帳號:guest(3.15.4.164)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪綸徽
作者(外文):Hung, Lun Hui
論文名稱(中文):鑽石薄膜在手機貼膜之光學性質與機械性質探討
論文名稱(外文):Investigation on the Optical and Mechanical Properties of Diamond Films for Screen Coating in Cellular Phone
指導教授(中文):戴念華
指導教授(外文):Tai, Nyan-Hwa
口試委員(中文):李紫原
林諭男
口試委員(外文):Lee, Chi-Young
Lin, I-Nan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031585
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:85
中文關鍵詞:穿透率鑽石薄膜磨耗測試
外文關鍵詞:transmittancediamond filmwear test
相關次數:
  • 推薦推薦:0
  • 點閱點閱:272
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
鑽石薄膜具有優異的機械性質,而且可以透過調整成長參數提升薄膜透光度。本研究使用市售的康寧玻璃為基板,利用超音波聲震法在基板上孕核,之後再以微波電漿輔助化學氣相沉積法(MPECVD)沉積鑽石薄膜。研究中將探討成長時間及成長氣氛對於鑽石薄膜微結構及光學性質、機械性質之影響。
經實驗後發現30 %氫氣成長之奈米鑽石薄膜抗磨耗表現最佳,且確實大幅提升玻璃基材抗磨耗程度,且發現其薄膜脫落狀況為整片脫落,此因碳/碳間的鍵結力遠超過鑽石薄膜和基板間的附著力。接著分析鑽石薄膜透光度,在固定厚度的情形下,光穿透率最高者是以30 %氫氣成分所成長的奈米鑽石薄膜,可以達到接近75%的可見光穿透率。此外,本研究亦發現以98 %氫氣成分所成長的微米鑽石薄膜穿透率遠小於奈米鑽石薄膜,推測因為微米鑽石的表面粗糙度較大,使光產生散射所致。最後本研究亦以旋轉塗佈法將聚醯亞胺(PI)塗於玻璃基板背面,其可以進一步大幅降低光波長為350 nm的穿透率。綜合以上結論,將鑽石薄膜成長在玻璃基板且背面塗佈適當的材料,將可應用在高光穿透率且抗特定短波長的手機保護膜。
Diamond has attracted tremendous attention owing to its outstanding mechanical and optical properties. This work reports preparation of diamond films on commercial glass substrates to enhance their wear resistance. In order to increase nucleation sites for promoting growth of diamond films, pretreatment of the glass substrates is carried out by ultrasonication. Two types of diamond films, including microcrystalline diamond (MCD) and nanocrystalline diamond (NCD), are prepared on the pretreated glass substrates by microwave plasma-enhanced chemical vapor deposition. The study on abrasion test reveals that NCD sample grown under the hydrogen atmosphere with a concentration of 30 % (assigned as NCD30) possesses strongest wear resistance.
Ultraviolet visible (UV-Vis) spectroscopy measurement indicates the NCD30 sample with a thickness of 600 nm exhibits highest transmittance of ~75% in visible region. It is also found that transmittance of the MCD is much lower than that of NCD under the same thickness, possibly attributing to rough surfaces of MCD causing a strong light scattering.
Moreover, we find that an additional spin-coated polyimide (PI) thin film on the opposite side of the glass substrate results in significant reduction in transmittance of the sample at a wavelength of 350 nm. Our study therefore demonstrates that the NCD films not only provide extra wear resistance to glass substrate but also possess high potential for applications in anti-UV and blue light 3C screen protector when collaborate with PI coating.
摘要 I
Abstract II
致謝 III
第一章 緒論 1
第二章 文獻回顧 2
2.1 鑽石的基本性質及應用 2
2.2 鑽石膜的簡介 3
2.2.1 人工鑽石的演進 3
2.2.2 鑽石薄膜的分類 4
2.3 鑽石膜的成長機制 5
2.3.1 基板成核的前處理 5
2.3.2 基板的選擇 7
2.3.3 基板和鑽石膜的附著性 8
2.3.4 以化學氣相沉積鑽石薄膜 10
2.3.5 鑑定鑽石薄膜 12
2.4 鑽石膜的機械性質 14
2.4.1磨耗之定義與分類 14
2.4.2 磨耗機台分類 16
2.4.3 材料的硬度 17
2.5 鑽石膜的光學性質 18
2.5.1 光的介紹 18
2.5.2 光穿透率的介紹 20
2.5.3 高分子之能階躍遷 20
第三章 實驗分析及方法 28
3.1 鑽石薄膜的成長 28
3.1.1 基板的成核前處理 28
3.1.2 沉積奈米鑽石薄膜 29
3.1.3 沉積微米鑽石薄膜 30
3.2 線性磨耗機的使用 30
3.3 鉛筆硬度測試機的使用 32
3.4 桌上型旋轉塗佈機的使用 32
3.5 材料特性分析工具 33
3.5.1 微波電漿輔助化學氣相沉積系統 34
3.5.2 超音波震盪器 34
3.5.3 場發射掃描式電子顯微鏡 34
3.5.4 拉曼光譜儀 35
3.5.5 薄膜厚度輪廓測量儀 35
3.5.6 原子力顯微鏡 36
3.5.7 光學顯微鏡 36
3.5.8 可見光紫外光分光光譜儀 36
第四章 結果與討論 42
4.1 鑽石薄膜的成長與鑑定 42
4.1.1 表面形貌分析 42
4.1.2 拉曼光譜儀的分析 43
4.2 鑽石薄膜的磨耗 45
4.2.1光學顯微鏡和掃描式電子顯微鏡表面形貌分析 45
4.2.2 薄膜厚度輪廓量測儀的分析 48
4.2.3拉曼光譜儀的差別 49
4.2.4紫外光可見光分光光譜儀之磨耗試片光穿透率比較 49
4.2.5磨耗試驗前後表面粗糙度比較 50
4.2.6磨耗指數和磨耗量 50
4.3 鉛筆刮痕硬度試驗 51
4.4 鑽石薄膜對光穿透率之討論與比較 51
4.4.1 基板對穿透度的影響 52
4.4.2 奈米鑽石薄膜的透光度比較 52
4.4.3 微米鑽石薄膜的透光度比較 53
4.4.4 奈米鑽石薄膜和微米鑽石薄膜的穿透率比較 54
4.4.5 表面粗糙度對穿透率的影響討論 55
4.4.6 聚酰亞胺薄膜旋塗於玻璃基板之透光度比較 56
第五章 結論 79
參考文獻 81
1. Davis, R. F. (1993) Diamond films and coating, Noyes publ. Park Ridge.
2. Auciello, O., and Sumant, A. V. (2010) Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices, Diamond and related materials 19, 699-718.
3. Krauss, A., Auciello, O., Gruen, D., Jayatissa, A., Sumant, A., Tucek, J., Mancini, D., Moldovan, N., Erdemir, A., and Ersoy, D. (2001) Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices, Diamond and Related Materials 10, 1952-1961.
4. Shibata, T., Kitamoto, Y., Unno, K., and Makino, E. (2000) Micromachining of diamond film for MEMS applications, Journal of microelectromechanical systems 9, 47-51.
5. Skoog, S. A., Miller, P. R., Boehm, R. D., Sumant, A. V., Polsky, R., and Narayan, R. J. (2015) Nitrogen-incorporated ultrananocrystalline diamond microneedle arrays for electrochemical biosensing, Diamond and Related Materials 54, 39-46.
6. Kang, W., Davidson, J., Wong, Y., and Holmes, K. (2004) Diamond vacuum field emission devices, Diamond and related materials 13, 975-981.
7. Zeng, H., Yin, W., Catausan, G., Moldovan, N., and Carlisle, J. (2016) Reprint of “Ultrananocrystalline diamond integration with pyrolytic carbon components of mechanical heart valves”, Diamond and related materials 63, 227-231.
8. Joseph, P., Tai, N.-H., Chen, Y.-C., Cheng, H.-F., and Lin, I.-N. (2008) Transparent ultrananocrystalline diamond films on quartz substrate, Diamond and Related Materials 17, 476-480.
9. 熊礼威, 崔晓慧, 汪建华, 张莹, 易成, 吴超, 张林. (2013) 纳米金刚石薄膜的应用及其研究进展, 表面技术 42, 98-102.
10. Gruen, D. M. (1999) Nanocrystalline diamond films, Annual Review of Materials Science 29, 211-259.
11. Bridgman, P. (1955) Synthetic diamonds, Scientific American 193, 42-46.
12. Angus, J. C., Will, H. A., and Stanko, W. S. (1968) Growth of diamond seed crystals by vapor deposition, Journal of Applied Physics 39, 2915-2922.
13. Kamo, M., Sato, Y., Matsumoto, S., and Setaka, N. (1983) Diamond synthesis from gas phase in microwave plasma, Journal of Crystal Growth 62, 642-644.
14. Matsumoto, S., Sato, Y., Kamo, M., and Setaka, N. (1982) Vapor deposition of diamond particles from methane, Japanese Journal of applied physics 21, L183.
15. Gruen, D. M., Liu, S., Krauss, A. R., Luo, J., and Pan, X. (1994) Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions, Applied Physics Letters 64, 1502-1504.
16. Cleri, F., Keblinski, P., Colombo, L., Wolf, D., and Phillpot, S. (1999) On the electrical activity of sp2-bonded grain boundaries in nanocrystalline diamond, EPL (Europhysics Letters) 46, 671.
17. Brewer, M., Brown, I., Evans, P., and Hoffman, A. (1993) Diamond film growth on Ti‐implanted glassy carbon, Applied physics letters 63, 1631-1633.
18. Yugo, S., Kanai, T., Kimura, T., and Muto, T. (1991) Generation of diamond nuclei by electric field in plasma chemical vapor deposition, Applied Physics Letters 58, 1036-1038.
19. Pradhan, D., Chen, L.-J., Lee, Y.-C., Lee, C.-Y., Tai, N.-H., and Lin, I.-N. (2006) Effect of titanium metal in the prenucleation of ultrananocrystalline diamond film growth at low substrate temperature, Diamond and related materials 15, 1779-1783.
20. Liu, H., and Dandy, D. S. (1996) Diamond chemical vapor deposition: nucleation and early growth stages, Elsevier.
21. Rennick, C., Smith, A., Smith, J., Wills, J., Orr-Ewing, A., Ashfold, M., Mankelevich, Y. A., and Suetin, N. (2004) Improved characterisation of C2 and CH radical number density distributions in a DC arc jet used for diamond chemical vapour deposition, Diamond and related materials 13, 561-568.
22. Yamanouchi, K., Sakurai, N., and Satoh, T. (1989) SAW propagation characteristics and fabrication technology of piezoelectric thin film/diamond structure, In Ultrasonics Symposium, 1989. Proceedings., IEEE 1989, pp 351-354, IEEE.
23. McCauley, T. G., Gruen, D. M., and Krauss, A. R. (1998) Temperature dependence of the growth rate for nanocrystalline diamond films deposited from an Ar/CH 4 microwave plasma, Applied physics letters 73, 1646-1648.
24. Sails, S. R., Gardiner, D. J., Bowden, M., Savage, J., and Rodway, D. (1996) Monitoring the quality of diamond films using Raman spectra excited at 514.5 nm and 633 nm, Diamond and Related Materials 5, 589-591.
25. Sun, Z., Shi, J., Tay, B., and Lau, S. (2000) UV Raman characteristics of nanocrystalline diamond films with different grain size, Diamond and related materials 9, 1979-1983.
26. Ferrari, A., and Robertson, J. (2001) Origin of the 1 1 5 0 − cm-1 Raman mode in nanocrystalline diamond, Physical Review B 63, 121405.
27. Horowitz, F., Brandão, L. E., Camargo, K. C., Michels, A. F., and Balzaretti, N. M. (2013) Nano-microstructured, superhydrophobic, and infrared transparent polytetrafluoroethylene/diamond films, Journal of Nanophotonics 7, 073596-073596.
28. Rani, R., Kumar, N., and Lin, I.-N. (2016) Ultra-high wear resistance of ultra-nanocrystalline diamond film: Correlation with microstructure and morphology, In AIP Conference Proceedings, p 080085, AIP Publishing.
29. Hess, P. (2012) The mechanical properties of various chemical vapor deposition diamond structures compared to the ideal single crystal, Journal of Applied Physics 111, 3.
30. American Society for Testing and Materials. ASTM G40, Standard Terminology Relating to Wear and Erosion.
31. Burwell, J. T. (1957) Survey of possible wear mechanisms, Wear 1, 119-141.
32. Peterson, M. B., and Winer, W. O. (1980) Wear control handbook, American Society of Mechanical Engineers.
33. Wang, K., and Cheng, H. (1981) A numerical solution to the dynamic load, film thickness, and surface temperatures in spur gears, part I: analysis, Journal of Mechanical Design 103, 177-187.
34. Morgeneyer, M., Shandilya, N., Chen, Y.-M., and Le Bihan, O. (2015) Use of a modified Taber abrasion apparatus for investigating the complete stress state during abrasion and in-process wear particle aerosol generation, Chemical Engineering Research and Design 93, 251-256.
35. American Society for Testing and Materials. ASTM D 4060, Test method for abrasion resistance of organic coatings by Taber Abraser, American Society for Testing and Materials.
36. Wang, L., Huang, J., Tang, K., and Xia, Y. (2010) Nano-Crystalline diamond films for x-ray lithography mask, Lithography
37. Sharda, T., Rahaman, M., Nukaya, Y., Soga, T., Jimbo, T., and Umeno, M. (2001) Structural and optical properties of diamond and nano-diamond films grown by microwave plasma chemical vapor deposition, Diamond and Related Materials 10, 561-567.
38. Beaujuge, P. M., and Reynolds, J. R. (2010) Color control in π-conjugated organic polymers for use in electrochromic devices, Chemical reviews 110, 268-320.
39......https://upload.wikimedia.org/wikipedia/commons/f/f1/EM_spectrum.svg.
40. Mascaro, S. A., and Asada, H. H. (2004) Measurement of finger posture and three-axis fingertip touch force using fingernail sensors, IEEE Transactions on Robotics and Automation 20, 26-35.
41. Watanabe, Y., Makino, Y., Sato, K., and Maeno, T. (2012) Contact force and finger angles estimation for touch panel by detecting transmitted light on fingernail, Haptics: Perception, Devices, Mobility, and Communication, 601-612.
42. American Society for Testing and Materials (2005). ASTM D3363, Standard Test Methods for Film Hardness by Pencil Test.
43. Guillemet, T., Kusiak, A., Fan, L., Heintz, J.-M., Chandra, N., Zhou, Y., Silvain, J.-F. o., Lu, Y., and Battaglia, J.-L. (2014) Thermal Characterization of Diamond Films through Modulated Photothermal Radiometry, ACS applied materials & interfaces 6, 2095-2102.
44. Sankaran, K., Srinivasu, K., Chen, H., Dong, C., Leou, K., Lee, C., Tai, N., and Lin, I. (2013) Improvement in plasma illumination properties of ultrananocrystalline diamond films by grain boundary engineering, Journal of Applied Physics 114, 054304.
45. Kuzmany, H., Pfeiffer, R., Salk, N., and Günther, B. (2004) The mystery of the 1140 cm− 1 Raman line in nanocrystalline diamond films, Carbon 42, 911-917.
46. Ferrari, A. C., and Robertson, J. (2000) Interpretation of Raman spectra of disordered and amorphous carbon, Physical review B 61, 14095.
47. Swanepoel, R. (1983) Determination of the thickness and optical constants of amorphous silicon, Journal of Physics E: Scientific Instruments 16, 1214.
48. 毛敏耀, 亢昌军, 王添平, 解健芳, 谭淞生, 王渭源, 章熙康, 金晓峰, and 庄志诚. (1995) 金刚石薄膜的光学透射率研究, 物理学报 44, 1509-1515.
49. Wang, S., Zhang, Q., Yoon, S., Ahn, J., Wang, Q., Yang, D., Zhou, Q., and Yue, N. (2003) Optical properties of nano-crystalline diamond films deposited by MPECVD, Optical materials 24, 509-514.
50. Feoktistov, N., Golubev, V., Grudinkin, S., Perova, T., Moore, R., and Vul, A. Y. (2005) Optical properties of diamond films grown by MPCVD method with alternating nanodiamond injection, In Proc. SPIE, pp 157-164.
51. Remes, Z., Kromka, A., and Vanecek, M. (2009) Towards optical‐quality nanocrystalline diamond with reduced non‐diamond content, physica status solidi (a) 206, 2004-2008.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *