帳號:guest(3.139.104.16)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):盧宥竹
作者(外文):Lu, Yu-Chu
論文名稱(中文):探討奈米複合晶鉻鉬矽氮薄膜高溫磨耗行為及田口法製程優化提升薄膜強度與抗磨耗性能
論文名稱(外文):Exploration of High Temperature Tribological Characteristics of CrMoSiN Nanocomposite Coating and Process Optimization by Taguchi Method for Mechanical and Tribological Properties Improvement
指導教授(中文):杜正恭
指導教授(外文):Duh, Jenq-Gong
口試委員(中文):張守一
陳永逸
口試委員(外文):Chang, Shou-Yi
Chen, Yung-I
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031571
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:154
中文關鍵詞:奈米複合晶鉻鉬矽氮薄膜高溫磨耗田口法
外文關鍵詞:nanocompositeCrMoSiNhigh temperature tribological propertiesTaguchi method
相關次數:
  • 推薦推薦:0
  • 點閱點閱:261
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
表面改質乃工業中關鍵的技術,目的係修飾工件表面,增加其應
用價值與延長使用壽命。其中,多元合金氮化物保護性鍍膜因其優異
機械性質,電化學與磨耗性質而備受矚目。本研究之目標為開發奈米
複合晶鉻鉬矽氮薄膜,由調變矽含量,探討其高溫磨耗性質。
鉻鉬矽氮薄膜由射頻磁控濺鍍系統鍍附於選定基材,藉由調變鉻
鉬與矽的靶槍功率,通入氮氣反應形成不同矽含量之氮化物薄膜。薄
膜隨著矽含量增加,由鉻鉬氮柱狀晶結構漸漸轉變為奈米複合晶鉻鉬
矽氮。高溫磨擦實驗中,矽的添加使摩擦係數微幅增加,但潤滑相氧
化鉬的形成仍使系統整體之高溫摩擦係數維持在較低數值。在磨耗率
方面,加入矽7.5 原子百分比之鉻鉬矽氮因機械強化作用主導而使磨
耗率大幅降低。同時矽的添加亦能使原本高溫容易揮發之氧化鉬降低
其揮發速度。
最後由田口法優化製程參數,針對四個參數:矽靶功率、基板偏
壓、製程溫度與Ar/N2氣體比例進行最佳化,大幅提升鉻鉬矽氮薄膜
機械性質,同時達到更低磨耗率。
Surface modification engineering is a key technology in industry.
The goal is to deposit the coatings or to administer treatment to the
surface of interest. This study aims to develop a new multi-component
nitride material as a protective coating applied to wear condition at
elevated temperature.
Phase I: Creating and investigating a new coating system
CrMoN coatings has been found to have superior mechanical and
tribological properties, such as high hardness, low friction due to the solid
solution strengthening and the formation of lubricating molybdenum
oxide. In this study, the mechanical and tribological properties of CrMoN
with various Si contents were investigated. The quaternary CrMoSixN
coatings were deposited on silicon wafer and Inconel 718 by RF
magnetron sputter with Si contents ranged from 0 at. % to 11.1 at. %.
Through nanoindentation, the hardness and the H3/E*2 ratio of CrMoSixN
coatings were obtained. The results showed that mechanical
characteristics in CrMoSixN coatings were strongly influenced by Si
contents. The CrMoSixN coating exhibited highest values in H3/E*2 ratio
with 7.5 at. % Si doped, in which columnar grains turned into
nanocomposite structure. The strengthening mechanism of
nanocomposite structure was attributed to grain refinement and
prevention of direct penetration of cracks. Furthermore, tribological
behavior of CrMoSixN coatings was investigated by ball-on-disc
tribometer in atmosphere at 750 oC. The results indicated that the
tribological properties of CrMoSixN coatings at 750 oC could be
significantly improved with the Si addition due to protective oxide
formation on wear tracks and the cooperation of MoO3 as solid lubricant.
Although not the best in wear behavior, CrMoN coating still showed
good performance owing to the presence of molybdenum content, which
is thought to be beneficial to tribological properties at high temperature as
well. With 7.5 at. % Si doping, the CrMoSixN coatings showed superior
mechanical and tribological characteristics, leading to potential
applications for wearproof and self-lubricating dry cutting tools at
elevated temperature.
Phase II : Process Optimization of CrMoSiN by DOE-Taguchi
With further investigation of mechanical properties enhancement in
CrMoSiN coatings by deposition parameter control, Taguchi method in
design of experiment was introduced into this study. The method has long
been recognized as an powerful way to optimize the complicated process
over decades. The aim is to enhance the reliability of CrMoSixN coatings
under high temperature tribological properties in comparison of related
research in literature. Four controlling parameters: Silicon target power,
substrate bias, substrate temperature and Ar/N2 flow rate were chosen.
With three levels of each variable parameter, nine experiments were
determined based on Taguchi Orthogonal Array. The results showed that
the nanocomposite CrMoSixN fabricated through DOE Taguchi method
exhibited much better mechanical properties and tribological behaviors
than previous study. Furthermore, the contribution of each controlling
parameter on micro-hardness of thin films was quantitatively evaluated
through ANOM and ANOVA. This method provides a mighty tool in
optimizing the parameter controlled process in coating area.
In summary, the development of CrMoSiN coatings through phase I
and phase II reveals tribological mechanism at high temperature,
indicating a promising system in protective coating at extreme condition
Contents ….....................................................................................................I
Table Lists …………………………………………………………………V
Figure Captions …………………………………………………………VII
Abstract ………………………………………………………………….XII
Chapter 1 Introduction ……………………………………………...…….1
1.1 Background ……………………………………………………...…1
1.2 Nitride based hard coatings ………………………………………...3
1.3 Motivation and Objectives ………………………………………....7
1.4 Thesis Overview …………………………………………………..10
Chapter 2 Literature Review ……………………………………………17
2.1 Surface Modification Engineering ………………………………..17
2.2 Sputtering Techniques ……………………………………...……..24
2.2.1 Plasma ……………………………………………………...24
2.2.2 Sputtering …………………………………………………..25
2.2.3 Magnetron Sputtering ………………………………………27
2.2.4 Radio Frequency Reactive Magnetron Sputtering …………29
2.3 Review of Nitride Based Hard Coating …………………………..35
2.3.1 Binary Coating ……………………………………………..35
II
2.3.2 Ternary Nitride Coatings …………………………………...38
2.3.2.1 CrAlN coatings ………………………………………38
2.3.2.2 CrMoN coatings ……………………………………..40
2.3.3 Superhard Nanocomposite …………………………………42
2.3.3.1 Spinodal Phase Segregation of Nanocomposite……...43
2.3.3.2 Requirements for Phase Segregation in Deposition …44
2.3.3.3 Thermal Stability and Oxidation Resistance of
Nanocomposite …………………………………....45
2.4 Characterizations of Material ……………………………………..61
2.4.1 Quantitative Chemical Composition ……………………….61
2.4.2 Nanoindentation Method …………………………………...62
2.4.3 Transmission Electron Microscope ………………………...64
2.5 Taguchi Method in Design of Experiment ………………………..69
2.5.1 Introduction of Design of Experiment (DOE) ……………...69
2.5.2 DOE-Taguchi Method ……………………………………...72
2.5.2.1 Analysis of Mean (ANOM) ………………………….74
2.5.2.2 Analysis of Variance (ANOVA) …………………….77
Chapter 3 Experimental Procedure …………………………………….85
3.1 Sample Preparation ……………………………………………….85
III
3.2 CrMoSiN Thin Film Deposition ………………………………….85
3.3 Measurements and Analysis ………………………………………86
Chapter 4 Experimental Procedure …………………………………….91
4.1 Influence of Silicon-modified Cr-Mo-Si-N Nanocomposite Coatings
on Architecture Transformation and Mechanical Strength …...91
4.1.1 Composition and Microstructure of As-deposited CrMoSixN..
…………………………………………………………………….91
4.1.2 Mechanical Properties of As-deposited CrMoSixN ………...93
4.2 Development of CrMoSixN Nanocomposite Coatings for Anti-Wear
Application at Elevated Temperature ………………………..103
4.2.1 Friction Performance of CrMoSixN at Room Temperature and
High Temperature ………………………………………103
4.2.2 Wear Behavior of CrMoSixN at Elevated Temperature …..106
4.2.3 Microstructure of CrMoSi7.5N after High Temperature Process
…………………………………………………………………...117
4.2.4 Confinement of Volatile MoO3 at Elevated Temperature…119
4.3 Taguchi Method in Design of Experiment of CrMoSixN
Nanocomposite via Process Parameter Control for Further
Improvement in Mechanical Properties ……………………..127
IV
4.3.1 Taguchi Method: L9(34) Orthogonal Array and Hardness of
Samples of CrMoSixN and ANOM Analysis …………...127
4.3.2 ANOVA of Parameter Significance ……............................130
Chapter 5 Conclusions ………………………………………………….143
Reference ………………………………………………………………...147
Reference
[1] Th. Lampe, S. Eisenberg and E. Rodr´ıguez Cabeo, Plasma surface engineering in the automotive industry—trends and future prospectives, Surface and Coatings Technology, 174 –175 (2003) 1-7
[2] K. Bewilogua, G. Bra¨uer, A. Dietz, J. Ga¨bler, G. Goch, B. Karpuschewski, and B. Szyszka, Surface technology for automotive engineering, CIRP Annals - Manufacturing Technology, 58 (2009) 608-627
[3] R. M’Saoubi, J.C. Outeiro, H. Chandrasekaran, O.W. Dillon Jr. and I.S. Jawahir, A review of surface integrity in machining and its impact on functional performance and life of machined products, International Journal of Sustainable Manufacturing, 1 (2008) 203-236.
[4] Seung Woo Lee, Betar M. Gallant, Hye Ryung Byon, Paula T. Hammond and Yang Shao-Horn, Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors, Energy Environ. Sci., 4 (2011), 1972.
[5] Didier Falconnet, Gabor Csucs, H. Michelle Grandin and Marcus Textor, Biomaterials, 27 (2006) 3044-3063.
[6] John Patrick O'Connor, Seung Mun You and Donald C. Price, A Dielectric Surface Coating Technique to Enhance Boiling Heat Transfer from High Power Microelectronics, IEEE Trans. Compon. Packag. Manuf. Technol., 18 (1995) 656-663.
[7] Surface Engineering Committee of The Institute of Materials, Foresight in surface engineering, 2000.
[8] Howard Lang, Surface engineering market and technology, 2013.
[9] Sung Chul Cha and Ali Erdemir, Coating Technology for Vehicle Applications, Springer, 2015.
[10] Canan U. Hardwicke and Yuk-Chiu Lau, Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review, Journal of Thermal Spray Technology, 22 (2013) 564-576.
[11] H. Holleck and V. Schier, Multilayer PVD coatings for wear protection, Surface and Coatings Technology 76-77 (1995) 328-336
[12] S.Reinke, M.Kuhr and W.Kulisch, Investigation of stress and adhesion of cubic boron nitride films, Diamond and Related Materials, 5 (1996) 508-513.
[13] H. Holleck, Material selection for hard coatings, J. Vac. Sci.Techn. A, 4 (1986) 2661.
[14] K.G. Stjernberg, H.. Gass and H. E. Hintermann, The rate of chemical vapor deposition of TiC, Thin Solid Films, 40 (1977) 81-88.
[15] N.J. Archer, The plasma-assisted chemical vapour deposition of TiC, TiN and TiCxN1-x , Thin Solid Films, 80 (1981) 221-225.
[16] S. Vepřek, Heterogeneous Reactions in Non-Isothermal Low Pressure Plasmas: Preparative Aspects and Applications, Pure & Appl. Chem. 48 (1976) 163-178.
[17] H. FUKUI, Evolutional History of Coating Technologies for Cemented Carbide Inserts — Chemical Vapor Deposition and Physical Vapor Deposition, SEI Technical Review, 82 (2016) 39-45.
[18] E. Broszeit, W.D. Munz, H. Oechsner, K.T. Rie and G.K. Wolf, Plasma Surface Engineering, 1989.
[19] W.D. Munz, Titanium aluminium nitride films: A new alternative to TiN coatings, J. Vac. Sci. Technol. A 4 (1986) 2717-2725.
[20] H. C. Barshilia , N. Selvakumar, B. Deepthi and K.S. Rajam, A comparative study of reactive direct current magnetron sputtered CrAlN and CrN coatings, Surf. Coat. Technol. 201 (2006) 2193–2201.
[21] E. Y. Choi, M. C. Kang, D. H. Kwon, D. W. Shin and K. H. Kim, Comparative studies on microstructure and mechanical properties of CrN, Cr–C–N and Cr–Mo–N coatings, J. Mater. Process. Technol.187–188 (2007) 566–570.
[22] P.Holubář, M.Jı́lek and M.Šı́ma, Nanocomposite nc-TiAlSiN and nc-TiN–BN coatings: their applications on substrates made of cemented carbide and results of cutting tests, Surf. Coat. Technol., 120-121 (1999) 184-188.
[23] I.W. Park, D.S. Kang, J.J. Moore, S.C. Kwon, J.J. Rha and K.H. Kim, Microstructures, mechanical properties, and tribological behaviors of Cr–Al–N, Cr–Si–N, and Cr–Al–Si–N coatings by a hybrid coating system, Surf. Coat. Technol. 201 (2007) 5223.
[24] Y.C. Chim, X.Z. Ding, X.T. Zeng and S. Zhang, Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc, Thin Solid Films, 517 (2009) 4845–4849.
[25] F. Esaka and K. Furuya., Comparison of surface oxidation of titanium nitride and chromium nitride films studied by x-ray absorption and photoelectron spectroscopy, Journal of Vacuum Science & Technology A, 15 (1997) 2521.
[26] J.W. Lee, J.G. Duh, C.H. Ching and Y.C. Chen, Nanomechanical properties evaluation of chromium nitride films by nanoindentation and nanowear techniques, Surf, Coat. Technol., 188 (2004) 655-661.
[27] C.H. Lin and J.G. Duh, Corrosion behavior of ( Ti-Al-Cr-Si-V )xNy coatings derived from Ti-Al-Cr-Si-V target in RF magnetron sputter, Surf, Coat. Technol., 203 (2008) 558-561.
[28] J.C. Sánchez-López, A. Contreras, S. Domínguez-Meister, A. García-Luis, M. Brizuela, Tribological behaviour at high temperature of hard CrAlN coatings doped with Y or Zr, Thin Solid Films. 550 (2014) 413.
[29] Hetal N. Shah and R. Jayaganthan, Influence of Al Contents on the Microstructure, Mechanical, and Wear properties of Magnetron Sputtered CrAlN Coatings, 21 (2012) 2002-2009.
[30] B.S. Yau, C.W. Chu, D. Lin, W. Lee and J.G. Duh and C.H. Lin, Tungsten doped chromium nitride coatings, Thin Solid Films, 516 (2008) 1877–1882.
[31] L. Castaldi, D. Kurapov, A. Reiter, V. Shklover, P. Schwaller and J. Patscheider, High temperature phase changes and oxidation behavior of Cr–Si–N coatings, Surf. Coat. Technol., 202 (2007) 781–785.
[32] E. Bousser, M. Benkahoul, L. Martinu and J.E. Klemberg-Sapieh, Effect of microstructure on the erosion resistance of Cr–Si–N coatings, Surf. Coat. Technol., 203 (2008) 776–780.
[33] H.W. Chen, Y.Chen Chan , J.W. Lee and J.G. Duh, Oxidation behavior of Si-doped nanocomposite CrAlSiN coatings, Surf. Coat. Technol. 205 (2010) 1189–1194.
[34] H.W. Chen, Y.Chen Chan , J.W. Lee and J.G. Duh, Oxidation resistance of nanocomposite CrAlSiN under long-time heat treatment, Surf. Coat. Technol. 206 (2011) 1571–1576.
[35] P. Andersson, J. Tamminen and C.E. Sandström, Piston ring tribology, VTT Res Notes, 2178 (2002), 1-105
[36] H.K. Trivedi and D.V. Bhatt, Effect of Lubricating Oil on Tribological behaviour in Pin on Disc Test Rig, Tribology in Industry, 39 (2017) 90-99.
[37] H. Lang, Surface engineering market and technology, Sulzer, 2013.
[38] A.A. Voevodin, C. Muratore and S.M. Aouadi, Hard coatings with high temperature adaptive lubrication and contact thermal management: Review, Surf. Coat. Technol., 257 (2014) 247-265.
[39] X. Zhu, D. Yue, C.S., M. Fan and B. Hou, Phase composition and tribological performance of molybdenum nitride coatings synthesized by IBAD, Surf. Coat. Technol., 228 (2013) S184–S189.
[40] S.M. Aouadi, H. Gao, A.Martini, T.W. Scharf and C.Muratore, Lubricious oxide coatings for extreme temperature applications: A review, Surf. Coat. Technol., 257 (2014) 266–277.
[41] R. Franz and C. Mitterer, Vanadium containing self-adaptive low-friction hard coatings forhigh-temperature applications: A review, Surf. Coat. Technol., 228 (2013) 1–13.
