|
1. Smit, J., Magnetoresistance of ferromagnetic metals and alloys at low temperatures. Physica, 1951. 17(6): p. 612-627. 2. Kwiatkowski, W. and S. Tumanski, The permalloy magnetoresistive sensors-properties and applications. Journal of Physics E: Scientific Instruments, 1986. 19(7): p. 502. 3. Grünberg, P., et al., Layered magnetic structures: Evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Physical review letters, 1986. 57(19): p. 2442. 4. Baibich, M.N., et al., Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Physical review letters, 1988. 61(21): p. 2472. 5. Stearns, M., Y. Cheng, and C. Lee, Antiferromagnetic coupling between layers in Co/Cr multilayer. Journal of applied physics, 1990. 67(9): p. 5925-5930. 6. Egelhoff Jr, W. and M. Kief, Antiferromagnetic coupling in Fe/Cu/Fe and Co/Cu/Co multilayers on Cu (111). Physical Review B, 1992. 45(14): p. 7795. 7. Daughton, J., GMR applications. Journal of Magnetism and Magnetic Materials, 1999. 192(2): p. 334-342. 8. Wolf, S., et al., Spintronics: a spin-based electronics vision for the future. science, 2001. 294(5546): p. 1488-1495. 9. Butler, W., et al., Spin-dependent scattering and giant magnetoresistance. Journal of magnetism and magnetic materials, 1995. 151(3): p. 354-362. 10. Dieny, B., et al., Giant magnetoresistive in soft ferromagnetic multilayers. Physical Review B, 1991. 43(1): p. 1297. 11. Ruderman, M.A. and C. Kittel, Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Physical Review, 1954. 96(1): p. 99. 12. Kasuya, T., A theory of metallic ferro-and antiferromagnetism on Zener's model. Progress of theoretical physics, 1956. 16(1): p. 45-57. 13. Yosida, K., Magnetic properties of Cu-Mn alloys. Physical Review, 1957. 106(5): p. 893. 14. Nogués, J. and I.K. Schuller, Exchange bias. Journal of Magnetism and Magnetic Materials, 1999. 192(2): p. 203-232. 15. Wang, D., J. Anderson, and J. Daughton, Thermally stable, low saturation field, low hysteresis, high GMR CoFe/Cu multilayers. IEEE Transactions on Magnetics, 1997. 33(5): p. 3520-3522. 16. Parkin, S., Oscillations in giant magnetoresistance and antiferromagnetic coupling in [Ni81Fe19/Cu] N multilayers. Applied physics letters, 1992. 60(4): p. 512-514. 17. Jimbo, M., et al., Giant magnetoresistance in soft magnetic NiFeCo/Cu multilayers with various buffer layers. Journal of magnetism and magnetic materials, 1993. 126(1-3): p. 422-424. 18. Jimbo, M., et al., Giant magnetoresistance in soft magnetic NiFeCo/Cu multilayers. Journal of applied physics, 1993. 74(5): p. 3341-3344. 19. Bouziane, K., et al., Buffer effect on GMR in thin Co/Cu multilayers. Journal of alloys and compounds, 2006. 414(1-2): p. 42-47. 20. Gangopadhyay, S., et al., Giant magnetoresistance in CoFe/Cu multilayers with different buffer layers and substrates. IEEE Transactions On Magnetics, 1995. 31(6): p. 3933-3935. 21. El Harfaoui, M., et al., GMR versus interfacial roughness induced from different buffers in (Co/Cu) ML. Journal of magnetism and magnetic materials, 1999. 198: p. 107-109. 22. Dei, T., et al., Effects of buffer layer materials on magnetoresistance in Ni-Fe/Cu multilayers. Journal of magnetism and magnetic materials, 1993. 126(1-3): p. 489-491. 23. Diény, B., Giant magnetoresistance in spin-valve multilayers. Journal of Magnetism and Magnetic Materials, 1994. 136(3): p. 335-359. 24. Freitas, P., et al., Magnetoresistive sensors. Journal of Physics: Condensed Matter, 2007. 19(16): p. 165221. 25. Giebeler, C., et al., Robust GMR sensors for angle detection and rotation speed sensing. Sensors and Actuators A: Physical, 2001. 91(1-2): p. 16-20. 26. Meiklejohn, W.H. and C.P. Bean, New magnetic anisotropy. Physical Review, 1957. 105(3): p. 904. 27. Néel, L. Étude théorique du couplage ferro-antiferromagnétique dans les couches minces. in Annales de Physique. 1967. 28. Heim, D., et al., Design and operation of spin valve sensors. IEEE Transactions on Magnetics, 1994. 30(2): p. 316-321. 29. Lin, P.-H., et al., Manipulating exchange bias by spin–orbit torque. Nature materials, 2019. 18(4): p. 335-341. 30. Hayakawa, J., et al., Dependence of giant tunnel magnetoresistance of sputtered CoFeB/MgO/CoFeB magnetic tunnel junctions on MgO barrier thickness and annealing temperature. Japanese Journal of Applied Physics, 2005. 44(4L): p. L587. 31. Aley, N., et al., Texture effects in IrMn/CoFe exchange bias systems. IEEE Transactions on Magnetics, 2008. 44(11): p. 2820-2823. 32. Saito, M., et al., PtMn single and dual spin valves with synthetic ferrimagnet pinned layers. Journal of applied physics, 1999. 85(8): p. 4928-4930. 33. Kim, Y.K., et al., Magnetoresistance and interlayer diffusion in PtMn spin valves upon postdeposition annealing. Journal of applied physics, 2001. 89(11): p. 6907-6909. 34. Leal, J. and M. Kryder, Spin valves exchange biased by Co/Ru/Co synthetic antiferromagnets. Journal of applied physics, 1998. 83(7): p. 3720-3723. 35. Silva, A.V., et al., Linearization strategies for high sensitivity magnetoresistive sensors. The European Physical Journal Applied Physics, 2015. 72(1): p. 10601. 36. Van den Berg, H., et al., GMR sensor scheme with artificial antiferromagnetic subsystem. IEEE transactions on magnetics, 1996. 32(5): p. 4624-4626. 37. Julliere, M., Tunneling between ferromagnetic films. Physics letters A, 1975. 54(3): p. 225-226. 38. Miyazaki, T. and N. Tezuka, Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. Journal of magnetism and magnetic materials, 1995. 139(3): p. L231-L234. 39. Moodera, J.S., et al., Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Physical review letters, 1995. 74(16): p. 3273. 40. Yang, J.J., et al., Over 70% tunneling magnetoresistance at room temperature for a CoFe and Al O x based magnetic tunnel junction. Applied physics letters, 2006. 89(20): p. 202502. 41. Butler, W., et al., Spin-dependent tunneling conductance of Fe| MgO| Fe sandwiches. Physical Review B, 2001. 63(5): p. 054416. 42. Yuasa, S. and D. Djayaprawira, Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO (0 0 1) barrier. Journal of Physics D: Applied Physics, 2007. 40(21): p. R337. 43. Djayaprawira, D.D., et al., 230% room-temperature magnetoresistance in CoFeB∕ MgO∕ CoFeB magnetic tunnel junctions. Applied physics letters, 2005. 86(9): p. 092502. 44. Ikeda, S., et al., A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nature materials, 2010. 9(9): p. 721-724. 45. Shimabukuro, R., et al., Electric field effects on magnetocrystalline anisotropy in ferromagnetic Fe monolayers. Physica E: Low-dimensional Systems and Nanostructures, 2010. 42(4): p. 1014-1017. 46. Vidal, E.G., et al., Electronic energy meter based on a tunnel magnetoresistive effect (TMR) current sensor. Materials, 2017. 10(10): p. 1134. 47. Chaves, R., et al., MgO based picotesla field sensors. Journal of Applied Physics, 2008. 103(7): p. 07E931. 48. Su, D., K. Wu, and J.-P. Wang, Large-area GMR bio-sensors based on reverse nucleation switching mechanism. Journal of Magnetism and Magnetic Materials, 2019. 473: p. 484-489. 49. Treutler, C., Magnetic sensors for automotive applications. Sensors and Actuators A: Physical, 2001. 91(1-2): p. 2-6. 50. Guo, Y., Y. Deng, and S.X. Wang, Multilayer anisotropic magnetoresistive angle sensor. Sensors and Actuators A: Physical, 2017. 263: p. 159-165. 51. Kitada, M., et al., Magnetoresistive thin‐film sensor with permanent magnet biasing film. Journal of applied physics, 1985. 58(4): p. 1667-1670. 52. Liu, X., C. Ren, and G. Xiao, Magnetic tunnel junction field sensors with hard-axis bias field. Journal of Applied Physics, 2002. 92(8): p. 4722-4725. 53. Negulescu, B., et al., Wide range and tunable linear magnetic tunnel junction sensor using two exchange pinned electrodes. Applied Physics Letters, 2009. 95(11): p. 112502. 54. Lu, Y., et al., Shape-anisotropy-controlled magnetoresistive response in magnetic tunnel junctions. Applied physics letters, 1997. 70(19): p. 2610-2612. 55. Luong, V.-S., et al., Design of 3-D magnetic field sensor with single bridge of spin-valve giant magnetoresistance films. IEEE Transactions on Magnetics, 2015. 51(11): p. 1-4. 56. Liu, X., et al., High Field Linear Magnetoresistance Sensors with Perpendicular Anisotropy L10-FePt Reference Layer. Advances in Condensed Matter Physics, 2016. 2016. 57. Lee, Y., et al., Magnetic tunnel junction based out-of-plane field sensor with perpendicular magnetic anisotropy in reference layer. Journal of Applied Physics, 2015. 117(17): p. 17A320. 58. Nakano, T., et al., Magnetic tunnel junctions with [Co/Pd]-based reference layer and CoFeB sensing layer for magnetic sensor. IEEE Transactions on Magnetics, 2016. 52(7): p. 1-4. 59. Wang, C., et al., Highly sensitive magnetic sensor based on anisotropic magnetoresistance effect. IEEE Transactions on Magnetics, 2018. 54(11): p. 1-3. 60. Cao, J. and P. Freitas, Wheatstone bridge sensor composed of linear MgO magnetic tunnel junctions. Journal of applied physics, 2010. 107(9): p. 09E712. 61. Cubells-Beltran, M.D., et al., Full Wheatstone bridge spin-valve based sensors for IC currents monitoring. IEEE Sensors Journal, 2009. 9(12): p. 1756-1762. 62. Domajnko, D. and D. Križaj, Lagging-domain model for compensation of hysteresis of xmr sensors in positioning applications. Sensors, 2018. 18(7): p. 2281. 63. Karioris, F.G., Projection sine‐sine grid and Lissajous figures. The Physics Teacher, 1975. 13(5): p. 294-296. 64. Lin, C.-Y., H.-S. Hsiao, and J.-Y.J. Chang, Novel method for determining absolute position information from magnetic patterns. IEEE Transactions on Magnetics, 2016. 52(7): p. 1-4. 65. 御子柴, 孝., 新機能磁気スケールに関する研究. 1997, 信州大学. 66. Liu, S., et al., Experimental research on hysteresis effects in GMR sensors for analog measurement applications. Sensors and Actuators A: Physical, 2012. 182: p. 72-81. 67. 王蔚鴻, 多層膜巨磁阻中鐵磁層材料之影響及其於感測器之應用, in 材料科學工程學系. 2015, 國立清華大學: 新竹市. p. 55. 68. Jiang, J., et al., Effects of controlling Cu spacer inter-diffusion by diffusion barriers on the magnetic and electrical stability of GMR spin-valve devices. Journal of magnetism and magnetic materials, 2010. 322(13): p. 1834-1840. 69. Hsiao, H.-S. and J.-Y.J. Chang, Characterization of signal integrity due to pitch–roll–yaw rotation tolerance in magnetic position sensing systems. IEEE Transactions on Magnetics, 2016. 53(3): p. 1-7. 70. Pettiford, C., et al., Effective anisotropy fields and ferromagnetic resonance behaviors of CoFe/PtMn/CoFe trilayers. IEEE transactions on magnetics, 2006. 42(10): p. 2993-2995. 71. 陳佳妤, 磁性量測系統之磁化與精度分析, in 動力機械工程學系. 2015, 國立清華大學: 新竹市. p. 68. 72. Li, J., et al., Output characteristics of two-dimensional spin valve chip. IEEE Sensors Journal, 2013. 13(12): p. 4944-4947. 73. Bhatt, R.C., et al., Interlayer dipolar coupling in CoFeB-based perpendicular magnetic tunnel junctions. Journal of Applied Physics, 2019. 125(1): p. 013902. 74. Guedes, A., et al., Study of synthetic ferrimagnet-synthetic antiferromagnet structures for magnetic sensor application. Journal of applied physics, 2006. 99(8): p. 08B703. 75. AL798 Sensitec GmbH. Available from: https://www.sensitec.com/fileadmin/sensitec/Service_and_Support/Downloads/Data_Sheets/AL700/SENSITEC_AL798_DSE_11.pdf. 76. TL912 EVALBOARD Sensitec GmbH. Available from: https://www.sensitec.com/fileadmin/sensitec/Service_and_Support/Downloads/Data_Sheets/Tx900/SENSITEC_TL912EVAL_PI_00.pdf. 77. Wang, S., et al., Sensing mechanism of a rotary magnetic encoder based on time grating. IEEE Sensors Journal, 2018. 18(9): p. 3677-3683. 78. Stoner, E.C. and E. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1948. 240(826): p. 599-642. 79. Almeida, J., et al., 1∕ f noise in linearized low resistance MgO magnetic tunnel junctions. Journal of Applied Physics, 2006. 99(8): p. 08B314. 80. Ripka, P., M. Janosek, and M. Butta, Crossfield sensitivity in AMR sensors. IEEE Transactions on Magnetics, 2009. 45(10): p. 4514-4517. 81. Se Young, O., et al., X-ray diffraction study of the optimization of MgO growth conditions for magnetic tunnel junctions. J. Appl. Phys, 2008. 103: p. 07A920. 82. Liu, T., et al., Thermally robust Mo/CoFeB/MgO trilayers with strong perpendicular magnetic anisotropy. Scientific reports, 2014. 4(1): p. 1-6. 83. Voss, A., A. Meisenberg, and A. Bartos. Modern Scale Based Magneto Resistive Sensors Systems. in AMA Conferences–SENSOR and IRS2. 2015. Citeseer. 84. Zhu, J.-G., Y. Zheng, and G.A. Prinz, Ultrahigh density vertical magnetoresistive random access memory. Journal of Applied Physics, 2000. 87(9): p. 6668-6673. 85. Li, S., et al., Flux closure structures in cobalt rings. Physical Review Letters, 2001. 86(6): p. 1102. 86. Chen, C., et al., Fabrication and characterization of microstructured magnetic tunnel junction rings. IEEE transactions on magnetics, 2006. 42(10): p. 2766-2768. 87. Fraune, M., et al., Size dependence of the exchange bias field in NiO/Ni nanostructures. Applied Physics Letters, 2000. 77(23): p. 3815-3817. 88. Li, S., et al., Intrinsic anisotropy-defined magnetization reversal in submicron ring magnets. Journal of applied physics, 2002. 92(12): p. 7397-7403.
|