|
References 1. Masuko, K., et al., Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell. Ieee Journal of Photovoltaics, 2014. 4(6): p. 1433-1435. 2. J Britt, C.F., Thin‐film CdS/CdTe solar cell with 15.8% efficiency. Applied Physics Letters, 1993. 62(22). 3. Green, M.A., et al., Solar cell efficiency tables (version 46). Progress in Photovoltaics, 2015. 23(7): p. 805-812. 4. BM, K., 27.6% conversion efficiency, a new record for single-junction solar cellsunder 1 sun illumination., in Proceedings of the 37thIEEE Photovoltaic Specialists Conference. 2011. 5. Ward, J.S., et al., A 21.5% efficient Cu(In,Ga)Se-2 thin-film concentrator solar cell. Progress in Photovoltaics, 2002. 10(1): p. 41-46. 6. Cruz-Campa, J.L., et al., Microsystems enabled photovoltaics: 14.9% efficient 14 mu m thick crystalline silicon solar cell. Solar Energy Materials and Solar Cells, 2011. 95(2): p. 551-558. 7. Branham, M.S., et al., 15.7% Efficient 10-mu m-Thick Crystalline Silicon Solar Cells Using Periodic Nanostructures. Advanced Materials, 2015. 27(13): p. 2182-+. 8. Li, G.J., et al., Nanopyramid Structure for Ultrathin c-Si Tandem Solar Cells. Nano Letters, 2014. 14(5): p. 2563-2568. 9. Radhakrishnan, H.S., et al., Improving the Quality of Epitaxial Foils Produced Using a Porous Silicon-based Layer Transfer Process for High-Efficiency Thin-Film Crystalline Silicon Solar Cells. Ieee Journal of Photovoltaics, 2014. 4(1): p. 70-77. 10. Abstreiter, G., et al., Strain-induced two-dimensional electron gas in selectively doped Si/Si x Ge 1− x superlattices. Physical Review Letters, 1985. 54(22): p. 2441. 11. Canham, L., K. Barraclough, and D. Robbins, 1.3‐μm light‐emitting diode from silicon electron irradiated at its damage threshold. Applied physics letters, 1987. 51(19): p. 1509-1511. 12. Canham, L.T., Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Applied Physics Letters, 1990. 57(10): p. 1046-1048. 13. Armand, M. and J.M. Tarascon, Building better batteries. Nature, 2008. 451(7179): p. 652-657. 14. Ozdemir, S. and J.L. Gole, The potential of porous silicon gas sensors. Current Opinion in Solid State and Materials Science, 2007. 11(5-6): p. 92-100. 15. Canham, L.T. Properties of porous silicon. 1997. Institution of Electrical Engineers. 16. Zhang, X.G., S.D. Collins, and R.L. Smith, Porous Silicon Formation and Electropolishing of Silicon by Anodic Polarization in Hf Solution. Journal of the Electrochemical Society, 1989. 136(5): p. 1561-1565. 17. Memming, R. and G. Schwandt, Anodic Dissolution of Silicon in Hydrofluoric Acid Solutions. Surface Science, 1966. 4(2): p. 109-&. 18. Turner, D.R., Electropolishing Silicon in Hydrofluoric Acid Solutions. Journal of the Electrochemical Society, 1958. 105(3): p. C55-C56. 19. Beale, M.I.J., et al., Microstructure and Formation Mechanism of Porous Silicon. Applied Physics Letters, 1985. 46(1): p. 86-88. 20. Lehmann, V. and U. Gosele, Porous Silicon Formation - a Quantum Wire Effect. Applied Physics Letters, 1991. 58(8): p. 856-858. 21. Föll, H., et al., Formation and application of porous silicon. Materials Science and Engineering: R: Reports, 2002. 39(4): p. 93-141. 22. Are electrical properties of an aluminum–porous silicon junction governed by dangling bonds? Applied Physics Letters, 1995. 67(11): p. 1570-1572. 23. Gole, J.L. and S.E. Lewis, Porous Silicon–Sensors and Future Applications, in Nanosilicon. 2008, Elsevier. p. 149-175. 24. Björkqvist, M., et al., Characterization of thermally carbonized porous silicon humidity sensor. Sensors and Actuators A: Physical, 2004. 112(2-3): p. 244-247. 25. Rittersma, Z., et al., A novel surface-micromachined capacitive porous silicon humidity sensor. Sensors and Actuators B: Chemical, 2000. 68(1-3): p. 210-217. 26. Björkqvist, M., et al., Comparison of stabilizing treatments on porous silicon for sensor applications. physica status solidi (a), 2003. 197(2): p. 374-377. 27. Arakelyan, V., et al., Hydrogen sensitive gas sensor based on porous silicon/TiO2− x structure. Physica E: Low-dimensional Systems and Nanostructures, 2007. 38(1-2): p. 219-221. 28. Rahimi, F. and F. Razi, Characterization of porous poly-silicon impregnated with Pd as a hydrogen sensor. Journal of Physics D: Applied Physics, 2004. 38(1): p. 36. 29. Rahimi, F., Characterization of Pd nanoparticle dispersed over porous silicon as a hydrogen sensor. Journal of Physics D: Applied Physics, 2007. 40(23): p. 7201. 30. Air Pollution Control Act. 2012. 31. Massera, E., et al., Improvement of stability and recovery time in porous-silicon-based NO2 sensor. Sensors and Actuators B: Chemical, 2004. 102(2): p. 195-197. 32. Boarino, L., et al., NO2 monitoring at room temperature by a porous silicon gas sensor. Materials Science and Engineering: B, 2000. 69: p. 210-214. 33. Chakane, S., A. Gokarna, and S. Bhoraskar, Metallophthalocyanine coated porous silicon gas sensor selective to NO2. Sensors and Actuators B: Chemical, 2003. 92(1-2): p. 1-5. 34. Baratto, C., et al., A novel porous silicon sensor for detection of sub-ppm NO2 concentrations. Sensors and Actuators B: Chemical, 2001. 77(1-2): p. 62-66. 35. Lewis, S.E., et al., Sensitive, selective, and analytical improvements to a porous silicon gas sensor. Sensors and Actuators B: Chemical, 2005. 110(1): p. 54-65. 36. Thai, D.L., et al., High Performance Three-Dimensional Chemical Sensor Platform Using Reduced Graphene Oxide Formed on High Aspect-Ratio Micro-Pillars. Advanced Functional Materials, 2015. 25(6): p. 883-890. 37. Sberveglieri, G., S. Groppelli, and P. Nelli, Highly sensitive and selective NOx and NO2 sensor based on Cd-doped SnO2 thin films. Sensors and Actuators B: Chemical, 1991. 4(3-4): p. 457-461. 38. Koshizaki, N. and T. Oyama, Sensing characteristics of ZnO-based NOx sensor. Sensors and Actuators B: Chemical, 2000. 66(1-3): p. 119-121. 39. Sadaoka, Y., T. Jones, and W. Göpel, Fast NO2 detection at room temperature with optimized lead phthalocyanine thin-film structures. Sensors and Actuators B: Chemical, 1990. 1(1-6): p. 148-153. 40. Miura, N., et al., Development of high-performance solid-electrolyte sensors for NO and NO2. Sensors and Actuators B: Chemical, 1993. 13(1-3): p. 387-390.
|