[42] S. Zhang, H.L. Wang, S.E. Ong, D. Sun and X.L. Bui, Hard yet tough nanocomposite coatings – present status and futuretrends, Plasma Process. Polym., 4 (2007) 219-228.
[43] Y.X. Wang and S. Zhang, Toward hard yet tough ceramic coatings, Surf. Coat. Technol., 258 (2014) 1-16.
[44] A.AVoevodin and J.SZabinski, Supertough wear-resistant coatings with ‘chameleon’ surface adaptation, Thin Solid Films, 370 (2000) 223-231.
[45] B. Bhushan, Overview of coating materials, surface treatment and screening techniques for tribological applications Part I: Coating materials and surface treatments, Testing of Metallic and Inorganic Coatings (W.B. Harding and G.A. DiBari, eds.), special Publication STP 947, 289-309, (1987), ASTM, Philadelphia, PA. USA.
[46] J. Musil and J. Vlček, A perspective of magnetron sputtering in surface engineering, Surf. Coat. Technol., 112 (1999) 162–169.
[47] A. Bogaerts, E. Neyts , R. Gijbels and J. van der Mullen, Gas discharge plasmas and their applications, Spectrochimica Acta Part B, 57 (2002) 609–658.
[48] R. Behrisch (Ed.), Sputtering by particle bombardment, Springer Berlin Heidelberg, Applied Physics, 47 (1981).
[49] P.D. Townsend and J.C. Kelly, Ion implantation: Sputtering and their applications, Academic Press, (1976).
[50] W.R. Grove, On the Electrochemical Polarity of Gases, Phil. Trans. Royal. Soc. B142 (1852) 87.
[51] A.S. Penfold, Early days of magnetron sputtering- an enigma, Thin Solid Films, 171 (1989) 99-108.
[52] M. Ohring, The Materials Science of Thin Films, Academic Press, (1992).
[53] S. PalDey and S.C. Deevi, Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review, Materials Science and Engineering A, 342 (2003) 58-79.
[54] L.A. Donohue, W.D. Münz, D.B. Lewis, J. Cawley, T. Hurkmans, T. Trinh, I. Petrov and J.E. Greene, Large-scale fabrication of hard superlattice thin films by combined steered arc evaporation and unbalanced magnetron sputtering, Surf. Coat. Technol., 93 (1997) 69-87.
[55] H.A. Jehn, S. Hofmann, V.E. Rückborn and W.D. Münz, Morphology and properties of sputtered (Ti,Al)N layers on high speed steel substrates as a function of deposition temperature and sputtering atmosphere, J. Vac. Sci. Technol. A, 4 (1986) 2701.
[56] H.G. Prengel, A.T. Santhanam, R.M. Penich, P.C. Jindal and K.H. Wendt, Advanced PVD-TiAlN coatings on carbide and cermet cutting tools, Surf. Coat. Technol., 94-95 (1997) 597.
[57] M. Zhou, Y. Makino, M. Nose and K. Nogi, Phase transition and properties of Ti-Al-N thin films prepared by rf-plasma assisted magnetron sputtering, Thin Solid Films, 339 (1999) 203.
[58] L. Holland and S.M. Ojha, Deposition of hard and insulating carbonaceous films on an r.f. target in a butane plasma, Thin Solid Films, 38 (1976) L17-L19.
[59] P.D. Davidse and L.I. Maissel, Dielectric Thin Films through rf Sputtering, J. Appl. Phys., 37 (1966) 574-579.
[60] J. Molarius, J. Kaitila, T. Pensala and M. Ylilammi, Piezoelectric ZnO films by r.f. sputtering, Journal of Materials Science: Materials in Electronics, 14 (2003) 431-435.
[61] D.M. Mattox, The Foundations of Vacuum Coating Technology, (2003) 13.
[62] L.A. Donohue, I.J. Smith, W.D. Munz, I. Petrov and J.E. Greene, microstructure and oxidation resistance of Ti1-x-y-zAlxCryYzN layers grown by combined steered-arc/unbalanced magnetron sputter deposition, Surf. Coat. Technol., 94-95 (1997) 226-231.
[63] H. Ichimura and A. Kawana, High temperature oxidation of ion-plated TiN and TiAlN films, J. Master. Res. 8 (1996) 1093-1100.
[64] A.E. McHale (Ed.), Phase Equilibria Diagrams: Phase Diagrams for Ceramists: Vol. 10. Borides, Carbides, and Nitrides, The American Ceramic Society, Westerville, OH, (1994) 415.
[65] D Pilloud, J.F. Pierson and L. Pichon, Influence of the silicon concentration on the optical and electrical properties of reactively sputtered Zr–Si–N nanocomposite coatings, Mater. Sci. Eng. B, 131 (2006) 36-39.
[66] I.W. Park, S.R. Choi, J.H. Suh, C.G. Park and K.H. Kim, Deposition and mechanical evaluation of superhard Ti–Al–Si–N nanocomposite films by a hybrid coating system, Thin Solid Films, 447-448 (2004) 443-448.
[67] C. Mitterer, P.H. Mayrhofer and J. Musil, Thermal stability of PVD hard coatings, Vacuum, 71 (2003) 279–284.
[68] P.H. Mayrhofer, C. Mitterer and J. Musil, Structure–property relationships in single-and dual-phase nanocrystalline hard coatings, Surf, Coat. Technol., 174-175 (2003) 725-731.
[69] B. Navinšek, P. Panjan and A. Cvelbar, Characterization of low temperature CrN and TiN (PVD) hard coatings, Surf, Coat. Technol., 74-75 (1995) 155-161.
[70] B. Rother and H. Kappl, Effects of low boron concentrations on the thermal stability of hard coatings, Surf, Coat. Technol., 96 (2003) 163-168.
[71] E. Martinez, R. Sanjines, A. Karimi, J. Esteve and F. Lévya, Mechanical properties of nanocomposite and multilayered Cr–Si–N sputtered thin films, Surf, Coat. Technol., 180-181 (2004) 570-574.
[72] V. Derflinger, H.Brändle and H.Zimmermann, New hard/lubricant coating for dry machining, Surf, Coat. Technol., 113 (1999) 286-292.
[73] B.Navinšek, P.Panjan, M.Čekada and D.T.Quintob, Interface characterization of combination hard/solid lubricant coatings by specific methods, Surf, Coat. Technol., 154 (2002) 194-203.
[74] M. Kawate, A.K. Hashimoto, T. Suzuki, Oxidation resistance of Cr1-xAlxN and Ti1-xAlxN films, Surf, Coat. Technol., 165 (2003) 163-167.
[75] Y.Makino, Prediction of phase change in pseudobinary transition metal aluminum nitrides by band parameters method, Surf, Coat. Technol., 193 (2005) 185-191.
[76] R. Wuhrer and W.Y. Yeung, A comparative study of magnetron co-sputtered nanocrystalline titanium aluminium and chromium aluminium nitride coatings, Scripta Materialia, 50 (2004) 1461.
[77] A.E. Reiter, V.H. Derflinger, B. Hanselmann, T. Bachmann and B. Sartory, Investigation of the properties of Al1−xCrxN coatings prepared by cathodic arc evaporation, Surf, Coat. Technol., 200 (2005) 2114 – 2122.
[78] G. Gassner, P.H. Mayrhofer, K. Kutschej, C. Mitterer and M. Kathrein, Magnéli phase formation of PVD Mo–N and W–N coatings, Surf, Coat. Technol., 201 (2006) 3335–3341.
[79] J. Van Landuyt, Shear structures and crystallographic shear propagation, Journal de Physique Colloques, 35 (1974) pp. C7-53-C7-63.
[80] S.A. Glatz, C.M. Koller, H. Bolvardi, S. Kolozsvári, H. Riedl and P.H. Mayrhofer, Influence of Mo on the structure and the tribomechanical properties of arc evaporated Ti-Al-N, Surf, Coat. Technol., 311 (2017) 330–336.
[81] K.H. Kim, E.Y. Choi, S.G. Hong, B.G. Park, J.H. Yoon and J.H. Yong, Syntheses and mechanical properties of Cr–Mo–N coatings by a hybrid coating system, Surf, Coat. Technol., 201 (2006) 4068–4072.
[82] A. Cavaleiro and C. Louro, Nanocrystalline structure and hardness of thin films, Vacuum, 64 (2002) 211-218.
[83] E. Martinez, R.Sanjinés, A. Karimi, J. Esteve and F. Lévy, Mechanical properties of nanocomposite and multilayered Cr–Si–N sputtered thin films, Surf. Coat. Technol., 180-181 (2004) 570-574.
[84] S. Carvalho, L. Rebouta, A. Cavaleiro, L.A. Rocha, J. Gomes and E. Alves, Microstructure and mechanical properties of nanocomposite (Ti,Si,Al)N coatings, Thin Solid Films, 398-399 (2001) 391-396.
[85] R.F. Zhang, S.H. Sheng, and S. Vepřek, Mechanical strengths of silicon nitrides studied by ab initio calculations, Appl. Phys. Lett., 90 (2007) 191903.
[86] S. Vepřek, A.S. Argon and R.F. Zhang, Origin of the hardness enhancement in superhard nc-TiN/a-Si3N4 and ultrahard nc-TiN/a-Si3N4/TiSi2 nanocomposites, Phil. Mag. Lett., 87 (2007) 955.
[87] S. Vepřek and A.S. Argon, Towards the understanding of mechanical properties of super- and ultrahard nanocomposites, J. Vac. Sci. Technol., B 20 (2002) 650.
[88] C. Lu, Y.W. Mai and Y.G. Shen, Recent advances on understanding the origin of superhardness in nanocomposite coatings: A critical review, J Mater. Sci., 41 (2006) 937–950.
[89] J. Musil, S. Zhang and N. Ali (Eds.), Nanocomposite Films and Coatings, London, Imperial College Press, London (2007), p. 281.
[90] S. Vepřek, M. Haussmann, S. Reiprich, L. Shizhi and J. Dian, Novel thermodynamically stable and oxidation resistant superhard coating materials, Surf. Coat. Technol., 86-87 (1996) 394-401.
[91] S. Vepřek, M.G.J. Vepřek -Heijman, P. Karvankova, J. Prochazka, Review: Different approaches to superhard coatings and nanocomposites, Thin Solid Films, 476 (2005) 1-29.
[92] R.F. Zhang and S. Vepřek, On the spinodal nature of the phase segregation and formation of stable nanostructure in the Ti–Si–N system, Mater. Sci. Eng. A, 424 (2006) 128.
[93] R.F. Zhang and S. Vepřek, Phase stabilities of self-organized nc-TiN/a-Si3N4 nanocomposites and of Ti1 − xSixNy solid solutions studied by ab initio calculation and thermodynamic modeling, Thin Solid Films 516 (2008) 2264–2275.
[94] A. Raveh, I. Zukerman, R. Shneck, R. Avni and I. Fried, Thermal stability of nanostructured superhard coatings: A review, Surf. Coat. Technol., 201 (2007) 6136-6142.
[95] T. Polcar and A. Cavaleiro, High temperature properties of CrAlN, CrAlSiN and AlCrSiN coatings – Structure and oxidation, Mater. Chem. Phys., 129 (2011) 195-201.
[96] S. Zhang, L. Wang, Q. Wang and M. Li, A superhard CrAlSiN superlattice coating deposited ny a multi-arc ion plating: II. Thermal stability and oxidation resistance, Surf. Coat. Technol., 214 (2013) 153-159.
[97] S.K. Tien, C.H. Lin, Y.Z. Tsai and J.G. Duh, Effect of nitrogen flow on the properties of quaternary CrAlSiN coatings at elevated temperatures, Surf. Coat Technol., 202 (2007) 735-739.
[98] C. Merlet, An Accurate Computer Correction Program for Quantitative Electron Probe Microanalysis, Mikrochim. Acta 114-115 (1994) 363-376.
[99] C.M. Cheng and Y.T. Cheng, On the initial unloading slope in indentation of elastic-plastic solids by an indenter with an axisymmetric smooth profile, Appl. Phys. Lett., 71 (1997) 2623.
[100] W.C. Oliver, Alternative technique for analyzing instrumented indentation data, J. Matter. Res., 16 (2001) 3202.
[101] W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Matter. Res., 7 (1992) 1564.
[102] T.E.Weirich, J.L. Lábár and X. Zou (Ed.), Electron Crystallography: Novel Approaches for Structure Determination of Nanosized Materials, Springer, (2006).
[103] S. Ma, J. Prochazka, P. Karvankova, Q. Ma, X. Niu, X. Wang, D. Ma and K. Xu, S. Veprek, Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN, Surf. Coat. Technol., 194 (2005) 143-148.
[104] S.K. Kim, J.K. Kim and K.H. Kim, Influence of deposition conditions on the microstructure and mechanical properties of Ti–Si–N films by DC reactive magnetron sputtering, Thin Solid Films, 420-421 (2002) 360-365.
[105] S. Liu, R. Raghavan, X.T. Zeng, J. Michler and W.J. Clegg, Compressive deformation and failure of CrAlN/Si3N4 nanocomposite coatings, Appl. Phys. Lett., 104 (2014) 081919.
[106] J.H. Park, W.S. Chung, Y.R. Cho and K.H. Kim, Synthesis and mechanical properties of Cr–Si–N coatings deposited by a hybrid system of arc ion plating and sputtering techniques, Surf. Coat. Technol., 188–189 (2004) 425– 430.
[107] U.C. Oh and J.H. Je, Effects of strain energy on the preferred orientation of TiN thin films, J. Appl. Phys., 74 (1993) 1692.
[108] L. Chekour, C. Nouveau, A. Chala, C. Labidi, N. Rouag and M.A. Djouadi, Growth mechanism for chromium nitride films deposited by magnetron and triode sputtering methods, Surf. Coat. Technol., 200 (2005) 241.
[109] R.A. Koshy, M.E. Graham and L.D. Marks, Temperature activated self-lubrication in CrN/Mo2N nanolayer coatings, Surf. Coat. Technol., 204 (2010) 1359-1365.
[110] T. Suszko, W. Gulbinski and J. Jagielski, The role of surface oxidation in friction processes on molybdenum nitride thin films, Surf. Coat. Technol., 194 (2005) 319-324.
[111] J. Takadoum, H. H. Bennani and D. Mairey, The Wear Characteristics of Silicon Nitride, J. Eur. Ceram. Soc. 18 (1998) 553.
[112] S.S. Kim, Y.H. Chae and D.J. Kim, Tribological characteristics of silicon nitride at elevated temperatures, Tribol. Lett. 9 (2000) 3–4.
[113] T. Polcar, T. Vitu, J. Sondor and A. Cavaleiro, Tribological Performance of CrAlSiN Coatings at High Temperatures, Plasma Process. Polym., 6 (2009) S935-S940.
[114] T. Polcar and A. Cavaleiro, High-temperature tribological properties of CrAlN, CrAlSiN and AlCrSiN coatings, Surf. Coat. Technol., 206 (2011) 1244-1251.
[115] K. Kato and K. Adachi, Wear Mechanisms, 2001.
[116] I.W. Lyo, H.S. Ahn, D.S. Lim, Microstructure and tribological properties of plasma-sprayed chromium oxide–molybdenum oxide composite coatings, Surf. Coat. Technol. 163 –164 (2003) 413–421.
[117] S.A. Glatz, C.M. Koller, H. Bolvardi, S. Kolozsvári, H. Riedl, P.H. Mayrhofer, Influence of Mo on the structure and the tribomechanical properties of arc evaporated Ti-Al-N, Surf. Coat. Technol. 311 (2017) 330–336.
[118] J.L. Rosa, A. Robin, M.B. Silva, C.A. Baldan and M.P. Peres, Electrodeposition of copper on titanium wires: Taguchi experimental design approach, J. Mater. Process. Technol., 209(2009) 1181-1188.
[119] R.S. Rao, R. Sreenivas; C.G. Kumar; R.S. Prakasham and P.J. Hobbs, The Taguchi methodology as a statistical tool for biotechnological applications: A critical appraisal, Biotechnology Journal, 3 (2008) 510–523.
[120] R.S. Rao, R.S. Prakasham, K. K. Prasad, S. Rajesham, P.N. Sarma and L.V. Rao, Xylitol production by Candida sp.: parameter optimization using Taguchi approach, Process Biochemistry 39 (2004) 951–956.
[121] Selden, Paul H.: “Sales Process Engineering: A Personal Workshop” Milwaukee, Wisconsin: ASQ Quality Press, (1997) P. 237.
[122] G. Taguchi and S. Konishi, Orthogonal Arrays and Linear Graphs: Tools for Quality Engineering, American Supplier Institute, Inc., 1987.
[123] M.S. Phadke, Quality Engineering Using Robust Design, Prentice-Hall, Englewood Cliffs, NJ, 1989, Appendix C, P. 277.
[124] H.H. Lee, Taguchi Methods: Principles and Practices of Quality Design, Gau-Lih Book Co. Ltd., Taipei, Taiwan, 2011.
[125] M.A. Fryman, Quality and Process Improvement, (2001) P. 328.
[126] A. Cristian and N. Popescu, he Application of Taguchi’s “Quality Loss” concept to dimensional precision and ISO fits, Bulletin of the Transilvania University of Braşov, Series I, 5 (2012).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *