|
1. Kim, H., et al., A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew Chem Int Ed Engl, 2010. 49(12): pp. 2146-2149. 2. Ji, J., et al., Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries. Adv Mater, 2013. 25(33): pp. 4673-4677. 3. Ma, D., Z. Cao, and A. Hu, Si-based anode materials for Li-ion batteries: A Mini Review. Nano-Micro Letters, 2014. 6(4): pp. 347-358. 4. Nakayama, K., K. Tanabe, and H.A. Atwater, Plasmonic Nanoparticle enhanced light absorption in GaAs solar cells. Applied Physics Letters, 2008. 93(12): 121904-pp.1-3 5. Jackson, P., et al., New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications, 2011. 19(7): pp. 894-897. 6. Liang, C., et al., Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2013. 575: pp. 246-256. 7. Lang, X., et al., Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol, 2011. 6(4): pp. 232-236. 8. Fortunato, E., et al., Thin-film transistors based on p-type Cu2O thin films produced at room temperature. Applied Physics Letters, 2010. 96(19): pp. 1-3. 9. Minami, T., Transparent and conductive multicomponent oxide films prepared by magnetron sputtering. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1999. 17(4): pp. 1765-1772. 10. Oshima, T., T. Okuno, and S. Fujita, UV-B sensor based on a SnO2 thin film. Japanese Journal of Applied Physics, 2009. 48(12): pp. 1-3 11. Wang, X., et al., Nanostructured NiO electrode for high rate Li-ion batteries. Journal of Materials Chemistry, 2011. 21(11): pp. 3571-3573 12. Fu, Y., et al., Self-supporting Co3O4 with lemongrass-like morphology as a high-performance anode material for lithium ion batteries. Journal of Materials Chemistry, 2012. 22(34): pp. 17429-17431 13. Huang, K., et al., Ultraviolet photoconductance of a single hexagonal WO3 nanowire. Nano Research, 2010. 3(4): pp. 281-287. 14. By Edson R. Leite, I.T.W., Elson Longo, and Jose A. Varela, A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications. Adv. Mater, 2000. 12: pp. 965-968. 15. Wijesundera, R.P., Fabrication of the CuO/Cu2O heterojunction using an electrodeposition technique for solar cell applications. Semiconductor Science and Technology, 2010. 25(4): pp. 1-5 16. Park, C.M., et al., Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev, 2010. 39(8): pp. 3115-3141. 17. Reddy, M.V., G.V. Subba Rao, and B.V. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev, 2013. 113(7): pp. 5364-5457. 18. Xu, X., et al., Hierarchical NiCoO2 nanosheets supported on amorphous carbon nanotubes for high-capacity lithium-ion batteries with a long cycle life. J. Mater. Chem. A, 2014. 2(32): pp. 13069-13074. 19. Xing, Z., et al., One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries. Nano Research, 2012. 5(7): pp. 477-485. 20. Zhang, G., et al., Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv Mater, 2012. 24(34): pp. 4609-4613. 21. Hur, S.-G., et al., Characterization of photoconductive CdS thin films prepared on glass substrates for photoconductive-sensor applications. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2008. 26(4): pp. 1334-1337 22. J A Garrido, E.M., I Izpura and E Mu˜noz, Photoconductive gain modelling of GaN photodetectors. Semicond. Sci. Technol., 1998. 13: pp. 563–568. 23. Kenji Nomura, H.O., Akihiro Takagi, Toshio Kamiya,Masahiro Hirano & Hideo Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. NATURE, 2004. 432: pp. 488-492. 24. Bube, R.H., Photoconductivity of Solids. Wiley,New York, 1960: pp. 461-464. 25. Yasutaka Takahashi, M.K., Akiko Kondoh, Hideki Minoura and Yutaka Ohya, Photoconductivity of ultrathin zinc oxide films. Jpn. J. Appl. Phys., 1994. 33: pp. 6611-6615. 26. C.H. Huang, G.Z., Z.Q. Chen, X.J. Huang, H.Y. Shen, Calculation of the absorption coe%cients of optical materials by measuring the transmissivities and refractive indices. Optics & Laser Technology, 2001. 34: pp. 209-211. 27. Huang, C., et al., Calculation of the absorption coefficients of optical materials by measuring the transmissivities and refractive indices. Optics & Laser Technology, 2002. 34(3): pp. 209-211. 28. B.V. Ratnakumar, M.C.S., S. Surampudi, Effects of SEI on the thickness of lithium intercalation. Journal of Power Sources, 2001. 97-98: pp. 137-139. 29. Han, S., et al., Simple Synthesis of Hollow Tin Dioxide Microspheres and their application to Lithium-ion battery anodes. Advanced Functional Materials, 2005. 15(11): pp. 1845-1850. 30. Wu, M.-S. and P.-C.J. Chiang, Electrochemically deposited nanowires of manganese oxide as an anode material for lithium-ion batteries. Electrochemistry Communications, 2006. 8(3): pp. 383-388. 31. Li, X., A. Dhanabalan, and C. Wang, Enhanced electrochemical performance of porous NiO–Ni nanocomposite anode for lithium ion batteries. Journal of Power Sources, 2011. 196(22): pp. 9625-9630. 32. Jiang, Y., et al., Amorphous Fe2O3 as a high-capacity, high-rate and long-life anode material for lithium ion batteries. Nano Energy, 2014. 4: pp. 23-30. 33. Yi, R., et al., Amorphous Zn2GeO4 nanoparticles as anodes with high reversible capacity and long cycling life for Li-ion batteries. Nano Energy, 2013. 2(4): pp. 498-504. 34. Hessam Ghassemi, M.A., Ning Chen, Patricia A. Heiden, and Reza S. Yassar, In-situ electrochemical lithiation/delithiation observation of individual amorphous Si nanorods. ACSNANO, 2011. 5: pp. 7805-7811. 35. Hu, L., et al., Facile synthesis of uniform mesoporous ZnCo2O4 microspheres as a high-performance anode material for Li-ion batteries. Journal of Materials Chemistry A, 2013. 1(18): pp. 5596-5602 36. Huang, B., et al., Novel carbon-encapsulated porous SnO2 anode for lithium-ion batteries with much improved cyclic stability. Small, 2016. 12(14): pp. 1945-1955. 37. Wu, H.B., et al., Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale, 2012. 4(8): pp. 2526-2542. 38. Zhang, L., H.B. Wu, and X.W.D. Lou, Iron oxide based advanced anode materials for Lithium ion batteries. Advanced Energy Materials, 2014. 4(4): 1300958-pp.1-11 39. Basak, D., et al., Photoconductive UV detectors on sol–gel synthesized ZnO films. Journal of Crystal Growth, 2003. 256(1-2): pp. 73-77. 40. Tian, W., H. Lu, and L. Li, Nanoscale ultraviolet photodetectors based on onedimensional metal oxide nanostructures. Nano Research, 2015. 8(2): pp. 382-405. 41. Lan, K.-W., et al., Cobalt Tungsten Oxide Thin Films Prepared by RF-Sputter for Photosensor. Advanced Materials Interfaces, 2017. 4(11): pp. 1-7 42. Hsu, Y.M., et al., Non-stoichiometric W18O49-xSx nanowires for wide spectrum photosensors with high internal gain. Nanoscale, 2015. 7(3): pp. 901-907. 43. Cheng, W. and M. Niederberger, Evaporation induced self- assembly of ultrathin tungsten oxide nanowires over a large scale for ultraviolet photodetector. Langmuir, 2016. 32(10): pp. 2474-2481. 44. Kong, X., et al., Metal-semiconductor-metal TiO2 ultraviolet detectors with Ni electrodes. Applied Physics Letters, 2009. 94(12). 45. Han, S., et al., Photoconductive gain in solar-blind ultraviolet photodetector based on Mg0.52Zn0.48O thin film. Applied Physics Letters, 2011. 99(24): pp. 1-3 46. Teng, F., et al., A surface oxide thin layer of copper nanowires enhanced the UV selective response of a ZnO film photodetector. Journal of Materials Chemistry C, 2016. 4(36): pp. 8416-8421. 47. Li, G., et al., Nitrogen-doped amorphous InZnSnO Thin Film transistors with a tandem structure for high mobility and reliable operations. IEEE Electron Device Letters, 2016. 37(5): pp. 607-610.
|