帳號:guest(18.226.87.67)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李佳璋
作者(外文):Lee, Chia-Chang
論文名稱(中文):磁阻式感測器於磁性編碼器之應用研究
論文名稱(外文):Study of Magnetoresistive Sensors for Magnetic Encoders
指導教授(中文):賴志煌
指導教授(外文):Lai, Chih-Huang
口試委員(中文):陳燦林
張禎元
魏拯華
謝嘉民
口試委員(外文):Chen, Can-Lin
Chang, Jen-Yuan
Wei, Jeng-Hua
Shieh, Jia-Ming
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031577
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:146
中文關鍵詞:磁阻感測器磁性編碼器線性定位系統
外文關鍵詞:Magnetoresistive sensorMagnetic encoderLinear positioning system
相關次數:
  • 推薦推薦:0
  • 點閱點閱:441
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著自動化製造需求的增加,對精確位置控制的要求也越來越高。線性定位系統通常用於工具機和機器人應用。大多數定位系統為光學或磁性原理。光學定位系統雖然具有較高的解析度,但在油污、灰塵等惡劣的環境下,其精度和穩定性等性能會嚴重下降。同時,還需要考慮更高的能耗和價格。相比之下,隨著精度的提高,磁定位系統由於其高環境耐受性而變得更具競爭力。磁性定位系統可忍受嚴苛環境,在粉塵油汙等雜質存在的情況下仍能保持其性能。此外,磁定位系統具有更低的價格、更低的功耗和可微縮性,使磁性編碼器系統更受關注。在這項研究中,我們開發了多種自旋電子學感測器,全面性地提高不同類型磁編碼器之性能。
在第一章節,我們開發了以多層膜式巨磁阻(ML GMR)和自旋閥穿隧磁阻(SV TMR)為感測原理的增量型編碼器感測器。通過材料選擇,我們發現在Cu/NiFeCo介面插入NiFe之膜層結構可有效降低磁滯現象以及提高多層膜式巨磁阻感測器之定位精度。為了進一步提高靈敏度,我們利用自旋閥式穿隧磁阻,成功開發具高靈敏度的高精度感測器。此外,我們進一步研究不同工作高度時影響定位精度之因子。為了增加可工作區間,被釘扎層和感測層之間的層間耦合必須被盡可能被降低。
在第二章節,為了解決絕對-增量整合式磁性編碼器系統的對準誤差和安裝問題,我們提出利用具垂直異向性之磁穿隧結的感測模組。透過此新穎的感測模組,絕對列和增量列中所需的所有感測器可被製造在同一基板上,且能符合兩列所需之訊號輸出。因為感測器的相對位置在黃光微影階段已定義完成,因此感測模組能完全消弭對準誤差和安裝問題。此外,我們還研究如何進一步提高定位精度,膜層設計同時必須考慮水平磁場之干擾,以抵抗crossed-effect。
在最後一章節,我們提出了一種新方法來實現 Nonius 絕對編碼器的自由極距之感測器 (Free Pitch Sensor)。透過利用鐵磁環中的渦旋磁態,我們可以在相鄰的反鐵磁層建立渦漩交換偏壓。如此一來,透過蝕刻製程將環分成四區,就可得到了相差90°的四個交換偏壓方向。若能成功與 MTJ 整合,將大大簡化傳統上穿隧磁阻式惠斯通電橋感測器的製程,並能應用於穿隧磁阻式自由極距感測器以解決現有商用產品問題。此概念亦可用於角度感測器、雙軸磁場感測器和任何其他自旋閥式穿隧磁阻感測器。
As the demands for automated manufacturing rises, the requirement for precise position control is enhanced. Linear positioning systems are often used in machine tools and robotic applications. Most of the positioning systems are based on optical or magnetic sensing principle. Although the optical position systems have higher resolution, the performance such as accuracy and the stability are strongly degraded in the un-clean environment with the presence of oil and dust. Meanwhile, the higher energy consumption and price also need to be considered. In contrast, as the accuracy enhances, the magnetic positioning systems become more competitive due to the high environmental endurance. The magnetic positioning systems stand for hazardous environment, maintaining its performance with the presence of impurities. In addition, the magnetic positioning systems have lower price, lower power consumption and the scalability, making the system draw more attentions.
In this work, we develop several spintronic sensors to comprehensively enhance the performance for different types of magnetic encoder. In first chapter, we develop the sensors based on multilayer giant magnetoresistance (ML GMR) and spin valve tunneling magnetoresistance (SV TMR) for incremental type encoder. Through material selections, we find that NiFeCo with NiFe dusting layer is suitable for ML GMR sensor. In order to further increase the sensitivity, we also utilize the SV TMR. A high accuracy sensor with high sensitivity is obtained. In addition, the factors that influence the accuracy at different air gaps are studied. In order to increase the air gap, the interlayer coupling between the pinned layer and sensing layer should be reduced.
In second part, in order to solve the alignment error and installation problem in absolute (ABS)-incremental (INC) integrated magnetic encoder system, an alignment-free sensing module based on magnetic tunnel junction (MTJ) with perpendicular anisotropy (PMA) is proposed. With the novel sensing scheme, all the required sensors in ABS and INC tracks are able to be fabricated on a single substrate, which totally excludes the alignment error and the installation problem since the relative position of the sensors are well-defined in patterning stage. The ways to improve the accuracy are also investigated. The layer design should also consider the effect of the Hx biasing field, which causes the cross-field effect.
Finally, we propose a novel method to realize the TMR free pitch sensor for Nonius absolute encoder. By utilizing the vortex magnetic state in ferromagnetic ring, we are able to set the exchange bias of the adjacent antiferromagnetic layer into vortex as well. In this way, by dividing the ring into four segments, four exchange bias directions with 90°difference are obtained. If the integration with MTJ can be realized, it would strongly simplify the fabrication of TMR Wheatstone bridge sensor compared with conventional methods and the TMR free-pitch sensor can be achieved. The proposed method may also be used as angular sensors, dual axis magnetic field sensors and any other spin valve based TMR sensors.
Abstract i
摘要 iv
致謝 vi
Contents vii
List of Figures xi
List of Tables xviii
Chapter 1. Introduction 1
1.1 Introduction 1
Chapter 2. Background 3
2.1 Magnetoresistance 3
2.2 Anisotropic Magnetoresistance (AMR) 4
2.3 Giant Magnetoresistance (GMR) 5
2.3.1 Spin-Dependent Scattering 7
2.3.2 GMR Structures 9
2.3.3 Multilayer Structure 10
2.3.3.1 RKKY Coupling 11
2.3.3.2 Ferromagnetic Materials 12
2.3.4 Spin Valve Structure 14
2.3.4.1 Exchange Bias 17
2.3.4.2 Synthetic Antiferromagnetic Pinned Spin Valve 19
2.4 Tunneling Magnetoresistance (TMR) and Magnetic Tunnel Junction (MTJ) 22
2.4.1 Spin-Dependent Tunneling 23
2.4.2 Coherent Tunneling and MgO-Based Magnetic Tunnel Junction 24
2.4.3 CoFeB/MgO/CoFeB Structure 26
2.4.4 Perpendicular Anisotropy 26
2.5 Magnetoresistive Sensors 29
2.5.1 Characteristics of MR Sensors 29
2.5.2 Linearization Methods 30
2.5.2.1 Crossed Anisotropy 32
2.5.3 Wheatstone Bridge Configurations 34
2.5.3.1 AMR Wheatstone Bridge 35
2.5.3.2 Spin Valve Wheatstone Bridge 36
2.6 Magnetic Encoders 39
2.6.1 Incremental Type Encoder 40
2.6.2 Non-Repeated Absolute Type Encoder 41
2.6.3 Non-Repeated Absolute-Incremental-Integrated Encoder 41
2.6.4 Nonius Absolute Encoder 43
Chapter 3. Experimental and Analysis Techniques 44
3.1 Sample Preparation 44
3.1.1 Ultrahigh Vacuum Magnetron Sputtering Systems 44
3.1.2 Field Annealing System 44
3.1.3 Rapid Thermal Annealing System 45
3.2 Device Fabrication 45
3.2.1 Photolithography 45
3.2.2 E-Beam Lithography 46
3.2.3 Ion-Beam Etching 47
3.2.4 Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE) 48
3.3 Analysis Technique 49
3.3.1 Vibrating Sample Magnetometer (VSM) 49
3.3.2 Magneto-Optical Kerr Effect Microscope 50
3.3.3 Atomic Force Microscope (AFM) and Magnetic Force Microscope (MFM) 51
3.3.4 X-Ray Diffraction (XRD) 52
3.3.5 Transmission Electron Microscope (TEM) 53
3.3.6 Scanning Electron Microscope (SEM) 53
3.3.7 Four Point Probe 54
3.4 Scale Measurement 55
3.4.1 Measurement Platform 55
Chapter 4. Development of Magnetoresistive Sensors for Incremental Type Magnetic Encoder 56
4.1 Introduction 56
4.2 Experimental Details 57
4.3 Results and Discussions 60
4.3.1 Multilayer GMR-Based Sensor 60
4.3.1.1 Non-magnetic Spacer 60
4.3.1.2 Buffer Layers 62
4.3.1.3 Ferromagnetic Layers 63
4.3.1.4 Device Fabrication 65
4.3.1.5 Scale Measurements 68
4.3.1.6 Accuracy Improvement 71
4.3.2 Spin Valve TMR-Based Sensor 74
4.3.2.1 TMR Incremental Sensor Design 75
4.3.2.2 TMR Sensors for Incremental Scale 77
4.3.2.3 Factors Influence Accuracy 79
4.3.2.4 Repeatability 84
4.4 Summary 85
Chapter 5. Alignment-Free Sensing Module for Absolute and Incremental Lines in the Magnetic Encoder System Based on Tunneling Magnetoresistance Sensors 86
5.1 Introduction 86
5.2 Experimental Details 87
5.2.1 Existing Integrated System 87
5.2.2 Proposed Integrated System 88
5.2.3 Sensor Design 89
5.3 Results and Discussions 91
5.3.1 Sensor Layer Design 91
5.3.2 Co/Pd-Based Pinned Layer and Ta-Capped MTJ 94
5.3.2.1 MgO Crystallinity 95
5.3.2.2 Perpendicular CoFeB Pinned Layer 96
5.3.2.3 Co/Pd Pinning Layer 97
5.3.2.4 Ta Bridge Layer 98
5.3.2.5 CoFeB Sensing Layer 99
5.3.2.6 Full Structure and MR Measurements 100
5.3.2.7 Scale Measurements 102
5.3.3 Co/Pt SAF-Based Pinned Layer and Mo-Capped MTJ 104
5.3.3.1 Mo Capping Layer 104
5.3.3.2 Co/Pt SAF-Pinned MTJ 105
5.3.3.3 MR Measurements 106
5.3.3.4 Scale Measurements 107
5.3.4 Further Investigations for Improvement 109
5.3.4.1 Pinned Layer Improvement 109
5.3.4.2 Sensing Layer Improvement 110
5.4 Summary 112
Chapter 6. Novel Design for Free Pitch Magnetic Encoder Sensor through Vortex Exchange Bias 114
6.1 Introduction 114
6.2 Experimental Details 115
6.2.1 Analysis for AMR Free Pitch Sensor 115
6.2.2 Vortex Exchange Bias 119
6.3 Results and Discussions 120
6.3.1 C-Ring Structure 120
6.3.2 PtMn/Co System 122
6.3.2.1 Single Co Layer 122
6.3.2.2 PtMn/Co Exchange Bias 124
6.3.2.3 PtMn/Co Rings 126
6.3.3 IrMn/NiFe System 130
6.3.2.1 Single NiFe Layer 130
6.3.2.2 IrMn/NiFe Exchange Bias 131
6.3.2.3 IrMn/NiFe Rings 133
6.3.2.4 Multiple Exchange Bias Directions 134
6.4 Material Selections 135
6.5 Summary 137
Chapter 7. Conclusion 138
Reference 141

1. Smit, J., Magnetoresistance of ferromagnetic metals and alloys at low temperatures. Physica, 1951. 17(6): p. 612-627.
2. Kwiatkowski, W. and S. Tumanski, The permalloy magnetoresistive sensors-properties and applications. Journal of Physics E: Scientific Instruments, 1986. 19(7): p. 502.
3. Grünberg, P., et al., Layered magnetic structures: Evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Physical review letters, 1986. 57(19): p. 2442.
4. Baibich, M.N., et al., Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Physical review letters, 1988. 61(21): p. 2472.
5. Stearns, M., Y. Cheng, and C. Lee, Antiferromagnetic coupling between layers in Co/Cr multilayer. Journal of applied physics, 1990. 67(9): p. 5925-5930.
6. Egelhoff Jr, W. and M. Kief, Antiferromagnetic coupling in Fe/Cu/Fe and Co/Cu/Co multilayers on Cu (111). Physical Review B, 1992. 45(14): p. 7795.
7. Daughton, J., GMR applications. Journal of Magnetism and Magnetic Materials, 1999. 192(2): p. 334-342.
8. Wolf, S., et al., Spintronics: a spin-based electronics vision for the future. science, 2001. 294(5546): p. 1488-1495.
9. Butler, W., et al., Spin-dependent scattering and giant magnetoresistance. Journal of magnetism and magnetic materials, 1995. 151(3): p. 354-362.
10. Dieny, B., et al., Giant magnetoresistive in soft ferromagnetic multilayers. Physical Review B, 1991. 43(1): p. 1297.
11. Ruderman, M.A. and C. Kittel, Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Physical Review, 1954. 96(1): p. 99.
12. Kasuya, T., A theory of metallic ferro-and antiferromagnetism on Zener's model. Progress of theoretical physics, 1956. 16(1): p. 45-57.
13. Yosida, K., Magnetic properties of Cu-Mn alloys. Physical Review, 1957. 106(5): p. 893.
14. Nogués, J. and I.K. Schuller, Exchange bias. Journal of Magnetism and Magnetic Materials, 1999. 192(2): p. 203-232.
15. Wang, D., J. Anderson, and J. Daughton, Thermally stable, low saturation field, low hysteresis, high GMR CoFe/Cu multilayers. IEEE Transactions on Magnetics, 1997. 33(5): p. 3520-3522.
16. Parkin, S., Oscillations in giant magnetoresistance and antiferromagnetic coupling in [Ni81Fe19/Cu] N multilayers. Applied physics letters, 1992. 60(4): p. 512-514.
17. Jimbo, M., et al., Giant magnetoresistance in soft magnetic NiFeCo/Cu multilayers with various buffer layers. Journal of magnetism and magnetic materials, 1993. 126(1-3): p. 422-424.
18. Jimbo, M., et al., Giant magnetoresistance in soft magnetic NiFeCo/Cu multilayers. Journal of applied physics, 1993. 74(5): p. 3341-3344.
19. Bouziane, K., et al., Buffer effect on GMR in thin Co/Cu multilayers. Journal of alloys and compounds, 2006. 414(1-2): p. 42-47.
20. Gangopadhyay, S., et al., Giant magnetoresistance in CoFe/Cu multilayers with different buffer layers and substrates. IEEE Transactions On Magnetics, 1995. 31(6): p. 3933-3935.
21. El Harfaoui, M., et al., GMR versus interfacial roughness induced from different buffers in (Co/Cu) ML. Journal of magnetism and magnetic materials, 1999. 198: p. 107-109.
22. Dei, T., et al., Effects of buffer layer materials on magnetoresistance in Ni-Fe/Cu multilayers. Journal of magnetism and magnetic materials, 1993. 126(1-3): p. 489-491.
23. Diény, B., Giant magnetoresistance in spin-valve multilayers. Journal of Magnetism and Magnetic Materials, 1994. 136(3): p. 335-359.
24. Freitas, P., et al., Magnetoresistive sensors. Journal of Physics: Condensed Matter, 2007. 19(16): p. 165221.
25. Giebeler, C., et al., Robust GMR sensors for angle detection and rotation speed sensing. Sensors and Actuators A: Physical, 2001. 91(1-2): p. 16-20.
26. Meiklejohn, W.H. and C.P. Bean, New magnetic anisotropy. Physical Review, 1957. 105(3): p. 904.
27. Néel, L. Étude théorique du couplage ferro-antiferromagnétique dans les couches minces. in Annales de Physique. 1967.
28. Heim, D., et al., Design and operation of spin valve sensors. IEEE Transactions on Magnetics, 1994. 30(2): p. 316-321.
29. Lin, P.-H., et al., Manipulating exchange bias by spin–orbit torque. Nature materials, 2019. 18(4): p. 335-341.
30. Hayakawa, J., et al., Dependence of giant tunnel magnetoresistance of sputtered CoFeB/MgO/CoFeB magnetic tunnel junctions on MgO barrier thickness and annealing temperature. Japanese Journal of Applied Physics, 2005. 44(4L): p. L587.
31. Aley, N., et al., Texture effects in IrMn/CoFe exchange bias systems. IEEE Transactions on Magnetics, 2008. 44(11): p. 2820-2823.
32. Saito, M., et al., PtMn single and dual spin valves with synthetic ferrimagnet pinned layers. Journal of applied physics, 1999. 85(8): p. 4928-4930.
33. Kim, Y.K., et al., Magnetoresistance and interlayer diffusion in PtMn spin valves upon postdeposition annealing. Journal of applied physics, 2001. 89(11): p. 6907-6909.
34. Leal, J. and M. Kryder, Spin valves exchange biased by Co/Ru/Co synthetic antiferromagnets. Journal of applied physics, 1998. 83(7): p. 3720-3723.
35. Silva, A.V., et al., Linearization strategies for high sensitivity magnetoresistive sensors. The European Physical Journal Applied Physics, 2015. 72(1): p. 10601.
36. Van den Berg, H., et al., GMR sensor scheme with artificial antiferromagnetic subsystem. IEEE transactions on magnetics, 1996. 32(5): p. 4624-4626.
37. Julliere, M., Tunneling between ferromagnetic films. Physics letters A, 1975. 54(3): p. 225-226.
38. Miyazaki, T. and N. Tezuka, Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. Journal of magnetism and magnetic materials, 1995. 139(3): p. L231-L234.
39. Moodera, J.S., et al., Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Physical review letters, 1995. 74(16): p. 3273.
40. Yang, J.J., et al., Over 70% tunneling magnetoresistance at room temperature for a CoFe and Al O x based magnetic tunnel junction. Applied physics letters, 2006. 89(20): p. 202502.
41. Butler, W., et al., Spin-dependent tunneling conductance of Fe| MgO| Fe sandwiches. Physical Review B, 2001. 63(5): p. 054416.
42. Yuasa, S. and D. Djayaprawira, Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO (0 0 1) barrier. Journal of Physics D: Applied Physics, 2007. 40(21): p. R337.
43. Djayaprawira, D.D., et al., 230% room-temperature magnetoresistance in CoFeB∕ MgO∕ CoFeB magnetic tunnel junctions. Applied physics letters, 2005. 86(9): p. 092502.
44. Ikeda, S., et al., A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nature materials, 2010. 9(9): p. 721-724.
45. Shimabukuro, R., et al., Electric field effects on magnetocrystalline anisotropy in ferromagnetic Fe monolayers. Physica E: Low-dimensional Systems and Nanostructures, 2010. 42(4): p. 1014-1017.
46. Vidal, E.G., et al., Electronic energy meter based on a tunnel magnetoresistive effect (TMR) current sensor. Materials, 2017. 10(10): p. 1134.
47. Chaves, R., et al., MgO based picotesla field sensors. Journal of Applied Physics, 2008. 103(7): p. 07E931.
48. Su, D., K. Wu, and J.-P. Wang, Large-area GMR bio-sensors based on reverse nucleation switching mechanism. Journal of Magnetism and Magnetic Materials, 2019. 473: p. 484-489.
49. Treutler, C., Magnetic sensors for automotive applications. Sensors and Actuators A: Physical, 2001. 91(1-2): p. 2-6.
50. Guo, Y., Y. Deng, and S.X. Wang, Multilayer anisotropic magnetoresistive angle sensor. Sensors and Actuators A: Physical, 2017. 263: p. 159-165.
51. Kitada, M., et al., Magnetoresistive thin‐film sensor with permanent magnet biasing film. Journal of applied physics, 1985. 58(4): p. 1667-1670.
52. Liu, X., C. Ren, and G. Xiao, Magnetic tunnel junction field sensors with hard-axis bias field. Journal of Applied Physics, 2002. 92(8): p. 4722-4725.
53. Negulescu, B., et al., Wide range and tunable linear magnetic tunnel junction sensor using two exchange pinned electrodes. Applied Physics Letters, 2009. 95(11): p. 112502.
54. Lu, Y., et al., Shape-anisotropy-controlled magnetoresistive response in magnetic tunnel junctions. Applied physics letters, 1997. 70(19): p. 2610-2612.
55. Luong, V.-S., et al., Design of 3-D magnetic field sensor with single bridge of spin-valve giant magnetoresistance films. IEEE Transactions on Magnetics, 2015. 51(11): p. 1-4.
56. Liu, X., et al., High Field Linear Magnetoresistance Sensors with Perpendicular Anisotropy L10-FePt Reference Layer. Advances in Condensed Matter Physics, 2016. 2016.
57. Lee, Y., et al., Magnetic tunnel junction based out-of-plane field sensor with perpendicular magnetic anisotropy in reference layer. Journal of Applied Physics, 2015. 117(17): p. 17A320.
58. Nakano, T., et al., Magnetic tunnel junctions with [Co/Pd]-based reference layer and CoFeB sensing layer for magnetic sensor. IEEE Transactions on Magnetics, 2016. 52(7): p. 1-4.
59. Wang, C., et al., Highly sensitive magnetic sensor based on anisotropic magnetoresistance effect. IEEE Transactions on Magnetics, 2018. 54(11): p. 1-3.
60. Cao, J. and P. Freitas, Wheatstone bridge sensor composed of linear MgO magnetic tunnel junctions. Journal of applied physics, 2010. 107(9): p. 09E712.
61. Cubells-Beltran, M.D., et al., Full Wheatstone bridge spin-valve based sensors for IC currents monitoring. IEEE Sensors Journal, 2009. 9(12): p. 1756-1762.
62. Domajnko, D. and D. Križaj, Lagging-domain model for compensation of hysteresis of xmr sensors in positioning applications. Sensors, 2018. 18(7): p. 2281.
63. Karioris, F.G., Projection sine‐sine grid and Lissajous figures. The Physics Teacher, 1975. 13(5): p. 294-296.
64. Lin, C.-Y., H.-S. Hsiao, and J.-Y.J. Chang, Novel method for determining absolute position information from magnetic patterns. IEEE Transactions on Magnetics, 2016. 52(7): p. 1-4.
65. 御子柴, 孝., 新機能磁気スケールに関する研究. 1997, 信州大学.
66. Liu, S., et al., Experimental research on hysteresis effects in GMR sensors for analog measurement applications. Sensors and Actuators A: Physical, 2012. 182: p. 72-81.
67. 王蔚鴻, 多層膜巨磁阻中鐵磁層材料之影響及其於感測器之應用, in 材料科學工程學系. 2015, 國立清華大學: 新竹市. p. 55.
68. Jiang, J., et al., Effects of controlling Cu spacer inter-diffusion by diffusion barriers on the magnetic and electrical stability of GMR spin-valve devices. Journal of magnetism and magnetic materials, 2010. 322(13): p. 1834-1840.
69. Hsiao, H.-S. and J.-Y.J. Chang, Characterization of signal integrity due to pitch–roll–yaw rotation tolerance in magnetic position sensing systems. IEEE Transactions on Magnetics, 2016. 53(3): p. 1-7.
70. Pettiford, C., et al., Effective anisotropy fields and ferromagnetic resonance behaviors of CoFe/PtMn/CoFe trilayers. IEEE transactions on magnetics, 2006. 42(10): p. 2993-2995.
71. 陳佳妤, 磁性量測系統之磁化與精度分析, in 動力機械工程學系. 2015, 國立清華大學: 新竹市. p. 68.
72. Li, J., et al., Output characteristics of two-dimensional spin valve chip. IEEE Sensors Journal, 2013. 13(12): p. 4944-4947.
73. Bhatt, R.C., et al., Interlayer dipolar coupling in CoFeB-based perpendicular magnetic tunnel junctions. Journal of Applied Physics, 2019. 125(1): p. 013902.
74. Guedes, A., et al., Study of synthetic ferrimagnet-synthetic antiferromagnet structures for magnetic sensor application. Journal of applied physics, 2006. 99(8): p. 08B703.
75. AL798 Sensitec GmbH. Available from: https://www.sensitec.com/fileadmin/sensitec/Service_and_Support/Downloads/Data_Sheets/AL700/SENSITEC_AL798_DSE_11.pdf.
76. TL912 EVALBOARD Sensitec GmbH. Available from: https://www.sensitec.com/fileadmin/sensitec/Service_and_Support/Downloads/Data_Sheets/Tx900/SENSITEC_TL912EVAL_PI_00.pdf.
77. Wang, S., et al., Sensing mechanism of a rotary magnetic encoder based on time grating. IEEE Sensors Journal, 2018. 18(9): p. 3677-3683.
78. Stoner, E.C. and E. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1948. 240(826): p. 599-642.
79. Almeida, J., et al., 1∕ f noise in linearized low resistance MgO magnetic tunnel junctions. Journal of Applied Physics, 2006. 99(8): p. 08B314.
80. Ripka, P., M. Janosek, and M. Butta, Crossfield sensitivity in AMR sensors. IEEE Transactions on Magnetics, 2009. 45(10): p. 4514-4517.
81. Se Young, O., et al., X-ray diffraction study of the optimization of MgO growth conditions for magnetic tunnel junctions. J. Appl. Phys, 2008. 103: p. 07A920.
82. Liu, T., et al., Thermally robust Mo/CoFeB/MgO trilayers with strong perpendicular magnetic anisotropy. Scientific reports, 2014. 4(1): p. 1-6.
83. Voss, A., A. Meisenberg, and A. Bartos. Modern Scale Based Magneto Resistive Sensors Systems. in AMA Conferences–SENSOR and IRS2. 2015. Citeseer.
84. Zhu, J.-G., Y. Zheng, and G.A. Prinz, Ultrahigh density vertical magnetoresistive random access memory. Journal of Applied Physics, 2000. 87(9): p. 6668-6673.
85. Li, S., et al., Flux closure structures in cobalt rings. Physical Review Letters, 2001. 86(6): p. 1102.
86. Chen, C., et al., Fabrication and characterization of microstructured magnetic tunnel junction rings. IEEE transactions on magnetics, 2006. 42(10): p. 2766-2768.
87. Fraune, M., et al., Size dependence of the exchange bias field in NiO/Ni nanostructures. Applied Physics Letters, 2000. 77(23): p. 3815-3817.
88. Li, S., et al., Intrinsic anisotropy-defined magnetization reversal in submicron ring magnets. Journal of applied physics, 2002. 92(12): p. 7397-7403.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *