|
[1]H. Scherrer and S. Scherrer, Thermoelectrics Handbook: Macro to Nano. ed. Rowe, DM, Taylor & Francis (2006). [2]G.S. Nolas, J. Sharp, and J. Goldsmid, Thermoelectrics: basic principles and new materials developments. Vol. 45. 2013: Springer Science & Business Media. [3]C. N. Liao, K. M. Liou, and H. S. Chu, Enhancement of thermoelectric properties of sputtered Bi–Sb–Te thin films by electric current stressing. Appl. Phys. Lett., 93, 042103 (2008). [4]C. N. Liao, L. C. Wu, and J. S. Lee, Thermoelectric properties of Bi–Sb–Te materials prepared by electric current stressing. J. Alloys Compd., 490, 468-471 (2010). [5]C.-N. Liao and L. C. Wu, Enhancement of carrier transport properties of BixSb2−xTe3 compounds by electrical sintering process. Appl. Phys. Lett., 95, 052112 (2009). [6]J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed., 48, 8616-8639 (2009). [7]P. Rawat, B. Paul, and P. Banerji, Lead telluride based thermoelectrics: Approaches for higher efficiency, Materials and processes for energy: communicating current research and technological developments, A. Méndez-Vilas, Ed, Formatex (2013). [8]S. Bajaj, G. S. Pomrehn, J. W. Doak, W. Gierlotka, H. j. Wu, S. W. Chen, C. Wolverton, W. A. Goddard, and G. J. Snyder, Ab initio study of intrinsic point defects in PbTe: an insight into phase stability. Acta Mater., 92, 72-80 (2015). [9]Y. Tung and M. L. Cohen, Relativistic band structure and electronic properties of SnTe, GeTe, and PbTe. Phys. Rev., 180, 823 (1969). [10]Z. M. Gibbs, H. Kim, H. Wang, R. L. White, F. Drymiotis, M. Kaviany, and G. J. Snyder, Temperature dependent band gap in PbX (X= S, Se, Te). Appl. Phys. Lett., 103, 262109 (2013). [11]Y. Pei, A. F. May, and G. J. Snyder, Self‐Tuning the Carrier Concentration of PbTe/Ag2Te Composites with Excess Ag for High Thermoelectric Performance. Adv. Energy Mater., 1, 291-296 (2011). [12]S. Ahmad, K. Hoang, and S. Mahanti, Ab initio study of deep defect states in narrow band-gap semiconductors: Group III impurities in PbTe. Phys. Rev. Lett., 96, 056403 (2006). [13]J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 321, 554-557 (2008). [14]A. Minnich, M. Dresselhaus, Z. Ren, and G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci., 2, 466-479 (2009). [15]B. Paul and P. Banerji, Embedded Ag-rich nanodots in PbTe: enhancement of thermoelectric properties through energy filtering of the carriers. J. Appl. Phys., 108, 064322 (2010). [16]B. Qiu, H. Bao, G. Zhang, Y. Wu, and X. Ruan, Molecular dynamics simulations of lattice thermal conductivity and spectral phonon mean free path of PbTe: Bulk and nanostructures. Comput. Mater. Sci., 53, 278-285 (2012). [17]K. Biswas, J. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 489, 414-418 (2012). [18]D. M. Hulbert, A. Anders, D. V. Dudina, J. Andersson, D. Jiang, C. Unuvar, U. Anselmi-Tamburini, E. J. Lavernia, and A. K. Mukherjee, The absence of plasma in “spark plasma sintering”. J. Appl. Phys., 104, 033305 (2008). [19]U. Anselmi-Tamburini, S. Gennari, J. Garay, and Z. A. Munir, Fundamental investigations on the spark plasma sintering/synthesis process: II. Modeling of current and temperature distributions. Mater. Sci. Eng., A, 394, 139-148 (2005). [20]P. S. Ho and T. Kwok, Electromigration in metals. Rep. Prog. Phys., 52, 301 (1989). [21]X. Wang, J. Guo, Y. Wang, X. Wu, and B. Wang, Segregation of lead in Cu–Zn alloy under electric current pulses. Appl. Phys. Lett., 89, 061910 (2006). [22]Y. Liu and M. Pritzker, Effect of pulse plating on composition of Sn–Pb coatings deposited in fluoroborate solutions. J. Appl. Electrochem., 33, 1143-1153 (2003). [23]R. Bentley, Theory and practice of thermoelectric thermometry. (1995). [24]J. Martin, L. Wang, L. Chen, and G. Nolas, Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites. Phys. Rev. B, 2009. 79, 115311 (2009). [25]M. Gomez, D. Stevenson, and R. Huggins, Self-diffusion of Pb and Te in lead telluride. J. Phys. Chem. Solids, 32, 335-344 (1971). [26]B. Paul and P. Banerji, Grain structure induced thermoelectric properties in PbTe nanocomposites. Nanosci. Nanotech. Lett., 1, 208-212 (2009). [27]S. Yoneda, E. Ohta, H. Kaibe, I. Shiota, K. Takahashi, Y. Shinohara, Y. Imai, and I. Niskida. Crystal grain size dependence of thermoelectric properties for sintered PbTe by spark plasma sintering technique. in Thermoelectrics, 1997. Proceedings ICT'97. XVI International Conference on. 1997. IEEE. [28]A. Mayadas and M. Shatzkes, Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces. Phys. Rev. B, 1, 1382 (1970). [29]B. Paul and P. Banerji, Optical and electrical properties of as-grown single crystalline PbTe. J. Cryst. Growth, 311, 1260-1263 (2009). [30]C. Vineis, T. Harman, S. Calawa, M. Walsh, R. Reeder, R. Singh, and A. Shakouri, Carrier concentration and temperature dependence of the electronic transport properties of epitaxial PbTe and PbTe/PbSe nanodot superlattices. Phys. Rev. B, 77, 235202 (2008). [31]Y. I. Ravich, B. Efimova, and V. Tamarchenko, Scattering of current carriers and transport phenomena in lead chalcogenides. Phys. Status Solidi (b), 43, 11-33 (1971).
|