帳號:guest(52.15.72.32)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林育聖
作者(外文):Lin,Yu-Sheng
論文名稱(中文):玻璃纖維/奈米碳管/環氧樹脂複合材料強化機械性質之分析
論文名稱(外文):Analyses of Glass fibres/MWCNTs/epoxy composites reinforced mechanical property
指導教授(中文):徐文光
指導教授(外文):Hsu, Wen-Kuang
口試委員(中文):黃金花
許景棟
口試委員(外文):Huang, Jin-Hua
Hsu, Ching Tung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031546
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:82
中文關鍵詞:奈米碳管玻璃纖維複合材料機械性質阻尼
外文關鍵詞:Carbon nanotubeGlass fiberscompositesmechanical propertydamping
相關次數:
  • 推薦推薦:0
  • 點閱點閱:84
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗探討以奈米碳管為二次加強材來強化玻璃纖維/環氧樹酯複合材的疊層機械性質。奈米碳管在複材中會產生架橋機制(Bridge mechanism)、黏滑運動(stick-slip mechanism),進而提升韌性、阻尼特性。由實驗彎曲測試(Bending Test)、動態機械分析儀(DMA)觀察到,若以環氧樹酯當作參考值,玻璃纖維/環氧樹酯複合材強化約4倍的彎曲強度、6.5倍的彎曲模數、1倍的斷裂應變、9倍的韌性。若在疊層之間,再添加奈米碳管/環氧樹酯漿料,可再提升約75%的彎曲強度、46%彎曲模數、75%斷裂應變及1.8倍的韌性。由於碳管可導電,加入玻璃纖維/環氧樹酯複合材後可在複材中行成導電網路,因此可藉由通電達到加熱複材的目的。由鋼珠衝擊試驗發現,隨著電壓及溫度的調控,可使複合材料由力學材料變成阻尼材料,最高可吸收85%的衝擊能量。研究顯示衝擊能的吸收機制來自玻纖/碳管與環氧樹酯界面的阻尼與摩擦。
The experiment uses CNTs to second reinforced the mechanical property of the composites. Compared with pure epoxy,composites made of glass fibres (GFs) and epoxy exhibit a 4 times greater in bending stress, 6.5 times in bending modulus,1 time in fracture strain and 9 times in toughness relative to pure epoxy. Further enhancements are observed as carbon nanotubes (CNTs) are used as secondary reinforcement and observations give 75% improvement in bending stress,46% in bending modulus,75% in fracture strain and 180% in toughness. CNTs are electrically conductive so CNTs reinforced GFs/epoxy composites can be electrically heated by voltage application. The steel ball compact tests verify that composites can absorb 85% compact energy at elevated temperature and rigid matrix is transformed into a damper. Study reveals that enhanced damping comes from interfacial friction between GFs/CNTs and epoxy.
目錄
中文摘要 I
Abstract II
致謝 III
目錄 IV
圖表目錄 VII
第一章:實驗動機 1
第二章:文獻回顧 2
2-1奈米碳管的結構與特性 2
2-1-1奈米碳管的結構 2
2-1-2奈米碳管的基本電性 4
2-1-3奈米碳管的機械性質 6
2-2複合材料 7
2-2-1 疊層結構(Laminate) 7
2-2-2 三明治結構 8
2-2-3 奈米碳管/高分子複合材料 11
2-2-4奈米碳管與其複合材料的機械性質 11
2-2-5奈米碳管與其複合材料的電性 14
2-2-6以奈米碳管為加熱源之應用 16
2-2-7奈米碳管複合材料的挑戰 18
2-3玻璃纖維 20
2-3-1玻璃纖維特性 20
2-3-2玻璃纖維種類 21
2-4高分子及環氧樹脂簡介 24
2-4-1高分子 24
2-4-2環氧樹脂(Epoxy) 25
2-5 彎曲試驗機械性質分析 27
2-6 玻璃轉換溫度量測 30
2-6-1 玻璃轉換溫度(Tg) 30
2-6-2 熱分析原理 31
2-6-3 環氧樹脂之玻璃轉換溫度量測 33
2-6-4 玻璃轉換溫度與阻尼(damping)之關係 35
第三章 實驗步驟 37
3-1實驗藥品與儀器 37
3-2實驗流程 38
3-2-1試片製作 38
3-2-2實驗量測流程 41
3-2-3彎曲試驗 42
3-2-4 動態機械分析(DMA) 43
3-2-5衝擊阻尼試驗 44
第四章:結果與討論 47
4-1 SEM分析 47
4-2彎曲測試(Bending Test) 53
4-3 DMA分析 59
4-4鋼珠衝擊試驗 63
4-4-1加熱板加熱 64
4-4-2 Stick-Slip mechanism 65
4-4-3歐姆加熱 66
4-4-4MWCNTs/epoxy/GFs在外加電場之下 66
4-5升溫速率 69
第五章:結論 72
參考文獻 73
[1] 李惠菁, “多壁奈米碳管/聚乙烯醇高分子複合材料合成與物性分析研究”, 國立清華大學材料科 學與工程研究所碩士論文, (2008)
[2] 陳亞群, “多壁奈米碳管填充之導電高分子材料電磁波屏蔽效能研究”, 國立清華大學材料科學與工程研究所碩士論文, (2007)
[3] 張雅筑, “常壓下以電暈方式製備奈米碳管或奈米結構”, 國立清華大學材料科學與工程研究所碩士論文, (2007)
[4] E. T. Thostenson, Z. Ten, T. W. Chou, Compos. Sci. Techno.61:p.1899 (2001).
[5] Rupesh Khare*, Suryasarathi Bose Journal of Minerals & Materials Characterization & Engineering 4(1):p.31-46 (2005).
[6] Hassanien,a., et al., “Applied Physics Letters” 75(18):p. 2755-2757 (1999).
[7] Lambin, P., Comptes Rendus Physique 4(9):p.1009-1019 (2003).
[8] Lourie, O., D.M.Cox, and H.D.Wanger, Physical Review Letters 81(8):p.1638-1641 (1998).
[9] Yu, M.F., T.Kowalewski, and R.S. Ruoff, Physical Review Letters 86(1):p.87-90 (2001).
[10] Yu, M.F., et al., Science 287(5453):p.637-640 (2000).
[11] Treacy, M.M.J., T.W.Ebbesen, and J.M.Gibson. Nature 381(6584):p.678-680 (1996).
[12] Meyyappan, M., ed. Carbon Nanotubes: Science and Applications. Boca Raton: CRC Press (2005).
[13] O’Connell, M. ed. Carbon Nanotubes: Properties and Applications. Boca Raton: Taylor & Francis (2006).
[14] 葉夢考 黃婉萱 宋棋舜 呂俊麟 複合材料力學近況簡介 國立清華大學 動力機械學工程
[15] Hallet, S. R. and Jiang, W. G., “Modeling the interaction between matrix crack sand delamination damage in scaled quasi-isotropic specimens,”Composites Science and Technology, Vol. 68, pp. 80-89 (2008).
[16] Wang, X. W. and Lezica, I. P., “Compressive failure of composite laminates containing multiple delamination ,”Composites Science and Technology, Vol. 65, pp. 191-200 (2004).
[17] Hwang, S. F. and Liu, G. H., “Buckling behavior of composite laminates with multiple delaminations under uniaxial compression,”Composites Structures, Vol. 53, pp. 235-243 (2001).
[18] Frostig, Yeoshua, and Ole Thybo Thomsen. "Non-linear behavior of delaminated unidirectional sandwich panels with partial contact and a transversely flexible core." International Journal of Non-Linear Mechanics 40.5 (2005): 633-651.
[19] Veedu, Vinod P., and Leif A. Carlsson. "Finite-element buckling analysis of sandwich columns containing a face/core debond." Composite structures 69.2 (2005): 143-148.
[20] Huber, Otto, and Hubert Klaus. “Cellular composites in lightweight sandwich applications.” Materials Letters 63.13: 1117-1120 (2009).
[21] Vadakke, Vinod, and Leif A. Carlsson. "Experimental investigation of compression failure of sandwich specimens with face/core debond." Composites Part B: Engineering 35.6 (2004): 583-590.
[22] Styles, M., Compston, P. and Kalyanasundaram, S., “The effect of core thickness on the flexural behavior of aluminium form sandwich structure, ”Composite Structures,Vol. 80,pp.532-538 (2007).
[23] Fan, H. L., Meng, F. H. and Yang, W., 2007, “Sandwich panels with Kagom elaticecores reinforced by carbonfibers,”Composite Structures, Vol. 81, pp. 533-539 (2007).
[24] 曾亮, and 崔征國. "改良式三明治結構複材之製程與力學性分析." Journal of Technology 20.1: 57-66 (2005).
[25] Yeh, Meng-Kao, and Tsung-Han Hsieh. “Dynamic Properties of dandwich beam with MWNT/polymer nanocomposites as core materials,” Composites Science and Technology68.14:2930-2936 (2008).
[26] J.K.W.Sandler, J.E.Kirk, I.A.Kinloch, M.S.P.Sha, A.H.Windle, Polymer 44:p.5893 (2003).
[27] World Technology Evaluation Center, Inc. International Assessment of Research and Development of Carbon Nanotube Manufacturing and Applications. Retrieved July 9, 2007, from http://www.wtec.org/cnm/CNM_final_report.pdf
[28] “Deformation and fracture mechanics of engineering materials”, Fourth Edition, Richard W. Hertzberg, p33~p38 (1996).
[29] K. T. Lau, C. Gu, D. Hui, Compos. Part. B.37, 425 (2005).
[30] J. N. Coleman, W. J. Blau, A. B. Dalton, E. Munoz, S. Collins, B. G. Kim, J. Razai, M. Selvidge, G. Vieiro, R. H. Baughman, Appl. Phys. Lett.82, 1682 (2003).
[31] A. Allaoui, S. Bai, H. M. Cheng, J. B. Bai, Comps. Scien. Tech.62, 1993 (2002).
[32] C. Wei, Appl. Phys. Lett.88, 093108 (2006).
[33] P. M. Ajayan, L. S. Schadler, C. Giannaris, A. Rubio, Adv. Mater.10, 750 (2000).
[34] M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature 381, 678 (1996).
[35] H. Ye, H. Lam, N. Titchenal, Y. Gogotsi, F. Ko, Appl. Phys. Lett.85, 1775 (2004).
[36] H. D. Wanger, O. Lourie, Y. Feldman, R. Tenne, Appl. Phys. Lett.72, 188 (1997).
[37] D. Qian. E. C. Dickey, R. Andrews, T. Rantell, Appl. Phys. Lett.76, 2868 (2000).
[38] M. Cadek, J. N. Coleman, V. Barron, K. Hedickle, W. J. Blau, Appl. Phys. Lett.81, 5123 (2002).
[39] L. S. Schadler, S. C. Giannaris, and P. M. Ajayan, Appl. Phys. Lett.73:p.3842–3844 (1998).
[40] J. Fournier, G. Boiteux, G. Seytre, G. Marichy, Synth. Met.84, 839 (1997).
[41] J. N. Coleman, S. Curran, A. B Dalton, A. P . Davey, B. McCarthy, W. Blau, R. C. Barklie, Phys. Rew. B.58, R7492 (1998).
[42] S. P. Li, Y. J. Qin, J. H. Shi, Z. X. Guo, Y. F. Li, D. B. Zhu, Chem. Mater.17, 130 (2004).
[43] U. D. Weglikowska, M. Kaempgen, B. Hornbostel, V. Skakalova, J. P. Wang, J. D. Liang, S. Roth, Phys. Stat. Sol.13, 3440 (2006).
[44] J. T. Wescott, P. Kung, A. Maiti, App. Phys. Lett.90, 033116 (2007).
[45] E. Kymakis, G. A. J. Amaratunga, J. Appl. Phys.99, 084302 (2006).
[46] B. E. Kilbride, J. N. Coleman, J. Fraysse, P. Fournet, M. Cadek, A. Drury, S. Hutzler, S. Roth, W. J. Blau, J. Appl. Phys.92, 4024 (2002).
[47] B. R. Sankapal, K. Setyowati, J. Chen, Appl. Phys. Lett.91, 173103 (2007).
[48] Fancheng Meng, Xiaohua Zhang, Geng Xu, Zhenzhong Yong, Hongyuan Chen, Minghai Chen, Qingwen Li, and Yuntian Zhu, ACS Appl. