帳號:guest(18.221.251.169)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許廷亨
作者(外文):Hsu, Ting-Heng
論文名稱(中文):熱遲滯現象於核-殼結構微米粒子之研究
論文名稱(外文):Thermal Hysteresis Study on Phase Changed Core-Shell Micro particles
指導教授(中文):闕郁倫
指導教授(外文):Chueh, Yu-Lun
口試委員(中文):韋光華
呂明璋
口試委員(外文):Wei, Kung-Hwa
Lu, Ming-Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031558
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:59
中文關鍵詞:熱遲滯儲熱材料相變化材料潛熱核殼結構
外文關鍵詞:Thermal hysteresisThermal storagePhase change materialLatent heatCore-shell structure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:353
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
熱能量儲存系統由於它的能源可分配性和多元的應用包含太陽熱能的吸收、工廠廢熱的回收再利用等,近年來被視為十分有潛力有未來展望的的能源技術。此外,核殼結構相變化材料具有極大的潛熱而成為提升能量吸收應用效率的一種方式。
然而,在應用相變化材料時,熱遲滯現象被廣泛的發現。當熱遲滯現象過於嚴重,相變化的吸放熱的溫度超過儲熱系統的工作溫度時,潛熱便無法有效的提升熱能吸收應用的能力。所以,深入探討熱遲滯的形成機制、如何減小熱遲滯和其所帶來之影響是非常重要的。
在此研究中,我們成功地把二氧化鈦和氧化鋁包覆在鋅微米粒子上並控制其厚度,從示差掃描量熱儀所量測的穩定性結果,我們也可以確認殼層: 二氧化鈦和氧化鋁能有效的保護鋅微米粒子使其不被氧化。最重要的是,在實驗與理論值上,我們皆深入研究殼層厚度變化、熱傳導係數改變、異質成核和升降溫速率對於相變化和熱遲滯的影響,其實驗結果與理論值具有相同的趨勢。再者,藉由添加不同比例的核殼結構相變化材料,儲熱能力的提升與黏度之間的關係也被深入研究探討。
此研究提供良好的核殼結構包覆技巧和對於熱遲滯深入且廣泛的研究。當我們應用相變化材料於儲熱系統時,能依此研究作為日後挑選材料或環境條件時的方針。
Thermal energy storage has been considered as one of the most promising energy technique due to its dispatchability and multiple applications including solar thermal and industrial waste heat recycling. Besides, latent heat storage of microencapsulated Phase Change Materials (PCMs) has become a feasible way to dispatch the stored energy and increase the efficiency of energy usage. However, during the operation of PCMs, an important phenomenon called thermal hysteresis is widely observed. The advantage of utilizing the latent heat of a PCM to enhance the thermal energy storage of a system would be diminished if the thermal hysteresis exceeds the operating temperature range of the system. Consequently, it is essential to understand the mechanism causing the thermal hysteresis and to minimize the thermal hysteresis.
In this study, the thickness controllable approaches to successfully encapsulating TiO2 and Al2O3 respectively on Zn micro-particles as protective layers were introduced. The DSC results showed a stable heat of fusion of Zn micro-particles which demonstrated that the shell layers can effectively prevent oxidation. Most important of all, the phase change behavior and effects of the various thickness, oxides shells with different thermal conductivities, heterogeneous nucleation and changing of ramping rate on thermal hysteresis has been investigated for both of experiment and theoretical prediction. The results showed the same trend between thermal hysteresis and the factors we researched. Moreover, the important issue: viscosity and thermal storage enhancement have also been tested by doping different weight percentage of the core-shell microparticles. With the superior of encapsulating techniques and completed of thermal hysteresis research, the study provided the guideline to choose the most proper condition to apply PCMs in thermal storage to its maximum enhancement.
摘要 I
Abstract lI
致謝 lll
Contents lV
List of Figures VIl
Chapter 1 Introduction 1
1.1 Overview of Renewable Energy 1
1.2 Utilization of Thermal 3
1.2.1 Solar Thermal Energy & Thermal Energy Recycling 4
1.2.2 The Architecture of Solar Thermal Power Plants System 7
1.2.3 Molten Salts 10
1.2.4 Phase Change Materials 12
Chapter 2 Experimental Procedures 17
2.1 Chemicals 17
2.2 Synthesis of Zn/SiO2 core-shell micro-particles 18
2.3 Synthesis of Zn/TiO2 core-shell micro-particles 19
2.4 Synthesis of Zn/Al2O3 core-shell micro-particles 20
2.5 Synthesis of ZnxSn1-x/Al2O3 core-shell micro-particles 21
2.5.1 Preparation of ZnxSn1-x Micro-particles 21
2.5.2 Aluminum oxide encapsulating of ZnxSn1-x Micro-particles 22
2.6 Analytical Characterization Equipment 23
2.6.1 X-Ray Diffraction (XRD) & Reference intensity ratio (RIR) 23
2.6.2 Scanning Electron Microscope (SEM) 24
2.6.3 Focused Ion Beam (FIB) 25
2.6.4 Transmission Electron Microscope (TEM) 27
2.6.5 Energy Dispersive Spectrometer (EDS) 27
2.6.6 Differential Scanning Calorimeter (DSC) 29
2.6.7 Viscometer 30
Chapter 3 Results and Discussion 33
3.1 Motivation 33
3.2 Results & Discussions 36
Chapter 4 Summary & Conclusions 53
Reference 54
1. Abas, N., A. Kalair, and N. Khan Review of fossil fuels and future energy
technologies. Futures, 2015. 69: p. p. 31-49.
2. Doig, A., Climate Change and Carbon Funding. Renewable Energy, 2007.
3. G.J., J., Trends in Global CO2 emissions. Olivier (PBL), 2016 report
4. REN21 The Renewables 2016 Global Status Report. 2107.
5. 2016 U.S. Energy Flow Chart. . Laboratory, L.L.N, 2017.
6. Teng, H., G. Regner, and C. Cowland, Waste heat recovery of heavy-duty diesel engines by organic Rankine cycle part I: hybrid energy system of diesel and Rankine engines. 2007, SAE Technical Paper.
7. Burch, S.D., et al., Reducing cold-start emissions by catalytic converter thermal management. 1995, National Renewable Energy Laboratory.
8. Burch, S.D., et al. Applications and benefits of catalytic converter thermal management. in Presented at SAE Fuels & Lubricants Spring Meeting (Dearborn, MI). 1996.
9. IEA, 2015 Key World Energy Statistics. 2016: International Energy Agency.
10. Bolton, J.R., S.J. Strickler, and J.S. Connolly, Limiting and realizable efficiencies of solar photolysis of water. Nature, 1985. 316: p. 495.
11. Green, M.A., et al., Solar cell efficiency tables (Version 45). Progress in photovoltaics: research and applications, 2015. 23(1): p. 1-9.
12. Forsberg, C.W., P.F. Peterson, and H. Zhao, High-temperature liquid-fluoride-salt closed-Brayton-cycle solar power towers. Journal of Solar Energy Engineering, 2007. 129(2): p. 141-146.
13. Denholm, P. and M. Mehos, Enabling Greater Penetration of Solar Power via the Use of CSP with Thermal Energy Storage 2011: National Renewable Energy Laboratory.
14. Torresol Energy Commissions 19.9MW Gemasolar Power Plant in Spain. 2011: Torresol Energy.
15. Gielen, D., Renewable Energy Technologies Cost Analysis Series: Concentrating Solar Power. IRENA WORKING PAPER, 2012. 1(2/5).
16. Pavlović, T.M., et al., A review of concentrating solar power plants in the world and their potential use in Serbia. Renewable and Sustainable Energy Reviews, 2012. 16(6): p. 3891-3902.
17. Amadei, C., et al., Simulation of GEMASOLAR-based solar tower plants for the Chinese energy market: Influence of plant downsizing and location change. Renewable energy, 2013. 55: p. 366-373.
18. Behar, O., A. Khellaf, and K. Mohammedi, A review of studies on central receiver solar thermal power plants. Renewable and sustainable energy reviews, 2013. 23: p. 12-39.
19. Dunn, R.I., P.J. Hearps, and M.N. Wright, Molten-salt power towers: newly commercial concentrating solar storage. Proceedings of the IEEE, 2012. 100(2): p. 504-515.
20. Grimaldi, P.G.a.I., Solar TRES: Proposal of a solar-only 24-hour-operation Solar Tower Plant for Southern Spain Solar Thermal, 2000.
21. Tian, Y. and C.-Y. Zhao, A review of solar collectors and thermal energy storage in solar thermal applications. Applied Energy, 2013. 104: p. 538-553.
22. Scarlat, R.O. and P.F. Peterson, The current status of fluoride salt cooled high temperature reactor (FHR) technology and its overlap with HIF target chamber concepts. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014. 733: p. 57-64.
23. Kenisarin, M.M., High-temperature phase change materials for thermal energy storage. Renewable and Sustainable Energy Reviews, 2010. 14(3): p. 955-970.
24. Delpech, S., et al., Molten fluorides for nuclear applications. Materials Today, 2010. 13(12): p. 34-41.
25. Shin, B.C., S.D. Kim, and W.-H. Park, Ternary carbonate eutectic (lithium, sodium and potassium carbonates) for latent heat storage medium. Solar energy materials, 1990. 21(1): p. 81-90.
26. Peng, Q., et al., Design of new molten salt thermal energy storage material for solar thermal power plant. Applied Energy, 2013. 112: p. 682-689.
27. Kearney, D., et al., Assessment of a molten salt heat transfer fluid in a parabolic trough solar field. Journal of solar energy engineering, 2003. 125(2): p. 170-176.
28. Bradshaw, R.W. and N.P. Siegel, Development of molten nitrate salt mixtures for concentrating solar power systems. SolarPACES, Berlin, 2009.
29. Raade, J.W. and D. Padowitz, Development of molten salt heat transfer fluid with low melting point and high thermal stability. Journal of Solar Energy Engineering, 2011. 133(3): p. 031013.
30. Sharma, A., et al., Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable energy reviews, 2009. 13(2): p. 318-345.
31. Su, W., J. Darkwa, and G. Kokogiannakis, Review of solid–liquid phase change materials and their encapsulation technologies. Renewable and Sustainable Energy Reviews, 2015. 48: p. 373-391.
32. Cingarapu, S., et al., Nanofluids with encapsulated tin nanoparticles for advanced heat transfer and thermal energy storage. International Journal of Energy Research, 2014. 38(1): p. 51-59.
33. Nomura, T., et al., Microencapsulation of metal-based phase change material for high-temperature thermal energy storage. Scientific reports, 2015. 5.
34. Dao, T.D. and H.M. Jeong, Novel stearic acid/graphene core–shell composite microcapsule as a phase change material exhibiting high shape stability and performance. Solar Energy Materials and Solar Cells, 2015. 137: p. 227-234.
35. Lai, C.-C., et al., Tunable endothermic plateau for enhancing thermal energy storage obtained using binary metal alloy particles. Nano Energy, 2016. 25: p. 218-224.
36. Sakka, S., Handbook of sol-gel science and technology Springer Science & Business Media., 2005. Vol. 1.
37. Li, Y., et al., , Core-shell VO2@ TiO2 nanorods that combine thermochromic and photocatalytic properties for application as energy-saving smart coatings.. Scientific reports., 2013
38. El-Shereafy, E., et al., , Mechanism of thermal decomposition and γ-pyrolysis of aluminum
nitrate nonahydrate [Al (NO3) 3· 9H2O].. Journal of radioanalytical and nuclear chemistry,,
1998. 237(1-2)p.183-186.
39. Sezen, M., Focused ion beams (FIB): novel methodologies and recent applications for multidisciplinary sciences. 2016.
40. Klimenkov, M., R. Lindau, and A. Möslang, New insights into the structure of ODS particles in the ODS-Eurofer alloy. Journal of Nuclear Materials, 2009. 386: p. 553-556.
41. Goldstein, J., et al., Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists. 2012: Springer Science & Business Media.
42. O'neill Michael, J., Differential microcalorimeter. 1966, Google Patents.
43. Steinmann, W., et al., Thermal analysis of phase transitions and crystallization in polymeric fibers. 2013: INTECH Open Access Publisher.
44. Thomas, L.C., Use Of Quasi-isothermal Mode for Improved Understanding of Structure Change. 2005, TA Instruments.
45. ASTM, Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry. 2011, ASTM International, West Conshohocken, PA, 2011.
46. Sherman, C., More Solutions to Sticky Problems. Brookfield Viscometer Guide. Brookfield Engineering Laboratories. Inc.. Stoughton, Boston, MA., USA, 1994: p. 1-7.
47. Kano, M., Supercooling and its thermal hysteresis of pure metal liquids. 熱測定, 1991. 18(2): p. 64-70.
48. Hong, Y., et al., Controlling supercooling of encapsulated phase change nanoparticles for enhanced heat transfer. Chemical Physics Letters, 2011. 504(4): p. 180-184.
49. Lin, C., Y. Lai, and S. Liu, Effect of the surface roughness of sulfuric acid-anodized aluminum mold on the interfacial crystallization behavior of isotactic polypropylene. Journal of adhesion science and technology, 2001. 15(8): p. 929-944.
50  A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Renew. Sustain. Energy Rev.
13
(2009) 318–345.

51.   J.J. Xu, B. Yang, Nanotechnol. Rev. 2 (2013) 289–306.

52. Tang, X., et al., Fabrication, characterization, and supercooling suppression of nanoencapsulated n-octadecane with methyl methacrylate–octadecyl methacrylate copolymer shell. Colloid and Polymer Science, 2013. 291(7): p. 1705-1712.
53. Yamagishi, Y., et al. An evaluation of microencapsulated PCM for use in cold energy transportation medium. in Energy Conversion Engineering Conference, 1996. IECEC 96., Proceedings of the 31st Intersociety. 1996. IEEE.
54. Hong, Y., et al., Controlling supercooling of encapsulated phase change nanoparticles for enhanced heat transfer. Chemical Physics Letters, 2011. 504(4): p. 180-184.
55. Kano, M., Supercooling and its thermal hysteresis of pure metal liquids. thermal measurement, 1991. 18(2): p. 64-70.
56. Lin, C., Y. Lai, and S. Liu, Effect of the surface roughness of sulfuric acid-anodized aluminum mold on the interfacial crystallization behavior of isotactic polypropylene. Journal of adhesion science and technology, 2001. 15(8): p. 929-944.
57. C.T. Nguyen, Temperature and particle-size dependent viscosity data for
water-based nanofluids – Hysteresis phenomenon. International Journal of
Heat and Fluid Flow, 2007. P.1492- P.1506
58. Lai, C.-C., et al., Tunable endothermic plateau for enhancing thermal energy storage obtained using binary metal alloy particles. Nano Energy, 2016. 25: p. 218-224.
59. Lai, C.-C., et al., A solar-thermal energy harvesting scheme: enhanced heat capacity of molten HITEC salt mixed with Sn/SiO x core–shell nanoparticles. Nanoscale, 2014. 6(9): p. 4555-4559.
60. Properties: Titanium Dioxide - Titania ( TiO2). 2002; Available from: CERAM Research Ltd.
61. Alumina - Aluminium Oxide - Al2O3 - A Refractory Ceramic Oxide. 2001;
Available from: Lucideon.
62. C.T. Nguyen, Viscosity data for Al2O3–water nanofluid—hysteresis: is heat
transfer enhancement using nanofluids reliable? International Journal of
Thermal Sciences, 2008. 47: p.103-111
63. L. Syam Sundar , Empirical and theoretical correlations on viscosity of
nanofluids: A review, Renewable and Sustainable Energy Reviews 25 (2013)
670–686
64. M. Ghanbarpour, Thermal properties and rheological behavior of water
based Al2O3 nanofluid as a heat transfer fluid, Experimental Thermal and
Fluid Science 53 (2014) 227–235
65. Mohammad Hemmat Esfe,
An experimental investigation and new
correlation of viscosity of ZnO–EG nanofluid at various temperatures and
different solid volume fractions, Experimental Thermal and Fluid Science 55
(2014) 1–5
66. L. Gunawan, G.P. Johari, Specific heat, melting, crystallization, and
oxidation of zinc nanoparticles and their transmission electron microscopy
studies J Phys Chem C, 112 (2008), pp. 20159–20166

67. Properties: Silica - Silicon Dioxide (SiO2). 2001; Available from: Lucideon.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *