帳號:guest(3.145.7.194)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):彭紹瑋
作者(外文):Peng, Shao-Wei
論文名稱(中文):磷酸鋰鐵錳基粉末研究
論文名稱(外文):The Study of Lithium Iron Manganese Phosphate Based Powders
指導教授(中文):周麗新
指導教授(外文):Chou, Li-Hsin
口試委員(中文):周元昉
蕭肅競
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031586
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:133
中文關鍵詞:鋰離子二次電池陰極材料磷酸鋰鐵錳
外文關鍵詞:Lithium ion secondary batteryCathode materialLithium manganese iron phosphate
相關次數:
  • 推薦推薦:0
  • 點閱點閱:595
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
具有橄欖石結構的磷酸鋰過渡金屬鹽,因成本低廉、環保、無毒、高容量、電池壽命長與高溫穩定等優點成為熱門的鋰離子電池正極材料,本研究希望藉由半固態化學法搭配不同碳源製備出鋰離子傳輸路徑短之扁平片狀磷酸鋰過渡金屬鹽粉末並針對(1)磷酸鋰錳製備、(2)磷酸鋰鐵錳製備及(3)第三元素摻雜前驅物進行研究。
合成之磷酸亞錳前驅物以XRD及TGA分析得知為Mn3(PO4)2.3H2O與Mn3(PO4)2.7H2O兩相組成的混合物,將其與磷酸鋰、碳源混合球磨後進行熱處理,製備出之LiMnPO4/C以SEM觀察呈現奈米片狀,以之製備之半電池測試結果不佳,在0.1 C放電下僅有10~30 mAh/g。
接著結合”磷酸鋰錳”(4.1 V)放電電壓,與”磷酸鋰鐵”較高導電性的特點製作”磷酸鋰鐵錳”粉末。我們以兩種方法製備扁平片狀磷酸鋰鐵錳粉末:(1)以鐵原子取代錳位置合成磷酸亞鐵錳前驅物,(2)混合磷酸亞錳和磷酸亞鐵二前驅物,前述(1)及(2)皆再搭配磷酸鋰及不同碳源進行球磨再熱處理即完成。二種粉末製備之半電池以(2)搭配聚苯乙烯包碳之結果較佳,在0.1C下可達150 mAh/g。
合成磷酸亞鐵錳基前驅物時摻雜第三金屬元素,摻雜種類及摻雜量會影響粉末形貌及結晶性。
Lithium transition-metal phosphate with the olivine structure has been widely studied as a lithium-ion battery cathode material for its low cost, non-toxicity, high capacity, long cycle life, thermal stability and environment friendly character. In this study, we wished to prepare lithium transition-metal phosphate powders with flat-sheet morphology, which has shorter lithium transportation path, by semi-solid-state method with different carbon sources. Focusing was on (1) lithium manganese phosphate, (2) lithium iron manganese phosphate and (3) the third element doped precursor.

The synthesized phosphate manganite precursor was a mixture composing of Mn3(PO4)2.3H2O and Mn3(PO4)2.7H2O determined by XRD and TGA analysis. It was ball-milled with lithium phosphate and carbon source and then annealed to prepare LiMnPO4/C. The morphology of prepared LiMnPO4/C powders was flat-sheet observed by scanning electron microscopy. The performance of it produced half cell were not good. A capacity of 10~30 mAh/g only was obtained at 0.1C rate.

Combining the advantages of higher redox potential (4.1 V) of lithium manganese phosphate and better electronic conductivity of lithium iron phosphate, we prepared lithium manganese iron phosphate. Two methods were used to prepare flat-sheet lithium manganese iron phosphate powders: (1) synthesizing the precursors via Mn site substitution by iron atom, and (2) mixing manganese phosphate and iron phosphate precursors together, mixing (1) or (2) with lithium phosphate and carbon source by ball-milling and followed with annealing. The half cell produced with (2) and polystyrene carbon source performed better. A capacity of 150 mAh/g was obtained at 0.1C rate.

We found that dopping metal species (M) and the doping amount will change the morphology and crystallinity of the synthesized manganese(Ⅱ) iron(Ⅱ) M phosphate precursors.

摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 X
第 1 章 緒論 1
1.1前言 1
1.2鋰離子電池簡介 2
第 2 章 文獻回顧 5
2.1 鋰離子電池正極材料 5
2.1.1層狀正極材料 5
2.1.2尖晶石正極材料 7
2.1.3磷酸鋰過渡金屬鹽類材料 8
2.2磷酸鋰鐵 8
2.2.1簡介與結構 8
2.2.2鋰離子傳導機制 9
2.2.3充放電機制 10
2.2.4製備方式 12
2.3磷酸鋰錳 18
2.3.1材料介紹 18
2.3.2製備方式 19
2.4磷酸鋰過渡金屬鹽類材料改善方式 28
2.4.1提高導電性 28
2.4.2提高離子傳導率 36
2.5磷酸鋰鐵錳 38
2.6研究動機及目的 46
第 3 章 實驗方法 47
3.1實驗流程 47
3.2實驗藥品、耗材及儀器 48
3.2.1藥品及耗材清單 48
3.2.2實驗儀器清單 49
3.3實驗步驟 50
3.3.1清洗儀器 50
3.3.2純錳前驅物合成 50
3.3.3取代製程鐵錳前驅物合成 50
3.3.6取代製程-磷酸鋰鐵錳燒結 51
3.3.7混合製程-磷酸鋰鐵錳燒結 51
3.4粉末分析檢測 51
3.4.1 X-ray 粉末繞射分析儀(XRD) 51
3.4.2場發射掃描式電子顯微鏡(FESEM) 52
3.4.3穿透式電子顯微鏡(TEM) 52
3.4.4感應耦合電漿放射光譜儀(ICP-OES) 53
3.4.5熱重分析儀(TGA) 53
3.4.6拉曼光譜儀(Raman) 53
3.5半電池製作 54
3.5.1陰極極片製作 54
3.5.2電池壓製 54
3.6電池電性測量 55
第 4 章 結果與討論 56
4.1磷酸鋰錳製備 57
4.1.1 Mn3 (PO4)2水合物前驅物分析 57
4.1.2 LiMnPO4/C 粉末分析及電池電性測量 62
4.2磷酸鋰鐵錳 79
4.2.1 LiMn0.6Fe0.4PO4/C取代製程製備 79
4.2.2 LiFe0.4Mn0.6PO4/C混合製程燒結製備 90
4.3 第三元素磷酸亞錳鐵基前驅物摻雜 114
4.3.1不同元素摻雜 114
4.3.2鎳元素摻雜量探討 121
第 5 章 結論 128
參考資料 130
[1]M. M. Thackeray, C.Wolverton and E.D. Isaacs , Energ. Environ. Sci., vol. 5, no. 7, p. 7854, 2012.
[2]C. Sun, S. Rajasekhara, J. B. Goodenough and F. Zhou, J. Am. Chem. Soc., vol. 133, pp. 2132-2135, 2011.
[3]J.Hajek.French Patent 10, 1949.
[4]J. M. Tarascon and M. Armand, Nature, vol. 414, pp. 359-367, 2001.
[5]S. K. Martha, B. Markovsky, J. Grinblat, Y. Gofer, O. Haik, E. Zinigrad, D. Aurbach, T. Drezen, D. Wang, G. Deghenghi and I. Exnar, J. Electrochem. Soc 156, p. A541–A552, 2009.
[6]S.Y. Chung, J. T. Bloking and Y. M. Chiang, Nat. Mater., vol. 1, pp. 123-128, 2002.
[7]J. B. Goodenough, K. Mizushima and T. Takeda, Japanese Journal of Applied Physics, vol. 19, pp. 305-313, 1980.
[8]J.Cho, Y.J. Kim, T.J.Kim and B.Park, Angew.Chem.Int.Ed., vol. 40, pp. 3367-3369, 2001.
[9]C.M.Julien, A.Mauger, K.Zaghib and H.Groult, Inorganics, vol. 2, pp. 132-154, 2014.
[10]X. Li, J. Liu, X. Meng, Y. Tang, M. N. Banis, J. Yang, Y. Hu, R. Li, M. Cai and X. Sun, J. Power Sources, vol. 247, p. 57–69, 2013.
[11]X. Li, J. Liu, M.N. Banis, A. Lushington, R. Li, M. Caib and X. Sun, Energy Environ. Sci., vol. 7, p. 768–778, 2014.
[12]J.Schoonman, H.L. Tuller and E.M.Kelder, J.Power Sources, vol. 81, pp. 44-48, 1999.
[13]T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakashi and H. Komori, Electrochim. Acta., vol. 38, p. 1159–1167, 1993.
[14]J. C. Hunter, J. Solid. State. Chem., vol. 39, pp. 142-147, 1981.
[15]T. Ohzuku, M. Kitagawa and T. Hirai, J. Electrochem. Soc., vol. 137, p. 769–775, 1990.
[16]M.M. Thackeray, W. I. F. David, P.G. Bruce and J. B. Goodenough, Mater. Res. Bull., vol. 18, p. 461–472, 1983.
[17]M. M. Thackeray, P. J. Johnson, L. A. de Picciotto, P. G. Bruce and J. B. Goodenough, Mater. Res. Bull., vol. 19, p. 179–187, 1984.
[18]M. J. Thackeray, Electrochem. Soc., vol. 142, pp. 2558-2563, 1995.
[19]R.J. Gummow, A. de Kock and H.M. Thackeray, Solid State Ionics, vol. 69, pp. 59-67, 1994.
[20]S.B. Park, S.M. Lee, H.C. Shin, W.I. Cho and H. Jang, J. Power Sources, vol. 166, pp. 219-255, 2007.
[21]J. B. Goodenough, Solid State Ion., vol. 69, p. 184–198, 1994.
[22]T. D. Sparks, A. Gurlo and D. R. Clarke, J. Mater. Chem., vol. 22, pp. 4631-4636, 2012.
[23]A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, J. Electrochem. Soc., vol. 144, pp. 1188-1194, 1997.
[24]J. Wang and X. Sun, Energy Environ. Sci., no. 5, pp. 5163-5185, 2012.
[25]M. S. Islam, D. J. Driscoll, C. A. J. Fisher and P. R. Slater, Chem. Mater., vol. 17, p. 5085–5092, 2005.
[26]B. L. Ellis, K. T. Lee and L. F. Nazar, Chem. Mater., vol. 22, pp. 691-714, 2010.
[27]A. Michel, J. B. Goodenough, A. K. Padhi, K. S. Nanjundaswamy and C. Masquelier.US Patent 6514640, 2003.
[28]黃可龍, 王兆翔 and 劉素琴, 鋰離子電池原理與技術, 2010.
[29]N. J. Yun, H. W. Ha, K. H. Jeong, H. Y. Park and K. Kim, J. Power Sources, vol. 160, no. 2, pp. 1361-1368, 2006.
[30]M. Koltypin, D. Aurbach, L. Nazar and B. Ellis, J. Power Sources, vol. 174, no. 2, pp. 1241-1250, 2007.
[31]G. T. K. Fey and T. L. Lu, J. Power Sources, vol. 178, pp. 807-814, 2008.
[32]O. Toprakci, H. A. K. Toprakci, L. W. Ji and X. W. Zhang, Kona. Powder Part. J., no. 28, pp. 50-73, 2010.
[33]C. J. Brinker and G. W. Scherer, Sol-Gel Science-The physics and hemistry of sol-gel processing, 1990.
[34]D. Arumugam, G. P. Kalaignan and P. Manisankar, J. Solid State Electr., vol. 13, pp. 301-307, 2009.
[35]D.Jugovic and D.Uskokovic, J. Power Sources, vol. 190, pp. 538-544, 2009.
[36]M. Gao, N. Liu, Z. Li, W. Wang, C. Li, H. Zhang, Y. Chena, Z. Yu and Y. Huang, Solid State Ionics, vol. 258, pp. 8-12, 2014.
[37]S. Yang, M. Hu, L. Xi, R. Ma, Y. Dong and C. Y. Chung, ACS Appl. Mater. Inter., vol. 5, p. 8961−8967, 2013.
[38]Y. Dai, L. Ma, H. Zhang, Y. Chen, Y. Chen and W. Wang, Int. J. Electrochem. Sci., vol. 11, pp. 1730 - 1737, 2016.
[39]Y. Liu and C. Cao, Electrochimica Acta, vol. 55, p. 4694–4699, 2010.
[40]C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J. B. Leriche, M. Morcrette, J. M. Tarascon and C. Masquelier, J. Electrochem Soc., no. 152, pp. A913-A921, 2005.
[41]A. Yamada, Y. Kudo and K. Y. Liu, J. Electrochem. Soc., no. 148, p. A747, 2001.
[42]S. M. Oh, S. W. Oh, C. S. Yoon, B. Scrosati, K. Amine and Y. K. Sun, Adv. Funct. Mater., vol. 20, p. 3260, 2010.
[43]L. Wang, W. Sun, X. He, J. Li and C. Jiang, Int. J. Electrochem. Sci., vol. 6, pp. 2022 - 2030, 2011.
[44]K. Wu, G. Hu, Z. Peng, Z. Zhang, Y. Cao and K. Du, RSC Adv., vol. 5, p. 95020–95027, 2015.
[45]N. H. Kwon, T. Drezen, I. Exnar, I. Teerlinck, M. Isono and M. Graetzel, Electrochem. Solid St., no. 9, pp. A277-A280, 2006.
[46]L. Wu, S. Zhong, F. Lv and J. Liu, Mater. Lett., vol. 110, pp. 38-41, 2013.
[47]X. L. Pan, C. Y. Xu, D. Hong, H. T. Fang and L. Zhen, Electrochim. Acta, vol. 87, p. 303– 308, 2013.
[48]Y. Hong, Z. Tang, W. Quan, S. Wang and Z. Zhang, Ceram. Int., vol. 42, p. 8769–8778, 2016.
[49]D. Wang, H. Buqa, M. Crouzet, G. Deghenghi, T. Drezen, I. Exnar, N. H. Kwon, J. H. Miners, L. Poletto and M. Grätzel, J. Power Sources, vol. 189, p. 624–628, 2009.
[50]R. El khalfaouy, H. El knidri, R. Belaabed, A. Addaou, A. Laajeb and A. Lahsini, J. Mater. Environ. Sci., vol. 7, pp. 40-49, 2016.
[51]N. Ravet, J.B. Goodenough, S. Besner, M. Simoneau, P. Hovington and M. Armand, in 196th ECS Meeting, Honolulu, 1999.
[52]Z. Chen and J. R. Dahn, J. Electrochem. Soc., vol. 149, pp. A1184-A1189, 2002.
[53]R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik and J. Jamnik, J. Electrochem. Soc., vol. 152, pp. A607-A610, 2005.
[54]H. C. Shin, W. I. Cho and H. Jang, Electrochim. Acta., vol. 52, p. 1472–1476, 2006.
[55]X. Zhou, F. Wang, Y. Zhu and Z. Liu, J. Mater. Chem., vol. 21, p. 3353–3358, 2011.
[56]S. L. Yang, X. F. Zhou, J. G. Zhang and Z. P. Liu, J. Mater. Chem., vol. 20, pp. 8086-8091, 2010.
[57]X. F. Zhou and Z. P. Liu, Chem. Commun., vol. 46, pp. 2611-2613, 2010.
[58]M. Gaberscek, R. Dominko and J. Jamnik, Electrochem. Commun., vol. 9, p. 2778–2783, 2007.
[59]C. Delacourt, P. Poizot, S. Levasseur and C. Masquelier, Electrochem. Soild. St., vol. 9, pp. A352-A355, 2006.
[60]D.-H. Kim and J. Kim, Electrochem. Solid. St., vol. 9, p. A439, 2006.
[61]C.R. Sides, F. Croce, V.Y. Young, C.R. Martin and B. Scrosati, Electrochem. Solid. St., vol. 8, p. A484, 2005.
[62]H.C. Shin, W.I. Cho and H. Jang, Electrochim. Acta., vol. 52, p. 1472, 2006.
[63]D.Y.W. Yu, C. Fietzek, W. Weydanz, K. Donoue, T. Inoue, H. Kurokawa and S. Fujitania, J. Electrochem. Soc., vol. 154, p. A253, 2007.
[64]D. Wang, H. Li, Z. Wang, X. Wu, Y. Sun, Xuejie Huang and Liquan Chen, J. Solid State Chem., vol. 177, p. 4582, 2004.
[65]R. Dominko, M. Gaberscek, J. Drofenik, M. Bele, S. Pejovnik and J. Jamnik, J. Power Sources, p. 770, 2003.
[66]J.K. Kim, G. Cheruvally, J.W. Choi, J.-U. Kim, J.-H. Ahn, G.-B. Cho, K.-W. Kim and H.-J. Ahn, J. Power Sources, vol. 166, p. 218, 2007.
[67]H. Liu, Q. Cao, L.J. Fu, C. Li, Y.P. Wu and H.Q. Wu, Electrochem. Commun., vol. 8, p. 1553, 2006.
[68]A. Yamada and S. C. Chung, J. Electrochem. Soc., vol. 148, pp. A960-A967, 2001.
[69]C.A. Marianetti, D. Morgan and G. Ceder, Phys. Rev. B, vol. 63, p. 224304, 2001.
[70]Z.X. Nie, C.Y. Ouyang, J.Z. Chen, Z.Y. Zhong, Y.L. Du, D.S. Liu, S.Q. Shi and M.S. Lei, Solid State Commun., vol. 150, pp. 40-44, 2010.
[71]S. K. Martha, J. Grinblat, O. Haik, E. Zinigrad, T. Drezen, J. H. Miners, I. Exnar, A. Kay, B. Markovsky and D. Aurbach, Angew. Chem. Int. Ed., vol. 48, p. 8559 –8563, 2009.
[72]Z. Yang, H. Yu, C. Wu, G. Cao, J. Xie and X. Zhao, J.Mater. Sci. Technol., vol. 28, p. 823–827, 2012.
[73]J. Liu, W. Liao and A. Yu, J. Alloy. Compd., vol. 587, pp. 133-137, 2014.
[74]C.-C. Yang and W.-H. Chen, Mater. Chem. Phys., vol. 173, pp. 482-490, 2016.
[75]A. C. Ferrari and J. Robertson, Phys. Rev. B, vol. 61, pp. 14095-14107, 2000.
[76]W. Hummers and R. Offeman, J. Am. Chem. Soc., vol. 80, p. 1339, 1958.
[77]H. Tang, Y. Si, K. Chang, X. Fu, B. li, E. Shangguan, Z. Chang, X. Z. Yuan and H. Wang, J. Power. Sources., vol. 295, pp. 131-138, 2015.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *