帳號:guest(3.15.18.80)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭堯文
作者(外文):Zheng, Yao-Wen
論文名稱(中文):以四元靶濺鍍製作軟性銅銦鎵硒薄膜太陽能電池
論文名稱(外文):High efficiency of flexible Cu(In,Ga)Se2 solar cell by sputtering from quaternary target
指導教授(中文):賴志煌
指導教授(外文):Lai, Chih-Haung
口試委員(中文):甘炯耀
謝東坡
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031562
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:61
中文關鍵詞:銅銦鎵硒太陽能電池軟性基板一階段濺鍍能隙工程
外文關鍵詞:CIGS solar cellflexible substrateone-step sputteringbandgap engineering
相關次數:
  • 推薦推薦:0
  • 點閱點閱:484
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
銅銦鎵硒(Cu(In,Ga)Se2, CIGS solar cell)太陽能電池是太陽能電池產業中最具潛力的材料之一,生產時能源消耗為傳統矽基太陽能的一半,業界視為極具市場潛力的產品,目前太陽能板普遍採用矽基材或玻璃的太陽能板,由於重量重、不利於攜帶,所以現正在發展薄膜太陽能板及有機太陽能板的技術,將可減輕太陽能板的重量,並且具有軟的特性,可以捲曲、攜帶亦可降低製程成本。
本論文我們利用升溫鍍膜的方式,以單一四元靶及化合物靶、一階段共濺鍍且不需有額外硒氣氛的供給,於軟性的不銹鋼基板上鍍製CIGS吸收層,並完成元件。我們首先探討如何將吸收層轉移至不銹鋼基板上,能不受到不銹鋼所帶來的雜質影響,並探討其薄膜結構、電性;爾後,利用共濺鍍方式,同時提升開路電壓、短路電流及填充因子,進而提高元件效率。
在此研究中,我們藉由在吸收層內製作Normal Grading的方式,可有效將效率由最初的11%提升至超過14%。
The polycrystalline Cu(In,Ga)Se2 (CIGS) absorber is the most promising material for photovoltaics because of its highest conversion efficiency among all thin-film technologies. Moreover, by using stainless steel as substrates, the flexible CIGS thin film solar cells can be achieved by integrating roll-to-roll technique with high throughput and low thermal budget, leading to the low manufacturing cost and new market of flexible solar cells. Here, we fabricated high efficiency flexible CIGS solar cell by co-sputtering of quaternary CIGS target and GaSe2 target. The unique of this process is that the Ga profile and Ga content in CIGS films can be precisely controlled during the CIGS deposition, in addition, no any further post-selenization is needed. The various slope of Ga grading can be realized by simply tuning the sputtering condition of GaSe2 target. Back grading in CIGS solar cells is seen to improve device efficiency compared to ungraded device. This improvement is due to a field assisted carrier collection resulting in an improved EQE at long wavelength and passivation of the back contact recombination for the loss in FF and Voc. After optimization of Ga normal grading inside CIGS absorber, the highest efficiency of 14.28% (without anti-reflection coating) by using CIGS quaternary target on flexible substrate can be achieved with an open circuit voltage of 620 mV, short circuit current density of 30.64 mA/cm2 and fill factor of 75%.
第一章 簡介 8
1.1 銅銦鎵硒太陽能電池發展 8
第二章 文獻回顧 10
2.1 太陽能電池原理 10
2.1.1原理 10
2.1.2電壓電流特性 11
2.2薄膜性質探討 12
2.2.1成分組成 12
2.2.2結構特性 13
2.2.3缺陷種類 14
2.2.4吸收係數 16
2.2.5能隙範圍 17
2.2.6載子複合機制 18
2.3不鏽鋼基板 20
第三章 實驗 27
3.1試片製備 27
3.2實驗設備 28
3.3實驗流程 28
3.4分析儀器 29
第四章 結果與討論 33
4.1銅21%靶材鍍於不銹鋼基板CIGS性質 33
4.1.1不鏽鋼基板 33
4.1.2表面粗糙度 37
4.2改變鍍膜溫度對薄膜性質的影響 39
4.2.1薄膜成分 39
4.2.2晶體結構 41
4.2.3表面形貌 42
4.2.4電性分析 45
4.3能帶工程 47
4.3.1 Normal grading 47
4.3.2元件分析 50
第五章 結論 55
參考文獻 56
[1] R. Kamada, T. Yagioka, S. Adachi, A. Handa, K. F. Tai,T. Kato and H. Sugimoto, Proc. IEEE 43rd Photovoltaic Specialists Conference, Portland, OR, 2016, pp. 1287–1291.
[2] E. Cadel, N. Barreau, J. Kessler, P. Pareige, Atom probe study of sodium distribution in polycrystalline Cu(In,Ga)Se2 thin film, ActaMater., 2010, p.2634–2637.
[3] Chirilă, A., et al., Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. Nat Mater, 2011. 10(11): p. 857-861.
[4] http://www.nrel.gov
[5] https://commons.wikimedia.org/wiki/File:Pn-junction-equilibrium.png
[6] Chang, C.H., A. Davydov, B.J. Stanbery and T.J. Anderson, 1996. Thermodynamic assessment of the Cu-In-Se system and application to the thin film photovoltaics. Proceedings of the Conference Record of the 25th IEEE Photovoltaic Specialists Conference, pp: 849-849
[7] Stanbery, B.J., Copper Indium Selenides and Related Materials for Photovoltaic Devices. Critical Reviews in Solid State and Materials Sciences, 2002. 27(2): p. 73-117
[8] Ramanujam, J. and U.P. Singh, Copper indium gallium selenide based solar cells - a review. Energy & Environmental Science, 2017. 10(6): p. 1306-1319.
[9] Rincón, C. and R. Márquez, Defect physics of the CuInSe2 chalcopyrite semiconductor. Journal of Physics and Chemistry of Solids, 1999. 60(11): p. 1865-1873.
[10] Dagan, G., et al., Defect level identification in copper indium selenide (CuInSe2) from photoluminescence studies. Chemistry of Materials, 1990. 2(3): p. 286-293.
[11] Rau, U. and H.W. Schock, Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges. Applied Physics A, 1999. 69(2): p. 131-147.
[12] Cahen, D. and R. Noufi, Defect chemical explanation for the effect of air anneal on CdS/CuInSe2 solar cell performance. Applied Physics Letters, 1989. 54(6): p. 558-560.
[13] J. Hedstrom, H. Ohlsen, M. Bodegard, et al, ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance Photovoltaic Specialists Conference, 1993., IEEE , pp. 364-371
[14] Ruckh, M., et al., Influence of substrates on the electrical properties of Cu(In,Ga)Se2 thin films. Solar Energy Materials and Solar Cells, 1996. 41: p. 335-343.
[15] V. Probst, et al. "Improved CIS Thin Film Solar Cells Through Novel Impurity Control Techniques", 13th European Photovoltaic Solar Energy Conference, 1995, pp. 2123-2126.
[16] Kronik, Leeor., Cahen, D. and Schock, H. W, Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance. Adv. Mater., 1998, 10: p.31–36.
[17] Niles, D.W., et al., Na impurity chemistry in photovoltaic CIGS thin films: Investigation with x-ray photoelectron spectroscopy. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1997. 15(6): p. 3044-3049.
[18] Contreras, M.A., et al. On the role of Na and modifications to Cu(In,Ga)Se absorber materials using thin-MF (M=Na, K, Cs) precursor layers [solar cells]. in Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997. 1997.
[19] B. M. Keyes, F. Hasoon, P. Dippo, A. Balcioglu, and F. Abulfotuh, “Influence of Na on the electro-optical properties of Cu(In,Ga)Se2,” in Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference, 1997, pp. 479–482.
[20] http://unisun.co/?page_id=142
[21] P.G.U.A.H-J. Lewerenz and H. Jungblut, 1995.
[22] Chantana, J., et al., Controlled back slope of Ga/(In+Ga) profile in Cu(In,Ga)Se2 absorber fabricated by multi layer precursor method for improvement of its photovoltaic performance. Solar Energy Materials and Solar Cells, 2015. 133: p. 223.
[23] J. Hedström, H. Ohlsen, M. Bodegård, A. Kylner, L. Stolt, ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance, in: Proceedings of the 23rd IEEE Photovoltaic Specialists Conference, 1993, pp.364–371.
[24] J. Holz, F. Karg, H. vonPhilipsborn, The effect of substrate impurities on the electronic conductivity in CIS thin films, Presented at the 12th European Photovoltaic Solar Energy Conference, Amsterdam, Netherlands, 1994, p.1592.
[24] M. Bodegård, L. Stolt, J. Hedström, The influence of sodium on the grain structure of CuInSe2 films for photovoltaic application, Presented at the 12th European Photovoltaic Solar Energy Conference, Amsterdam, UK, 1994, p.1743.
[25] S. Zweigart, D. Schmid, J. Kessler, H. Dittrich, H. W. Schock, Studies of the growth mechanism of poly crystalline CuInSe2 thin films prepared by a sequential process, 146(1995)233–238.
[26] T. Walter, D. Hariskos, R. Heberholz, V. Nadenau, R. Schäffler, H. W. Schock, On the role of oxidation for the performance of Cu(In,Ga)(S,Se)2 polycrystalline thin film solar cells,in: Proceedings of the 13th European Photovoltaic solar energy conference,1995, p.1999.
[27] C. Heske, R. Fink, E. Umbach, W. Riedl, F. Karg, Na-induced effects on the electronic structure and composition of Cu(In,Ga)Se2 thin-film surfaces, Appl. Phys. Lett, 1996.68(24),.
[28] M. Bodegård, J. Hedström, K. Granath, A. Rockett, L. Stolt, Na precursors for coevaporated Cu(In,Ga)Se2 photovoltaic films, in: Proceedings of the1 3th European Photovoltaic solar energy conference, 1995, p.2080.
[29] Contreras, M.A., et al. On the role of Na and modifications to Cu(In,Ga)Se absorber materials using thin-MF (M=Na, K, Cs) precursor layers [solar cells]. in Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997. 1997.
[30] T. Nakada, D. I. H. Ohbo, A. Kunioka, Effects of sodium on Cu(In,Ga)Se2-based thin film and solar cells, J. Appl. Phys., 1997, p.732–737.
[31] U. Rau, M. Schmitt, F. Engelhardt, O. Seifert, W. Parisi, J. Riedl, Rimmasch, F. Karg, Impact Of Na And Sin corporation On The Electronic Transport Mechanisms Of Cu(In,Ga)Se2 Solar Cells, Solid State Commun, 1998, p.59–63.
[33] D.J. Schroeder, A. A. Rockett, Electronic effects of sodium in epitaxial CuIn1-xGax Se2, J.Appl.Phys., 1997, 4982.
[35] F. Hergert, S. Jost, R. Hock, M. Purwins, J. Palm, Formation reactions of chalcopyrite compounds and the role of sodium doping, Thin Solid Films, 2007, p.5843–5847.
[36] J. Eid, H. Liang, I. Gereige, S. Lee, J. V. Duren, Combinatorial study of NaF addition in CIGSe films for high efficiency solar cells, Prog. Photovolt.: Res.Appl., 2015, p.269–280.
[37] D. Rudmann, G. Bilger, M. Kaelin, F. J. Haug, H. Zogg, A. N. Tiwari, Effects of NaF
Coevaporation on structural properties of Cu(In,Ga)Se2 thin films, Thin Solid Films, 2003, p.37–40.
[38] M. Ruckh, D. Schmid, M. Kaiser, R. Schaffler, T. Walter, H. W. Schock, Influence of substrates on the electrical properties of Cu(In,Ga)Se2 thin films, Sol. Energy Mater. Sol. Cells, 1996, p.335–343.
[39] M. A. Contreras, M. Romero, R. Noufi, Characterization of Cu(In,Ga)Se2 materials used in record performance solar cells, Thin Solid Films, 2006, p.51–54.
[40] D. H. Cho, K. S. Lee, J. H. Chung, Y. D. Chung, J.H. Kim, J. Kim, Electronic effect of Na on Cu(In,Ga)Se2 solar cells, Appl. Phys. Lett., 2012.
[41] D. Rudmann, D. Brémaud, A. F. daCunha, G. Bilger, A. Strohm, M. Kaelin, H. Zogg, A. N. Tiwari, Sodium incorporation strategies for CIGS growth at different temperatures, Thin Solid Films, 2005, P.55–60.
[42] S. Ishizuka, A. Yamada, M. MonirulIslam, H. Shibata, PaulFons, T. Sakurai, K. Akimoto, S. Niki, Na-induced variations in the structural, optical, and electrical properties of Cu(In,Ga)Se2 thin films, J.Appl.Phys.,2009.
[43] A. Rockett, J. S. Britt, T. Gillespie, C. Marshall, M. M. AlJassim, F. Hasoon, R. Matson, B. Basol, Na in selenized Cu(In,Ga)Se2 on Na-containing and Na-free glasses: distribution, grain structure, and device performances, Thin Solid Films, 2000, P212–217.
[44] D. Braunger, D. Hariskos, G. Bilger, U. Rau, H. W. Schock, Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se2 thin films, Thin Solid Films, 2000, p.161–166.
[45] M. Theelen, V. Hans, N. Barreau, H. Steijvers, Z. Vroon, M. Zeman, The impact of alkali elements on the degradation of CIGS solar cells, Prog. Photovoltaics Res. Appl., 2015, p.537–545.
[46] O. Cojocaru-Mirédina, P.Choi,R.Wuerz, D. Raabe, Atomic-scale distribution of impurities in CuInSe2-based thin-film solar cells, Ultramicroscopy, 2011, p.552–556.
[47] O. Cojocaru-Miredin, P. P. Choi, D. A. Ras, S. S. Schmidt, R. Caballero, D. Raabe, Characterization of Grain Boundaries in Cu(In,Ga)Se2 films using Atom Probe Tomography, IEEEJ.Photovolt.p.2011, p.207–212.
[48] E. Cadel, N. Barreau, J. Kessler, P. Pareige, Atom probe study of sodium distribution in polycrystalline Cu(In,Ga)Se2 thin film, ActaMater., 2010, p.2634–2637.
[49] P. P. Choi, O. Cojocaru-Mirédin, R. Wuerz, D. Dierk, Comparative atom probe study of Cu(In,Ga)Se2 thin-film solar cells deposited on soda-lime glass and mild steel substrates, J. Appl. Phys., p.2011.
[50] S.H. Wei, S. B. Zhang, A. Zunger, Effects of Na on the electrical and structural properties of CuInSe2, J. Appl. Phys., 1999, p.7214.
[51] L. Kronik, D. Cahen, H. W.Schock, Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance, Adv. Mater., 1998, p.31–36.
[52] Kessler, F. and D. Rudmann, Technological aspects of flexible CIGS solar cells and modules. Solar Energy, 2004. 77(6): p. 685-695.
[53] Reinhard, P., et al. High efficiency flexible Cu(In,Ga)Se2 solar cells. in 2013 Twentieth International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD). 2013.
[54] Başol, B.M., et al., Copper indium diselenide thin film solar cells fabricated on flexible foil substrates. Solar Energy Materials and Solar Cells, 1993. 29(2): p. 163-173.
[55] W.K. Batchelor, M.E. Beck, R. Huntington, J.S. Britt, Flexible and light weight substrates for Cu(In,Ga)Se2 solar cells and modules, Conference Record of the IEEE Photovoltaic Specialists Conference, 2000.
[56] Eberspacher, C., K. Pauls, and J. Serra. Non-vacuum processing of CIGS solar cells. in Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002. 2002.
[57] Niki, S., et al., CIGS absorbers and processes. Progress in Photovoltaics: Research and Applications, 2010. 18(6): p. 453-466.
[58] https://solarpowermanagement.net/article/74403/NanosolarCIGS_achieve-171_aperture_efficiency.
[59] Reinhard, P., et al. Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules. in 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2. 2012.
[60] P. Jackson, P. Grabitz, A. Strohm, G. Bilger, H. W.Schock, Contamination of Cu(In,Ga)Se2 solar cells by metallic substrate elements, in: Proceedings of the 19th European Photovoltaic Solar Energy Conference, 2004, pp.1936–1938.
[61] Wuerz, R., et al., CIGS thin-film solar cells on steel substrates. Thin Solid Films, 2009. 517(7): p. 2415-2418.
[62] Herz, K., et al., Diffusion barriers for CIGS solar cells on metallic substrates. Thin Solid Films, 2003. 431: p. 392-397.
[63] Sakurai, K., et al., Properties of Cu(In,Ga)Se2:Fe Thin Films For Solar Cells. MRS Proceedings, 2011. 865.
[64] Pianezzi, F., et al., Influence of Ni and Cr impurities on the electronic properties of Cu(In,Ga)Se2 thin film solar cells. Progress in Photovoltaics: Research and Applications, 2015. 23(7): p. 892-900
[65] Cho, D.-H., et al., Photovoltaic performance of flexible Cu(In,Ga)Se2 thin-film solar cells with varying Cr impurity barrier thickness. Current Applied Physics, 2013. 13(9): p. 2033-2037.
[66] Shi, C.Y., et al., Cu(In,Ga)Se2 solar cells on stainless-steel substrates covered with ZnO diffusion barriers. Solar Energy Materials and Solar Cells, 2009. 93(5): p. 654-656.
[67] Kim, C.-W., et al., Characterization of Flexible CIGS Thin Film Solar Cells on Stainless Steel with Intrinsic ZnO Diffusion Barriers. Journal of Nanoscience and Nanotechnology, 2016. 16(5): p. 5124-5127.
[68] Bae, D., et al., Investigation of Al2O3 diffusion barrier layer fabricated by atomic layer deposition for flexible Cu(In,Ga)Se2 solar cells. Renewable Energy, 2013. 55: p. 62-68.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *