ZnCdSSe QDs in QD film 63
4.5.1 The chemical stability of silica-coated ZnCdSSe QDs in acrylate monomers 4.5.2 The optical properties of QD films 65
4.5.3 The thermal stability of QD films 77
4.5.4 Mechanism for improved LCR in QD film 78
Chapter 5 Conclusions 79
Reference 81
[1] F. Chen and D. Gerion, Nano Lett., 2004, 4, 1827–1832.
[2] T. Zhang, J. L. Stilwell, D. Gerion, L. Ding, O. Elboudwarej, P. A. Cooke, J. W.
Gray, A. P. Alivisatos, and F. F. Chen, Nano Lett., 2006, 6, 800-808.
[3] S. Jun, J. Lee, and E. Jang, ACS Nano, 2013, 7, 1472-1477.
[4] V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P. W. Kantoff, R. Langer, O. C. Farokhzad, Nano Lett., 2007, 7, 3065-3070.
[5] X. Hu. and X. Gao, ACS nano, 2010, 4, 6080-6086.
[6] C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. M. Javier, H. E. Gaub, S.
Sto1lzle, N. Fertig, and W. J. Parak, Nano Lett., 2005, 5, 331-338.
[7] S. T. Selvan, T. T. Tan, and J. Y. Ying, Adv. Mater., 2005, 17, 1620-1625.
[8] W. Stöber, A. FINK, and E. Bohn, J. Colloid Interface Sci. ,1968, 26, 62-69.
[9] A. L. Rogach, D. Nagesha, J. W. Ostrander, M. Giersig, and N. A. Kotov, Chem. Mater., 2000, 12, 2676-2685.
[10] D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos, J. Phys. Chem. B, 2001, 105, 8861-8871.
[11] T. Nann, and P. Mulvaney, Angew. Chem. Int. Ed., 2004, 43, 5393-5396.
[12] M. Darbandi, R. Thomann, and T. Nann, Chem. Mater., 2005, 17, 5720-5725.
[13] N. R. Jana, C. Earhart, and J. Y. Ying, Chem. Mater., 2007, 19, 5074-5082. [14] H. Chen, C. Hsu, and H. Hong, IEEE Photon. Technol. Lett., 18, 193-195. [15] V. I. Klimov, J. Phys. Chem. B, 2006, 110, 16827-16845.
[16] A. M. Smith, and S. Nie, Acc. Chem. Res., 2010, 43, 190-200.
[17] S. K. Shin, H. Yoon, Y. J. Jung, and J. W. Park, Curr. Opin. Biotechnol., 2006, 10, 423-429.
[18] T. H. Gfroerer, Encyclopedia of Analytical Chemistry, 2000, 9209-9231.
[19] K. J. Klabunde, J. Stark, O. Koper, C. Mohs, D. G. Park, S. Decker, Y. Jiang, I. Lagadic, and D. Zhang, J. Phys. Chem., 1996, 100, 12142-12153.
[20] K. Jeon, S. Oh, Y. D. Suh, H. Yoshikawa, H. Masuharac, and M. Yoon, Phys.
Chem. Chem. Phys., 2009, 11, 534-542.
[21] P. Reiss, M. Protiere and L. Li, Small, 2009, 5, 154-168.
[22] D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase and H. Weller, Nano Lett., 2001, 1, 207-211.
[23] D. V. Talapin, R. Koeppe, S. Gotzinger, A. Kornowski, J. M. Lupton, A. L.
Rogach, O. Benson, J. Feldmann and H. Weller, Nano Lett., 2003, 3, 1677-1681. [24] D. V. Talapin, I. Mekis, S. Go1tzinger, A. Kornowski, O. Benson, and H. Weller, J. Phys. Chem. B, 2004, 108, 18826-18831.
[25] R. A. Sperling, and W. J. Parak, Phil. Trans. R. Soc. A, 2010, 368, 1333-1383. [26] H. Zhang, Z. Cui, Y. Wang, K. Zhang, X. Ji, C. Lü, B. Yang, and M. Gao, Adv. Mater., 2003, 15, 777-780.
[27] H. S. Chen, M. Ando, and N. Murase, Mater. Lett., 2011, 65, 3146-3149.
[28] S. Jun, J. Lee, and E. Jang, ACS Nano, 2013, 7, 1472-1477.
[29] A. Wolcott, D. Gerion, M. Visconte, J. Sun, A. Schwartzberg, S. Chen, and J. Z. Zhang, J. Phys. Chem. B, 2006, 110, 5779-5789.
[30] B. Jirgensons, ME Stranmains, Colloid Chemistry, McMillan, New York. 1962.
[31] R. K. Iler, The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry, Wiley, New York, 1979.
[32] A. S. Dorcheh, M.H. Abbasi, J. Mater. Process. Technol., 2008, 199, 10-26.
[33] L. Chu, M.I. Tejedor-Tejedor, M.A. Anderson, Microporous Mater., 1997, 8, 207-213.
[34] R.A. Assink, and B.D. Kay, J. Non-cryst. Solids., 1988, 99, 359.
[35] C.J. Brinker, G. W. Sherer, The Physics and Chemistry of Sol-Gel Processing, 1990, 108-215.
[36] M. J. Lawrence, and G. D. Rees, Adv. Drug Deliv. Rev., 2000, 45, 89-121.
[37] R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donegá, D. C. Hart, A. van Blaaderen, D. Vanmaekelbergh, and A. Meijerink, Chem. Mater., 2008, 20, 2503.
[38] Masanori Ando, Chunliang Li, Ping Yang, and Norio Murase, J. Biomed. Biotechnol., 2007, 2008.
[39] I. M. Kooter, A. J. Pierik, M. Merkx, B. A. Averill, N. Moguilevsky, A. Bollen, and R. Wever, J. Am. Chem. Soc., 1997, 119, 11542-11543.
[40] R. Hong, J. Li, S. Zhang, H. Li, Y. Zheng, J. Ding, and D. Wei, Appl. Surf. Sci., 2009, 255, 3485-3492.
[41] K. M. Kim, J. H. Jeon, Y. Y. Kim, H. K. Lee, O O. Park, and D. H. Wang, Org. Electron., 2015, 25, 44-49.
[42] J. Poppe, S. Gabriel, L. Liebscher, S. G. Hickey, and A. Eychmuller, J. Mater. Chem. C, 2013, 1, 1515-1524.
[43] Ayyaswamy Arivarasan, Ganapathy Sasikala, Ramasamy Jayavel, Mater. Sci. Semicond. Process, 2014, 25, 238-243.
[44] K. Koc, F. Z. Tepehan, and G. G. Tepehan, Chalcogenide Lett., 2011, 8, 239-247.
[45] H. Jiang, and H. Ju, Anal. Chem., 2007, 79, 6690-6696.
[46] K. S. Aneja, S. Bohm, A. S. Khannaa, and H. L. M. Bohmc, Nanoscale, 2015, 7, 17879-17888.
[47] S. Musić, N. Filipović-Vinceković, and L. Sekovanić, Braz. J. Chem. Eng., 2011, 28, 89-94.
[48] S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, and C. D. Donega, Nano Lett., 2003, 3, 503-507.
[49] M. Andoa, Y. Pinga, and N. Murasea, Phys Procedia., 2010, 3, 1553-1555.
[50] S. Jeong, J. S. Lee, J. Nam, K. Im, J. Hur, J. J. Park, J. M. Kim, B. Chon, T. Joo, and S. Kim, J. Phys. Chem. C, 2010, 114, 14362–14367.
[51] J. J. Park, P. Prabhakaran, K. K. Jang, Y. G. Lee, J. Lee, K. H. Lee, J. Hur, J. M. Kim, N. Cho, Y. Son, D. Y. Yang, and K. S. Lee, Nano Lett., 2010, 10, 2310-2317.
[52] M. S. Mehata, M. Majumder, B. Mallik, and N. Ohta, J. Phys. Chem. C, 2010, 114, 15594-15601.
[53] Y. Du, P. Yang, H. S. Chen, Q. Che, Y. Liu, H. He, Y. Miao, and J. Zhao, RSC Adv., 2014, 4, 59733-59739.
[54] M. Vasileiadis, I. Koutselas, S. Pispas and N. A. Vainos, J. Polym. Sci. B Polym. Phys., 2016, 54, 552-560.
[55] H. Y. Kim, D. E. Yoon, J. Jang, D. Lee, G. M. Choi, J. H. Chang, J. Y. Lee, D. C. Lee, and B. S. Bae, J. Am. Chem. Soc., 2016, 138, 16478−16485.
[56] C. F. Wang, F. Fan, R. P. Sabatini, O. Voznyy, K. Bicanic, X. Li, D. P. Sellan, M. Saravanapavanantham, N. Hossain,K. Chen, S. Hoogland, and E. H. Sargent, Chem. Mater., 2017, 29, 5104-5112.
[57] J. Y. Lien, C. J. Chen, R. K. Chiang, and S. L. Wang, OPT EXPRESS, 2016, 24, A1021-A1032.
[58] W. Chen, K. Wang, J. Hao, D. Wu, J. Qin, D. Dong, J. Deng, Y. Li, Y. Chen, and W. Cao, Nanophotonics, 2016, 5, 565-572.
[59] M. Adam, T. Erdem, G. M. Stachowski, Z. Soran-Erdem, J. F. L. Lox, C. Bauer, J. Poppe, H. V. Demir, N. Gaponik, and A. Eychmüller, ACS Appl. Mater. Interfaces, 2015, 7, 23364−23371.
[60] M.Adam, Z. Wang, A. Dubavik, G. M. Stachowski, C. Meerbach, Z. Soran-Erdem, C. Rengers, H. V. Demir, N. Gaponik, and A. Eychmüller, Adv. Funct. Mater., 2015, 25, 2638–2645.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *