帳號:guest(13.58.243.187)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):朱昱穎
作者(外文):Chu, Yu-Ying
論文名稱(中文):新穎錫錳鎳氧化物於能源及光電元件之應用
論文名稱(外文):Novel Sn-Mn-Ni Oxide for Energy and Optoelectronics Applications
指導教授(中文):游萃蓉
指導教授(外文):Yew, Tri-Rung
口試委員(中文):陳翰儀
盧明昌
口試委員(外文):Chen, Han-Yi
Lu, Ming-Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031595
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:110
中文關鍵詞:氧化物鋰電池光感測器薄膜電晶體固態燒結
外文關鍵詞:OxideLi-ion batteryPhoto-sensorThin film transistorSolid state sintering
相關次數:
  • 推薦推薦:0
  • 點閱點閱:169
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究主要利用固態燒結法 (Solid State Sintering) 製備出新穎錫錳鎳 (Sn-Mn-Ni) 氧化物塊材,藉由製成低成本、無毒、對環境友善的錫錳鎳氧化物材料,作為鋰電池 (Lithium Ion Batteries)之陽極材料、光感測器 (Photo-sensors) 及薄膜電晶體 (Thin Film Transistors) 之應用。並經由調整靶材元素比製成塊材及鍍膜的不同後續退火條件,探討薄膜光性及電性,驗證其應用於能源及光電元件之可行性。
本研究主要分為三部分,第一部分是探討新穎 Sn-Mn-Ni 多元氧化物作為鋰電池之陽極材料之可能性。經調整元素比例及優化燒結條件,從掃描式電子顯微鏡 (Scanning Electron Microscopy) 成分分析及X 光能量散佈儀 (X-ray Diffraction) 之結構分析結果得知,SnO2:MnO2:NiO莫耳比例為1:2:1時可形成單相,應用於鋰電池中,可得在100 mA/g定速率下充放電270循環後達到1146 mAh/g的可逆電容量 (Reversible Capacity),且具98%電容量保持率 (Capacity Retention),證實錫錳鎳氧化物具有潛力應用於電池之陽極材料。
第二部分以熱蒸鍍成長 Sn-Mn-Ni 多元氧化物薄膜,且藉由調整生胚的成份比例,及薄膜退火環境優化薄膜特性,並搭配 X 光能量散佈儀、紫外/可見光吸收光光譜儀、霍爾效應量測儀等鑑定薄膜特性,如成份比例、結晶性、薄膜吸光率、載子濃度及電阻率等。將此錫錳鎳氧化物材料用來製作光感測器,經由藍光 (460 nm) 照射下,可得上升時間 (Rise Time) 為 41.2 ms 、下降時間 (Fall Time) 為 41.6 ms,光增益 (Gain) 達 31.1,且性質穩定。驗證以 Sn-Mn-Ni 氧化物薄膜作為光電元件的可行性。
第三部分探討以熱蒸鍍成長Sn-Mn-Ni 氧化物薄膜作為半導體層製作薄膜電晶體之可能性,結果顯示薄膜漏電仍需改善,以達到薄膜電晶體的應用。
In this work, a novel, low-cost, non-toxic and environment-friendly tin-manganese-nickel (Sn-Mn-Ni) oxide was synthesized by solid state sintering methods. The applications of tin-manganese-nickel oxide for lithium-ion batteries as anode materials, photo-sensors, and thin-film transistors were investigated. By adjusting composition and sintering conditions, as well as thin film post-annealing conditions. their optical and electrical properties were measured. The feasibility of its application on energy and optoelectronic fields were also demostrated.
This study includes three parts. The first part is to investigate the novel Sn-Mn-Ni oxide as an anode material for lithium-ion batteries. According to the results of Energy Dispersive Spectrum (EDX) analysis in Scanning Electron Microscope and X-ray Diffraction, Sn-Mn-Ni oxide shows a single phase at a molar ratio of the SnO2: MnO2: NiO equal to 1: 2: 1, after composition and process optimization. This Sn-Mn-Ni oxide can be utilized for lithium battery applications as an anode material, showing a high reversible capacity of 1146 mAh/g and a capacity retention of 98% at a current density of 100 mA/g after 270 cycles of operation. It vertified that Sn-Mn-Ni oxide could be used as a potential anode material for lithium-ion batteries (LIBs).
For the second part, the Sn-Mn-Ni oxide for photo-sensors application was investigated by adjusting the composition ratio of green pellet and the post-annealing conditions of thin films. The X-ray energy dispersive spectrometer, EDX, UV-Vis, and Hall-effect measurement were used to characterize thin film properties, such as crystal structure, composition, absorption, carrier concentration, mobility and resistivity. Under the blue light (460 nm) irradiation, the photo-sensor device shows a rise time (tr) of 41.2 ms, fall time (tf) of 41.6 ms and a gain value of 31.1. The result also shows that this Sn-Mn-Ni oxide based photo-sensor is stable and reproducible, indicating the feasibility of its application as a photovoltaic material.
The third part explores the possibility of using Sn-Mn-Ni oxide thin films as a semiconductor layer, deposited by thermal evaporation for thin film tranistors. Results show the leakage of Sn-Mn-Ni oxide thin film needs improvement so as to provide transistor characteristics.
摘要
Abstract
誌謝
目錄
圖目錄
表目錄
第一章 緒論...............................1
第二章 文獻回顧及原理簡介.......3
第三章 實驗流程與儀器介紹......11
第四章 實驗結果與討論............49
第五章 結論...........................100
第六章 未來展望....................103
本研究產出之論文發表...............106
參考文獻....................................106
1. Kim, H., et al., A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew Chem Int Ed Engl, 2010. 49(12): pp. 2146-2149.
2. Ji, J., et al., Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries. Adv Mater, 2013. 25(33): pp. 4673-4677.
3. Ma, D., Z. Cao, and A. Hu, Si-based anode materials for Li-ion batteries: A Mini Review. Nano-Micro Letters, 2014. 6(4): pp. 347-358.
4. Nakayama, K., K. Tanabe, and H.A. Atwater, Plasmonic Nanoparticle enhanced light absorption in GaAs solar cells. Applied Physics Letters, 2008. 93(12): 121904-pp.1-3
5. Jackson, P., et al., New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications, 2011. 19(7): pp. 894-897.
6. Liang, C., et al., Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2013. 575: pp. 246-256.
7. Lang, X., et al., Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol, 2011. 6(4): pp. 232-236.
8. Fortunato, E., et al., Thin-film transistors based on p-type Cu2O thin films produced at room temperature. Applied Physics Letters, 2010. 96(19): pp. 1-3.
9. Minami, T., Transparent and conductive multicomponent oxide films prepared by magnetron sputtering. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1999. 17(4): pp. 1765-1772.
10. Oshima, T., T. Okuno, and S. Fujita, UV-B sensor based on a SnO2 thin film. Japanese Journal of Applied Physics, 2009. 48(12): pp. 1-3
11. Wang, X., et al., Nanostructured NiO electrode for high rate Li-ion batteries. Journal of Materials Chemistry, 2011. 21(11): pp. 3571-3573
12. Fu, Y., et al., Self-supporting Co3O4 with lemongrass-like morphology as a high-performance anode material for lithium ion batteries. Journal of Materials Chemistry, 2012. 22(34): pp. 17429-17431
13. Huang, K., et al., Ultraviolet photoconductance of a single hexagonal WO3 nanowire. Nano Research, 2010. 3(4): pp. 281-287.
14. By Edson R. Leite, I.T.W., Elson Longo, and Jose A. Varela, A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications. Adv. Mater, 2000. 12: pp. 965-968.
15. Wijesundera, R.P., Fabrication of the CuO/Cu2O heterojunction using an electrodeposition technique for solar cell applications. Semiconductor Science and Technology, 2010. 25(4): pp. 1-5
16. Park, C.M., et al., Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev, 2010. 39(8): pp. 3115-3141.
17. Reddy, M.V., G.V. Subba Rao, and B.V. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev, 2013. 113(7): pp. 5364-5457.
18. Xu, X., et al., Hierarchical NiCoO2 nanosheets supported on amorphous carbon nanotubes for high-capacity lithium-ion batteries with a long cycle life. J. Mater. Chem. A, 2014. 2(32): pp. 13069-13074.
19. Xing, Z., et al., One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries. Nano Research, 2012. 5(7): pp. 477-485.
20. Zhang, G., et al., Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv Mater, 2012. 24(34): pp. 4609-4613.
21. Hur, S.-G., et al., Characterization of photoconductive CdS thin films prepared on glass substrates for photoconductive-sensor applications. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2008. 26(4): pp. 1334-1337
22. J A Garrido, E.M., I Izpura and E Mu˜noz, Photoconductive gain modelling of GaN photodetectors. Semicond. Sci. Technol., 1998. 13: pp. 563–568.
23. Kenji Nomura, H.O., Akihiro Takagi, Toshio Kamiya,Masahiro Hirano & Hideo Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. NATURE, 2004. 432: pp. 488-492.
24. Bube, R.H., Photoconductivity of Solids. Wiley,New York, 1960: pp. 461-464.
25. Yasutaka Takahashi, M.K., Akiko Kondoh, Hideki Minoura and Yutaka Ohya, Photoconductivity of ultrathin zinc oxide films. Jpn. J. Appl. Phys., 1994. 33: pp. 6611-6615.
26. C.H. Huang, G.Z., Z.Q. Chen, X.J. Huang, H.Y. Shen, Calculation of the absorption coe%cients of optical materials by measuring the transmissivities and refractive indices. Optics & Laser Technology, 2001. 34: pp. 209-211.
27. Huang, C., et al., Calculation of the absorption coefficients of optical materials by measuring the transmissivities and refractive indices. Optics & Laser Technology, 2002. 34(3): pp. 209-211.
28. B.V. Ratnakumar, M.C.S., S. Surampudi, Effects of SEI on the thickness of lithium intercalation. Journal of Power Sources, 2001. 97-98: pp. 137-139.
29. Han, S., et al., Simple Synthesis of Hollow Tin Dioxide Microspheres and their application to Lithium-ion battery anodes. Advanced Functional Materials, 2005. 15(11): pp. 1845-1850.
30. Wu, M.-S. and P.-C.J. Chiang, Electrochemically deposited nanowires of manganese oxide as an anode material for lithium-ion batteries. Electrochemistry Communications, 2006. 8(3): pp. 383-388.
31. Li, X., A. Dhanabalan, and C. Wang, Enhanced electrochemical performance of porous NiO–Ni nanocomposite anode for lithium ion batteries. Journal of Power Sources, 2011. 196(22): pp. 9625-9630.
32. Jiang, Y., et al., Amorphous Fe2O3 as a high-capacity, high-rate and long-life anode material for lithium ion batteries. Nano Energy, 2014. 4: pp. 23-30.
33. Yi, R., et al., Amorphous Zn2GeO4 nanoparticles as anodes with high reversible capacity and long cycling life for Li-ion batteries. Nano Energy, 2013. 2(4): pp. 498-504.
34. Hessam Ghassemi, M.A., Ning Chen, Patricia A. Heiden, and Reza S. Yassar, In-situ electrochemical lithiation/delithiation observation of individual amorphous Si nanorods. ACSNANO, 2011. 5: pp. 7805-7811.
35. Hu, L., et al., Facile synthesis of uniform mesoporous ZnCo2O4 microspheres as a high-performance anode material for Li-ion batteries. Journal of Materials Chemistry A, 2013. 1(18): pp. 5596-5602
36. Huang, B., et al., Novel carbon-encapsulated porous SnO2 anode for lithium-ion batteries with much improved cyclic stability. Small, 2016. 12(14): pp. 1945-1955.
37. Wu, H.B., et al., Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale, 2012. 4(8): pp. 2526-2542.
38. Zhang, L., H.B. Wu, and X.W.D. Lou, Iron oxide based advanced anode materials for Lithium ion batteries. Advanced Energy Materials, 2014. 4(4): 1300958-pp.1-11
39. Basak, D., et al., Photoconductive UV detectors on sol–gel synthesized ZnO films. Journal of Crystal Growth, 2003. 256(1-2): pp. 73-77.
40. Tian, W., H. Lu, and L. Li, Nanoscale ultraviolet photodetectors based on onedimensional metal oxide nanostructures. Nano Research, 2015. 8(2): pp. 382-405.
41. Lan, K.-W., et al., Cobalt Tungsten Oxide Thin Films Prepared by RF-Sputter for Photosensor. Advanced Materials Interfaces, 2017. 4(11): pp. 1-7
42. Hsu, Y.M., et al., Non-stoichiometric W18O49-xSx nanowires for wide spectrum photosensors with high internal gain. Nanoscale, 2015. 7(3): pp. 901-907.
43. Cheng, W. and M. Niederberger, Evaporation induced self- assembly of ultrathin tungsten oxide nanowires over a large scale for ultraviolet photodetector. Langmuir, 2016. 32(10): pp. 2474-2481.
44. Kong, X., et al., Metal-semiconductor-metal TiO2 ultraviolet detectors with Ni electrodes. Applied Physics Letters, 2009. 94(12).
45. Han, S., et al., Photoconductive gain in solar-blind ultraviolet photodetector based on Mg0.52Zn0.48O thin film. Applied Physics Letters, 2011. 99(24): pp. 1-3
46. Teng, F., et al., A surface oxide thin layer of copper nanowires enhanced the UV selective response of a ZnO film photodetector. Journal of Materials Chemistry C, 2016. 4(36): pp. 8416-8421.
47. Li, G., et al., Nitrogen-doped amorphous InZnSnO Thin Film transistors with a tandem structure for high mobility and reliable operations. IEEE Electron Device Letters, 2016. 37(5): pp. 607-610.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *