帳號:guest(3.15.18.221)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李翊鳳
作者(外文):Lee, Yi-Feng
論文名稱(中文):無鈹銅合金之無火花工具開發
論文名稱(外文):Development of Be-free Copper Alloys for Non-Sparking Tools
指導教授(中文):葉均蔚
指導教授(外文):Yeh, Jien-Wei
口試委員(中文):洪健龍
李勝隆
蔡銘洪
楊智超
口試委員(外文):Hung, Chien-Lung
Lee, Sheng-Long
Tsai, Ming-Hung
Yang, Chih-Chao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031557
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:215
中文關鍵詞:銅合金熱機處理無火花工具
外文關鍵詞:copper alloythermomechanical treatmentnon-sparking tool
相關次數:
  • 推薦推薦:0
  • 點閱點閱:450
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
傳統的銅鈹合金由於具有良好的導電導熱性、高抗腐蝕性以及高機械強度等優點,使其在工業上之應用相當廣泛。其中又以摩擦過程沒有火花產生的特性,成為目前無火花工具的主要使用材料。然而銅鈹合金中的鈹昂貴且為高度列管之毒性物質,導致生產成本及售價高昂,且具有環保疑慮等缺點,故本研究將開發高性能之無毒銅合金,來取代銅鈹合金成為新型之無火花工具材料。
從實驗室過去已開發數十種銅合金中,挑選出五種具有潛力之無鈹銅合金,探討其於無火花工具應用的可行性。首先利用高溫鍛造與室溫冷滾軋方式評估合金之加工性,再結合時效硬化和加工硬化兩種概念,以熱機處理製程製備合金,觀察其晶體結構、微結構及時效曲線,針對其無火花、熱傳導、抗磨耗與拉伸等應用性質進行研究。
研究結果發現以Cu52與Cu60Co5合金之表現最佳。於高溫鍛造方面,兩者皆具有良好的鍛造性,且經鍛造後能縮短合金時效處理時間,提高尖峰時效硬度。於冷滾壓方面,Cu60Co5合金不論是於鑄造態或均質化態,都展現出比Cu52合金更優異的滾軋性,其加工量可達90 %,兩合金經滾軋後時效之尖峰時效硬度能超過350 HV,最高可達418 HV。經由SEM分析,Cu52和Cu60Co5合金之硬度提升來自於富銅基地相中的富鋁鎳相析出,倘若藉由熱機處理製備,更可增加富鋁鎳相的奈米析出,其中以鑄造態滾軋後時效之合金析出物最為細小且密集,且還會與原本存在的大塊富鋁鎳相相連。
應用性質方面,兩種合金之熱傳導性大約僅為商用銅鈹合金的四分之一倍,將能有效減緩熱能傳送至工具握把的速度,增加使用上的實用性。在磨耗性上,Cu60Co5合金能以熱機處理製程改善合金之抗磨耗能力,而兩種合金之潤滑性皆比銅鈹合金更具優勢。在拉伸性質上,先均質化後鍛造再時效之製程製備的合金最能與商用銅鈹合金匹敵。整體而言,本研究之Cu52及Cu60Co5合金皆能利用熱機處理之製程的改善,增加其競爭優勢,且兩合金於暗室下對砂輪機研磨,皆證實無火花形成,故其對無火花工具的應用具有極大的潛力。
Due to the good conductivity, thermal conductivity, corrosion resistance, and mechanical properties, the conventional Cu-Be alloy is widely used in the industry as non-sparking tool because of no sparkle formation during the wear process. However, Be element is very expensive and toxic, which leads to the high manufacturing cost, high cost and environmental damage. Therefore, this research aims to develop non-toxic copper alloy to replace the conventional Cu-Be alloy as high-performance non-sparking tool.
In this research, we choose five Be-free copper alloys with great potential in the previous studies in our laboratory to discuss the feasibility on application of non-sparking tool. To evaluate the workability of the alloys, hot forging and cold rolling process are involved. Furthermore, by combining the concept of age hardening and work hardening and by thermomechanical treatment, this research will focus on the crystal structure, microstructure, age hardening curves and dive deep into the applicability.
Among all the specimens, the Cu52 and Cu60Co5 alloy have the best performance. In the aspect of hot forging, both of the alloys have great forgeability and can also be shorten the aging time, improve the peak aged hardness. In the cold rolling process, both of the as casted or as homogenized state of Cu60Co5 alloy show better performance than the Cu52 alloy by reaching 90 % reduction. After rolling, the peak aged hardness of Cu60Co5 and Cu52 alloy can be over 350 HV and up to reach 418 HV. Through SEM analysis, the enhancement of the hardness comes from Al-Ni rich phase precipitates in copper matrix. By thermomechanical process, the amount of nano-scale Al-Ni rich phase will increase. The aged alloys after cold rolled from cast condition have the most concentrated and smallest precipitates, which are connected to the large Al-Ni rich phase.
The thermal conductivity of the two alloys are about one quarter of that of the commercial Cu-Be alloy, thus can effectively slow down the speed of heat transferring to the tool grip and increase the practicality. The Cu60Co5 alloys treated with the thermomechanical process display better wear. The lubricity of the two alloys are more competitive than the commercial Cu-Be alloy. After homogenizing and forging, the alloy goes through the aging process, and turns out to have the best tensile property. Overall, by the improvement of the thermomechanical treatment, both of the Cu52 and Cu60Co5 alloy have the potential on the application of non-sparking tools thus obtain the competitive advantage.
摘 要 I
Abstract III
致 謝 VI
目 錄 VIII
圖目錄 XII
表目錄 XXIV
第一章、前言 1
第二章、文獻回顧 3
2.1純銅之基本性質 3
2.2 銅合金之用途 4
2.3 銅合金之種類[1, 2, 9, 10] 4
2.3.1 黃銅 5
2.3.2 青銅 5
2.4 高硬度銅合金之發展 7
2.4.1 銅鈹合金[11] 7
2.4.2 銅鈦合金[4,17-23] 13
2.4.3 銅鎳矽合金[24-32] 18
2.4.4 銅鎳錫合金[33-35] 22
2.5 無火花工具[36-43] 24
2.5.1 材質 26
2.5.2 製造工藝 26
2.5.3 應用範圍與工具 27
2.6 研究背景及目的 29
2.6.1 歷屆成果回顧 29
2.6.2 最佳合金成分挑選 33
2.6.3 研究動機及目的 36
第三章、實驗方法 37
3.1 實驗步驟 37
3.2 合金成分 38
3.3 真空電弧熔煉 38
3.4 均質化處理 39
3.5 時效處理 39
3.6 高溫鍛造 40
3.7 室溫冷滾軋 40
3.8 微結構觀察 40
3.8.1 X-ray 結晶繞射分析 (XRD) 40
3.8.2 掃描式電子顯微鏡 (SEM) 41
3.9 機械性質量測 41
3.9.1 硬度量測 41
3.9.2 拉伸試驗 41
3.9.3 室溫黏著磨耗試驗 42
3.10 熱傳導係數量測 44
第四章、結果與討論 47
4.1 未熱機處理製程之微結構及時效曲線 47
4.1.1 Cu52合金 47
4.1.2 Cu60Co5合金 54
4.1.3 Cu75Sn2合金 61
4.1.4 Cu84Ti1合金 68
4.1.5 Cu84V1合金 75
4.2 高溫鍛造製程之微結構及時效曲線 82
4.2.1 Cu52合金 82
4.2.2 Cu60Co5合金 90
4.2.3 Cu75Sn2合金 98
4.2.4 Cu84Ti1合金 106
4.2.5 Cu84V1合金 114
4.3 室溫冷滾壓製程之微結構及時效曲線 122
4.3.1 Cu52合金 122
4.3.2 Cu60Co5合金 131
4.3.3 Cu75Sn2合金 139
4.3.4 Cu84Ti1合金 147
4.3.5 Cu84V1合金 155
4.4 未熱機處理與熱機處理製程之比較 163
4.4.1 時效曲線 163
4.4.2 無火花工具成分挑選 170
4.4.3 合金硬化原因 172
4.5 Cu52、Cu60Co5與C17200之應用性質比較 189
4.5.1 火花測試 189
4.5.2 熱傳導係數 191
4.5.3 室溫抗磨耗性質 194
4.5.4 拉伸測試 199
第五章、結論 203
第六章、本研究貢獻 208
第七章、建議未來研究方向 209
第八章、參考資料 210
[1] 林安熙, 高工空中教學金屬材料學(全). 台北市: 中華出版社, pp. 164-178, 1972.
[2] 劉火欽, 金屬材料. 台北市: 三民書局, pp. 215-232, 1991.
[3] 賴耿陽, 模具製造技術. 台南市: 復漢出版社, pp. 15, 2001.
[4] S. Nagarjuna, K. Balasubramanian, and D. S. Sarma, "Effect of prior cold work on mechanical properties, electrical conductivity and microstructure of aged Cu-Ti alloys," J. Mater. Sci., vol. 34, pp. 2929-2942, Jun 1999.
[5] C. W. Tsai, M. H. Tsai, J. W. Yeh, and C. C. Yang, "Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy," J. Alloy. Compd., vol. 490, pp. 160-165, Feb 2010.
[6] 呂思賢, "高硬度無鈹之銅合金開發研究," 國立清華大學材料科學工程研究所碩士論文, 2010.
[7] 劉舒佩, "無鈹高性能銅合金之開發," 國立清華大學材料科學工程研究所碩士論文, 2012.
[8] 邱文芳, "取代Cu-Be合金之無鈹銅合金開發," 國立清華大學材料科學工程研究所碩士論文, 2014.
[9] 呂璞石、黃振賢, 金屬材料(增訂版). 台北市: 文京圖書有限公司, pp. 354-376, 1986.
[10]吳裕慶, "金屬材料學," 大中國圖書公司, 1982.
[11] W. F. Smith, Structure and Properties of Engineering Alloys, 2nd ed. Singapore: McGraw-Hill, Inc., pp. 233-278, 1993.
[12] ASM Metals Hand Book Volume 02-Nonferrous Alloys and Special-Purpose Materials vol. 2: ASM International, 1992.
[13] V. A. Phillips and L. E. Tanner, "High resolution electron microscope observations on G.P. zones in an aged Cu-1.97wt.% Be crystal," Acta Metallurgica, vol. 21, pp. 441-448, Apr 1973.
[14] L. Yagmur, O. Duygulu, and B. Aydemir, "Investigation of metastable gamma ' precipitate using HRTEM in aged Cu-Be alloy," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 528, pp. 4147-4151, May 15 2011.
[15] B. Djuric, M. Jovanovic, and D. Drobnjak, "A Study of Precipitation in Cu-Be Alloys," Metallography, vol. 13, pp. 235-247, 1980.
[16] A. M. H. B. V. 02, "Properties & Selection: Non-Ferrous alloys and Special Purpose Materials, 10th ed," ASM International, 1990.
[17] S.Nagarjuna, M. Srinivas, K. Balasubramanian, and D. S. Sarma, "On the varitation of mechanical properties with solute content in Cu-Ti alloys," Materials Science Engineering A-Structure Materials Properties Microstructure and Processing, vol. 259, pp. 34-42, 1999.
[18] I. S. Batra, A. Laik, G. B. Kale, G. K. Dey, and U. D. Kulkarni, "Microstructure and properties of a Cu-Ti-Co alloy," Materials Science Engineering A-Structure Materials Properties Microstructure and Processing, vol. 402, pp. 118-125, 2005.
[19] R. Markandeya, S. Nagarjuna, and D. S. Sarma, "Effect of prior cold work on age hardening of Cu-3Ti-1Cr alloy," Materials Characterization, vol. 57, pp. 348-357, 2006.
[20] W. A. Soffa and D. E. Laughlin, "High-strength age hardening copper-titanium alloys: redivivus," Prog. Mater. Sci., vol. 49, pp. 347-366, 2004.
[21] A. Datta and W. A. Soffa, "The structure and properties of age hardened Cu-Ti alloys," Acta Metallurgica, vol. 24, pp. 987-1001, 1976.
[22] S. Nagarjuna and M. Srinivas, "Elevated temperature tensile behaviour of a Cu-4.5Ti alloy," Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., vol. 406, pp. 186-194, Oct 2005.
[23] S. Nagarjuna, K. Balasubramanian, and D. S. Sarma, "Effect of Ti additions on the electrical resistivity of copper," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 225, pp. 118-124, Apr 1997.
[24] Z. Y. Pan, M. P. Wang, Z. Li, Z. Xiao, and C. Chen, "Thermomechanical treatment of super high strength Cu-8.0Ni-1.8Si alloy," Trans. Nonferrous Met. Soc. China, vol. 17, pp. S1076-S1080, Nov 2007.
[25] J. G. Lei, P. Liu, X. T. Jing, D. M. Zhao, and J. L. Huang, "Aging kinetics in a CuNiSiCr alloy," Journal of Materials Science & Technology, vol. 20, pp. 727-730, Nov 2004.
[26] Z. Li, Z. Y. Pan, Y. Y. Zhao, Z. Xiao, and M. P. Wang, "Microstructure and properties of high-conductivity, super-high-strength Cu-8.0Ni-1.8Si-0.6Sn-0.15Mg alloy," Journal of Materials Research, vol. 24, pp. 2123-2129, Jun 2009.
[27] S. C. Krishna, J. Srinath, A. K. Jha, B. Pant, S. C. Sharma, and K. M. George, "Microstructure and Properties of a High-Strength Cu-Ni-Si-Co-Zr Alloy," Journal of Materials Engineering and Performance, vol. 22, pp. 2115-2120, Jul 2013.
[28] Q. Lei, Z. Li, C. Dai, J. Wang, X. Chen, J. M. Xie, et al., "Effect of aluminum on microstructure and property of Cu-Ni-Si alloys," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 572, pp. 65-74, Jun 2013.
[29] E. Donoso, R. Espinoza, M. J. Dianez, and J. M. Criado, "Microcalorimetric study of the annealing hardening mechanism of a Cu-2.8Ni-1.4Si (at%) alloy," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 556, pp. 612-616, Oct 2012.
[30] Q. Lei, Z. Li, M. P. Wang, L. Zhang, Z. Xiao, and Y. L. Jia, "The evolution of microstructure in Cu-8.0Ni-1.8Si-0.15Mg alloy during aging," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 527, pp. 6728-6733, Sep 2010.
[31] S. Suzuki, N. Shibutani, K. Mimura, M. Isshiki, and Y. Waseda, "Improvement in strength and electrical conductivity of Cu-Ni-Si alloys by aging and cold rolling," Journal of Alloys and Compounds, vol. 417, pp. 116-120, Jun 2006.
[32] 第一伸銅科技股份有限公司, www.fcht.com.tw/cmainpage.htm.
[33] P. Kratochvil, J. Mencl, J. Pesicka, and S. N. Komnik, "The Structure and low-temperature strength of the age hardened Cu-Ni-Sn alloys," Acta Metallurgica, vol. 32, pp. 1493-1497, 1984.
[34] J. C. Rhu, S. S. Kim, Y. C. Jung, S. Z. Han, and C. J. Kim, "Tensile strength of thermomechanically processed Cu-9Ni-6Sn alloys," Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., vol. 30, pp. 2649-2657, Oct 1999.
[35] Y. H. Wang, M. P. Wang, B. Hong, and Z. Li, "Microstructure and properties of Cu-15Ni-8Sn-0. 4Si alloy," Trans. Nonferrous Met. Soc. China, vol. 13, pp. 1051-1055, Oct 2003.
[36] EGA Master, www.egamaster.com
[37] TENAQUIP, www.tenaquip.com
[38] Hand Tools - Non-sparking tools, www.ccohs.ca/oshanswers/safety_haz/hand_tools/nonsparking.html
[39] Ampco Safety Tools, www.ampcosafetytools.com
[40] CS Unitec, Inc, www.csunitec.com/atex-safety-links/non-sparking-non-magnetic-safety-tools-applications-and-industries
[41] 河北中泊防爆工具集团股份有限公司, www.safetytools.com.cn
[42] 台灣Wiki, 無火花工具, www.twwiki.com/wiki/%E7%84%A1%E7%81%AB%E8%8A%B1%E5%B7%A5%E5%85%B7
[43] 詠翔貿易, 何謂無火花工具, https://xspark.com.tw/blog/%E4%BD%95%E8%AC%82%E7%84%A1%E7%81%AB%E8%8A%B1%E5%B7%A5%E5%85%B7/
[44] 全拓科技有限公司, www.trendtop.com.tw, "NETZSCH Operating Instructions LFA 447TM Nanoflash."
[45] A. Takeuchi and A. Inoue, "Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element," Materials Transactions, vol. 46, pp. 2817-2829, 2005.
[46] 吳浚民, "AlXCoCrCuFeNiTiY 高熵合金黏著磨耗性質之研究," 國立清華大學材料科學工程研究所碩士論文, 2004.
[47] Y. Wang, T. Q. Lei, and J. J. Liu, "Tribo-metallographic behavior of high carbon steels in dry sliding I. Wear mechanisms and their transition," Wear, vol. 231, pp. 1-11, Jun 1999.
[48] N. P. Suh, "The delamination theory of wear," Wear, vol. 25, pp. 111-124, 1973.
[49] F. H. Stott, "The role of oxidation in the wear of alloys," Tribol. Int., vol. 31, pp. 61-71, Jan-Mar 1998.
[50] 黃銘鶴, "Al0.2Co1.5CrFeNb0.1Ni1.5TiV0.1高熵合金磨耗性質之研究," 國立清華大學材料科學工程研究所碩士論文, 2009F. H. Stott.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *