|
Reference [1] Th. Lampe, S. Eisenberg and E. Rodr´ıguez Cabeo, Plasma surface engineering in the automotive industry—trends and future prospectives, Surface and Coatings Technology, 174 –175 (2003) 1-7 [2] K. Bewilogua, G. Bra¨uer, A. Dietz, J. Ga¨bler, G. Goch, B. Karpuschewski, and B. Szyszka, Surface technology for automotive engineering, CIRP Annals - Manufacturing Technology, 58 (2009) 608-627 [3] R. M’Saoubi, J.C. Outeiro, H. Chandrasekaran, O.W. Dillon Jr. and I.S. Jawahir, A review of surface integrity in machining and its impact on functional performance and life of machined products, International Journal of Sustainable Manufacturing, 1 (2008) 203-236. [4] Seung Woo Lee, Betar M. Gallant, Hye Ryung Byon, Paula T. Hammond and Yang Shao-Horn, Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors, Energy Environ. Sci., 4 (2011), 1972. [5] Didier Falconnet, Gabor Csucs, H. Michelle Grandin and Marcus Textor, Biomaterials, 27 (2006) 3044-3063. [6] John Patrick O'Connor, Seung Mun You and Donald C. Price, A Dielectric Surface Coating Technique to Enhance Boiling Heat Transfer from High Power Microelectronics, IEEE Trans. Compon. Packag. Manuf. Technol., 18 (1995) 656-663. [7] Surface Engineering Committee of The Institute of Materials, Foresight in surface engineering, 2000. [8] Howard Lang, Surface engineering market and technology, 2013. [9] Sung Chul Cha and Ali Erdemir, Coating Technology for Vehicle Applications, Springer, 2015. [10] Canan U. Hardwicke and Yuk-Chiu Lau, Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review, Journal of Thermal Spray Technology, 22 (2013) 564-576. [11] H. Holleck and V. Schier, Multilayer PVD coatings for wear protection, Surface and Coatings Technology 76-77 (1995) 328-336 [12] S.Reinke, M.Kuhr and W.Kulisch, Investigation of stress and adhesion of cubic boron nitride films, Diamond and Related Materials, 5 (1996) 508-513. [13] H. Holleck, Material selection for hard coatings, J. Vac. Sci.Techn. A, 4 (1986) 2661. [14] K.G. Stjernberg, H.. Gass and H. E. Hintermann, The rate of chemical vapor deposition of TiC, Thin Solid Films, 40 (1977) 81-88. [15] N.J. Archer, The plasma-assisted chemical vapour deposition of TiC, TiN and TiCxN1-x , Thin Solid Films, 80 (1981) 221-225. [16] S. Vepřek, Heterogeneous Reactions in Non-Isothermal Low Pressure Plasmas: Preparative Aspects and Applications, Pure & Appl. Chem. 48 (1976) 163-178. [17] H. FUKUI, Evolutional History of Coating Technologies for Cemented Carbide Inserts — Chemical Vapor Deposition and Physical Vapor Deposition, SEI Technical Review, 82 (2016) 39-45. [18] E. Broszeit, W.D. Munz, H. Oechsner, K.T. Rie and G.K. Wolf, Plasma Surface Engineering, 1989. [19] W.D. Munz, Titanium aluminium nitride films: A new alternative to TiN coatings, J. Vac. Sci. Technol. A 4 (1986) 2717-2725. [20] H. C. Barshilia , N. Selvakumar, B. Deepthi and K.S. Rajam, A comparative study of reactive direct current magnetron sputtered CrAlN and CrN coatings, Surf. Coat. Technol. 201 (2006) 2193–2201. [21] E. Y. Choi, M. C. Kang, D. H. Kwon, D. W. Shin and K. H. Kim, Comparative studies on microstructure and mechanical properties of CrN, Cr–C–N and Cr–Mo–N coatings, J. Mater. Process. Technol.187–188 (2007) 566–570. [22] P.Holubář, M.Jı́lek and M.Šı́ma, Nanocomposite nc-TiAlSiN and nc-TiN–BN coatings: their applications on substrates made of cemented carbide and results of cutting tests, Surf. Coat. Technol., 120-121 (1999) 184-188. [23] I.W. Park, D.S. Kang, J.J. Moore, S.C. Kwon, J.J. Rha and K.H. Kim, Microstructures, mechanical properties, and tribological behaviors of Cr–Al–N, Cr–Si–N, and Cr–Al–Si–N coatings by a hybrid coating system, Surf. Coat. Technol. 201 (2007) 5223. [24] Y.C. Chim, X.Z. Ding, X.T. Zeng and S. Zhang, Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc, Thin Solid Films, 517 (2009) 4845–4849. [25] F. Esaka and K. Furuya., Comparison of surface oxidation of titanium nitride and chromium nitride films studied by x-ray absorption and photoelectron spectroscopy, Journal of Vacuum Science & Technology A, 15 (1997) 2521. [26] J.W. Lee, J.G. Duh, C.H. Ching and Y.C. Chen, Nanomechanical properties evaluation of chromium nitride films by nanoindentation and nanowear techniques, Surf, Coat. Technol., 188 (2004) 655-661. [27] C.H. Lin and J.G. Duh, Corrosion behavior of ( Ti-Al-Cr-Si-V )xNy coatings derived from Ti-Al-Cr-Si-V target in RF magnetron sputter, Surf, Coat. Technol., 203 (2008) 558-561. [28] J.C. Sánchez-López, A. Contreras, S. Domínguez-Meister, A. García-Luis, M. Brizuela, Tribological behaviour at high temperature of hard CrAlN coatings doped with Y or Zr, Thin Solid Films. 550 (2014) 413. [29] Hetal N. Shah and R. Jayaganthan, Influence of Al Contents on the Microstructure, Mechanical, and Wear properties of Magnetron Sputtered CrAlN Coatings, 21 (2012) 2002-2009. [30] B.S. Yau, C.W. Chu, D. Lin, W. Lee and J.G. Duh and C.H. Lin, Tungsten doped chromium nitride coatings, Thin Solid Films, 516 (2008) 1877–1882. [31] L. Castaldi, D. Kurapov, A. Reiter, V. Shklover, P. Schwaller and J. Patscheider, High temperature phase changes and oxidation behavior of Cr–Si–N coatings, Surf. Coat. Technol., 202 (2007) 781–785. [32] E. Bousser, M. Benkahoul, L. Martinu and J.E. Klemberg-Sapieh, Effect of microstructure on the erosion resistance of Cr–Si–N coatings, Surf. Coat. Technol., 203 (2008) 776–780. [33] H.W. Chen, Y.Chen Chan , J.W. Lee and J.G. Duh, Oxidation behavior of Si-doped nanocomposite CrAlSiN coatings, Surf. Coat. Technol. 205 (2010) 1189–1194. [34] H.W. Chen, Y.Chen Chan , J.W. Lee and J.G. Duh, Oxidation resistance of nanocomposite CrAlSiN under long-time heat treatment, Surf. Coat. Technol. 206 (2011) 1571–1576. [35] P. Andersson, J. Tamminen and C.E. Sandström, Piston ring tribology, VTT Res Notes, 2178 (2002), 1-105 [36] H.K. Trivedi and D.V. Bhatt, Effect of Lubricating Oil on Tribological behaviour in Pin on Disc Test Rig, Tribology in Industry, 39 (2017) 90-99. [37] H. Lang, Surface engineering market and technology, Sulzer, 2013. [38] A.A. Voevodin, C. Muratore and S.M. Aouadi, Hard coatings with high temperature adaptive lubrication and contact thermal management: Review, Surf. Coat. Technol., 257 (2014) 247-265. [39] X. Zhu, D. Yue, C.S., M. Fan and B. Hou, Phase composition and tribological performance of molybdenum nitride coatings synthesized by IBAD, Surf. Coat. Technol., 228 (2013) S184–S189. [40] S.M. Aouadi, H. Gao, A.Martini, T.W. Scharf and C.Muratore, Lubricious oxide coatings for extreme temperature applications: A review, Surf. Coat. Technol., 257 (2014) 266–277. [41] R. Franz and C. Mitterer, Vanadium containing self-adaptive low-friction hard coatings forhigh-temperature applications: A review, Surf. Coat. Technol., 228 (2013) 1–13. [42] S. Zhang, H.L. Wang, S.E. Ong, D. Sun and X.L. Bui, Hard yet tough nanocomposite coatings – present status and futuretrends, Plasma Process. Polym., 4 (2007) 219-228. [43] Y.X. Wang and S. Zhang, Toward hard yet tough ceramic coatings, Surf. Coat. Technol., 258 (2014) 1-16. [44] A.AVoevodin and J.SZabinski, Supertough wear-resistant coatings with ‘chameleon’ surface adaptation, Thin Solid Films, 370 (2000) 223-231. [45] B. Bhushan, Overview of coating materials, surface treatment and screening techniques for tribological applications Part I: Coating materials and surface treatments, Testing of Metallic and Inorganic Coatings (W.B. Harding and G.A. DiBari, eds.), special Publication STP 947, 289-309, (1987), ASTM, Philadelphia, PA. USA. [46] J. Musil and J. Vlček, A perspective of magnetron sputtering in surface engineering, Surf. Coat. Technol., 112 (1999) 162–169. [47] A. Bogaerts, E. Neyts , R. Gijbels and J. van der Mullen, Gas discharge plasmas and their applications, Spectrochimica Acta Part B, 57 (2002) 609–658. [48] R. Behrisch (Ed.), Sputtering by particle bombardment, Springer Berlin Heidelberg, Applied Physics, 47 (1981). [49] P.D. Townsend and J.C. Kelly, Ion implantation: Sputtering and their applications, Academic Press, (1976). [50] W.R. Grove, On the Electrochemical Polarity of Gases, Phil. Trans. Royal. Soc. B142 (1852) 87. [51] A.S. Penfold, Early days of magnetron sputtering- an enigma, Thin Solid Films, 171 (1989) 99-108. [52] M. Ohring, The Materials Science of Thin Films, Academic Press, (1992). [53] S. PalDey and S.C. Deevi, Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review, Materials Science and Engineering A, 342 (2003) 58-79. [54] L.A. Donohue, W.D. Münz, D.B. Lewis, J. Cawley, T. Hurkmans, T. Trinh, I. Petrov and J.E. Greene, Large-scale fabrication of hard superlattice thin films by combined steered arc evaporation and unbalanced magnetron sputtering, Surf. Coat. Technol., 93 (1997) 69-87. [55] H.A. Jehn, S. Hofmann, V.E. Rückborn and W.D. Münz, Morphology and properties of sputtered (Ti,Al)N layers on high speed steel substrates as a function of deposition temperature and sputtering atmosphere, J. Vac. Sci. Technol. A, 4 (1986) 2701. [56] H.G. Prengel, A.T. Santhanam, R.M. Penich, P.C. Jindal and K.H. Wendt, Advanced PVD-TiAlN coatings on carbide and cermet cutting tools, Surf. Coat. Technol., 94-95 (1997) 597. [57] M. Zhou, Y. Makino, M. Nose and K. Nogi, Phase transition and properties of Ti-Al-N thin films prepared by rf-plasma assisted magnetron sputtering, Thin Solid Films, 339 (1999) 203. [58] L. Holland and S.M. Ojha, Deposition of hard and insulating carbonaceous films on an r.f. target in a butane plasma, Thin Solid Films, 38 (1976) L17-L19. [59] P.D. Davidse and L.I. Maissel, Dielectric Thin Films through rf Sputtering, J. Appl. Phys., 37 (1966) 574-579. [60] J. Molarius, J. Kaitila, T. Pensala and M. Ylilammi, Piezoelectric ZnO films by r.f. sputtering, Journal of Materials Science: Materials in Electronics, 14 (2003) 431-435. [61] D.M. Mattox, The Foundations of Vacuum Coating Technology, (2003) 13. [62] L.A. Donohue, I.J. Smith, W.D. Munz, I. Petrov and J.E. Greene, microstructure and oxidation resistance of Ti1-x-y-zAlxCryYzN layers grown by combined steered-arc/unbalanced magnetron sputter deposition, Surf. Coat. Technol., 94-95 (1997) 226-231. [63] H. Ichimura and A. Kawana, High temperature oxidation of ion-plated TiN and TiAlN films, J. Master. Res. 8 (1996) 1093-1100. [64] A.E. McHale (Ed.), Phase Equilibria Diagrams: Phase Diagrams for Ceramists: Vol. 10. Borides, Carbides, and Nitrides, The American Ceramic Society, Westerville, OH, (1994) 415. [65] D Pilloud, J.F. Pierson and L. Pichon, Influence of the silicon concentration on the optical and electrical properties of reactively sputtered Zr–Si–N nanocomposite coatings, Mater. Sci. Eng. B, 131 (2006) 36-39. [66] I.W. Park, S.R. Choi, J.H. Suh, C.G. Park and K.H. Kim, Deposition and mechanical evaluation of superhard Ti–Al–Si–N nanocomposite films by a hybrid coating system, Thin Solid Films, 447-448 (2004) 443-448. [67] C. Mitterer, P.H. Mayrhofer and J. Musil, Thermal stability of PVD hard coatings, Vacuum, 71 (2003) 279–284. [68] P.H. Mayrhofer, C. Mitterer and J. Musil, Structure–property relationships in single-and dual-phase nanocrystalline hard coatings, Surf, Coat. Technol., 174-175 (2003) 725-731. [69] B. Navinšek, P. Panjan and A. Cvelbar, Characterization of low temperature CrN and TiN (PVD) hard coatings, Surf, Coat. Technol., 74-75 (1995) 155-161. [70] B. Rother and H. Kappl, Effects of low boron concentrations on the thermal stability of hard coatings, Surf, Coat. Technol., 96 (2003) 163-168. [71] E. Martinez, R. Sanjines, A. Karimi, J. Esteve and F. Lévya, Mechanical properties of nanocomposite and multilayered Cr–Si–N sputtered thin films, Surf, Coat. Technol., 180-181 (2004) 570-574. [72] V. Derflinger, H.Brändle and H.Zimmermann, New hard/lubricant coating for dry machining, Surf, Coat. Technol., 113 (1999) 286-292. [73] B.Navinšek, P.Panjan, M.Čekada and D.T.Quintob, Interface characterization of combination hard/solid lubricant coatings by specific methods, Surf, Coat. Technol., 154 (2002) 194-203. [74] M. Kawate, A.K. Hashimoto, T. Suzuki, Oxidation resistance of Cr1-xAlxN and Ti1-xAlxN films, Surf, Coat. Technol., 165 (2003) 163-167. [75] Y.Makino, Prediction of phase change in pseudobinary transition metal aluminum nitrides by band parameters method, Surf, Coat. Technol., 193 (2005) 185-191. [76] R. Wuhrer and W.Y. Yeung, A comparative study of magnetron co-sputtered nanocrystalline titanium aluminium and chromium aluminium nitride coatings, Scripta Materialia, 50 (2004) 1461. [77] A.E. Reiter, V.H. Derflinger, B. Hanselmann, T. Bachmann and B. Sartory, Investigation of the properties of Al1−xCrxN coatings prepared by cathodic arc evaporation, Surf, Coat. Technol., 200 (2005) 2114 – 2122. [78] G. Gassner, P.H. Mayrhofer, K. Kutschej, C. Mitterer and M. Kathrein, Magnéli phase formation of PVD Mo–N and W–N coatings, Surf, Coat. Technol., 201 (2006) 3335–3341. [79] J. Van Landuyt, Shear structures and crystallographic shear propagation, Journal de Physique Colloques, 35 (1974) pp. C7-53-C7-63. [80] S.A. Glatz, C.M. Koller, H. Bolvardi, S. Kolozsvári, H. Riedl and P.H. Mayrhofer, Influence of Mo on the structure and the tribomechanical properties of arc evaporated Ti-Al-N, Surf, Coat. Technol., 311 (2017) 330–336. [81] K.H. Kim, E.Y. Choi, S.G. Hong, B.G. Park, J.H. Yoon and J.H. Yong, Syntheses and mechanical properties of Cr–Mo–N coatings by a hybrid coating system, Surf, Coat. Technol., 201 (2006) 4068–4072. [82] A. Cavaleiro and C. Louro, Nanocrystalline structure and hardness of thin films, Vacuum, 64 (2002) 211-218. [83] E. Martinez, R.Sanjinés, A. Karimi, J. Esteve and F. Lévy, Mechanical properties of nanocomposite and multilayered Cr–Si–N sputtered thin films, Surf. Coat. Technol., 180-181 (2004) 570-574. [84] S. Carvalho, L. Rebouta, A. Cavaleiro, L.A. Rocha, J. Gomes and E. Alves, Microstructure and mechanical properties of nanocomposite (Ti,Si,Al)N coatings, Thin Solid Films, 398-399 (2001) 391-396. [85] R.F. Zhang, S.H. Sheng, and S. Vepřek, Mechanical strengths of silicon nitrides studied by ab initio calculations, Appl. Phys. Lett., 90 (2007) 191903. [86] S. Vepřek, A.S. Argon and R.F. Zhang, Origin of the hardness enhancement in superhard nc-TiN/a-Si3N4 and ultrahard nc-TiN/a-Si3N4/TiSi2 nanocomposites, Phil. Mag. Lett., 87 (2007) 955. [87] S. Vepřek and A.S. Argon, Towards the understanding of mechanical properties of super- and ultrahard nanocomposites, J. Vac. Sci. Technol., B 20 (2002) 650. [88] C. Lu, Y.W. Mai and Y.G. Shen, Recent advances on understanding the origin of superhardness in nanocomposite coatings: A critical review, J Mater. Sci., 41 (2006) 937–950. [89] J. Musil, S. Zhang and N. Ali (Eds.), Nanocomposite Films and Coatings, London, Imperial College Press, London (2007), p. 281. [90] S. Vepřek, M. Haussmann, S. Reiprich, L. Shizhi and J. Dian, Novel thermodynamically stable and oxidation resistant superhard coating materials, Surf. Coat. Technol., 86-87 (1996) 394-401. [91] S. Vepřek, M.G.J. Vepřek -Heijman, P. Karvankova, J. Prochazka, Review: Different approaches to superhard coatings and nanocomposites, Thin Solid Films, 476 (2005) 1-29. [92] R.F. Zhang and S. Vepřek, On the spinodal nature of the phase segregation and formation of stable nanostructure in the Ti–Si–N system, Mater. Sci. Eng. A, 424 (2006) 128. [93] R.F. Zhang and S. Vepřek, Phase stabilities of self-organized nc-TiN/a-Si3N4 nanocomposites and of Ti1 − xSixNy solid solutions studied by ab initio calculation and thermodynamic modeling, Thin Solid Films 516 (2008) 2264–2275. [94] A. Raveh, I. Zukerman, R. Shneck, R. Avni and I. Fried, Thermal stability of nanostructured superhard coatings: A review, Surf. Coat. Technol., 201 (2007) 6136-6142. [95] T. Polcar and A. Cavaleiro, High temperature properties of CrAlN, CrAlSiN and AlCrSiN coatings – Structure and oxidation, Mater. Chem. Phys., 129 (2011) 195-201. [96] S. Zhang, L. Wang, Q. Wang and M. Li, A superhard CrAlSiN superlattice coating deposited ny a multi-arc ion plating: II. Thermal stability and oxidation resistance, Surf. Coat. Technol., 214 (2013) 153-159. [97] S.K. Tien, C.H. Lin, Y.Z. Tsai and J.G. Duh, Effect of nitrogen flow on the properties of quaternary CrAlSiN coatings at elevated temperatures, Surf. Coat Technol., 202 (2007) 735-739. [98] C. Merlet, An Accurate Computer Correction Program for Quantitative Electron Probe Microanalysis, Mikrochim. Acta 114-115 (1994) 363-376. [99] C.M. Cheng and Y.T. Cheng, On the initial unloading slope in indentation of elastic-plastic solids by an indenter with an axisymmetric smooth profile, Appl. Phys. Lett., 71 (1997) 2623. [100] W.C. Oliver, Alternative technique for analyzing instrumented indentation data, J. Matter. Res., 16 (2001) 3202. [101] W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Matter. Res., 7 (1992) 1564. [102] T.E.Weirich, J.L. Lábár and X. Zou (Ed.), Electron Crystallography: Novel Approaches for Structure Determination of Nanosized Materials, Springer, (2006). [103] S. Ma, J. Prochazka, P. Karvankova, Q. Ma, X. Niu, X. Wang, D. Ma and K. Xu, S. Veprek, Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN, Surf. Coat. Technol., 194 (2005) 143-148. [104] S.K. Kim, J.K. Kim and K.H. Kim, Influence of deposition conditions on the microstructure and mechanical properties of Ti–Si–N films by DC reactive magnetron sputtering, Thin Solid Films, 420-421 (2002) 360-365. [105] S. Liu, R. Raghavan, X.T. Zeng, J. Michler and W.J. Clegg, Compressive deformation and failure of CrAlN/Si3N4 nanocomposite coatings, Appl. Phys. Lett., 104 (2014) 081919. [106] J.H. Park, W.S. Chung, Y.R. Cho and K.H. Kim, Synthesis and mechanical properties of Cr–Si–N coatings deposited by a hybrid system of arc ion plating and sputtering techniques, Surf. Coat. Technol., 188–189 (2004) 425– 430. [107] U.C. Oh and J.H. Je, Effects of strain energy on the preferred orientation of TiN thin films, J. Appl. Phys., 74 (1993) 1692. [108] L. Chekour, C. Nouveau, A. Chala, C. Labidi, N. Rouag and M.A. Djouadi, Growth mechanism for chromium nitride films deposited by magnetron and triode sputtering methods, Surf. Coat. Technol., 200 (2005) 241. [109] R.A. Koshy, M.E. Graham and L.D. Marks, Temperature activated self-lubrication in CrN/Mo2N nanolayer coatings, Surf. Coat. Technol., 204 (2010) 1359-1365. [110] T. Suszko, W. Gulbinski and J. Jagielski, The role of surface oxidation in friction processes on molybdenum nitride thin films, Surf. Coat. Technol., 194 (2005) 319-324. [111] J. Takadoum, H. H. Bennani and D. Mairey, The Wear Characteristics of Silicon Nitride, J. Eur. Ceram. Soc. 18 (1998) 553. [112] S.S. Kim, Y.H. Chae and D.J. Kim, Tribological characteristics of silicon nitride at elevated temperatures, Tribol. Lett. 9 (2000) 3–4. [113] T. Polcar, T. Vitu, J. Sondor and A. Cavaleiro, Tribological Performance of CrAlSiN Coatings at High Temperatures, Plasma Process. Polym., 6 (2009) S935-S940. [114] T. Polcar and A. Cavaleiro, High-temperature tribological properties of CrAlN, CrAlSiN and AlCrSiN coatings, Surf. Coat. Technol., 206 (2011) 1244-1251. [115] K. Kato and K. Adachi, Wear Mechanisms, 2001. [116] I.W. Lyo, H.S. Ahn, D.S. Lim, Microstructure and tribological properties of plasma-sprayed chromium oxide–molybdenum oxide composite coatings, Surf. Coat. Technol. 163 –164 (2003) 413–421. [117] S.A. Glatz, C.M. Koller, H. Bolvardi, S. Kolozsvári, H. Riedl, P.H. Mayrhofer, Influence of Mo on the structure and the tribomechanical properties of arc evaporated Ti-Al-N, Surf. Coat. Technol. 311 (2017) 330–336. [118] J.L. Rosa, A. Robin, M.B. Silva, C.A. Baldan and M.P. Peres, Electrodeposition of copper on titanium wires: Taguchi experimental design approach, J. Mater. Process. Technol., 209(2009) 1181-1188. [119] R.S. Rao, R. Sreenivas; C.G. Kumar; R.S. Prakasham and P.J. Hobbs, The Taguchi methodology as a statistical tool for biotechnological applications: A critical appraisal, Biotechnology Journal, 3 (2008) 510–523. [120] R.S. Rao, R.S. Prakasham, K. K. Prasad, S. Rajesham, P.N. Sarma and L.V. Rao, Xylitol production by Candida sp.: parameter optimization using Taguchi approach, Process Biochemistry 39 (2004) 951–956. [121] Selden, Paul H.: “Sales Process Engineering: A Personal Workshop” Milwaukee, Wisconsin: ASQ Quality Press, (1997) P. 237. [122] G. Taguchi and S. Konishi, Orthogonal Arrays and Linear Graphs: Tools for Quality Engineering, American Supplier Institute, Inc., 1987. [123] M.S. Phadke, Quality Engineering Using Robust Design, Prentice-Hall, Englewood Cliffs, NJ, 1989, Appendix C, P. 277. [124] H.H. Lee, Taguchi Methods: Principles and Practices of Quality Design, Gau-Lih Book Co. Ltd., Taipei, Taiwan, 2011. [125] M.A. Fryman, Quality and Process Improvement, (2001) P. 328. [126] A. Cristian and N. Popescu, he Application of Taguchi’s “Quality Loss” concept to dimensional precision and ISO fits, Bulletin of the Transilvania University of Braşov, Series I, 5 (2012).
|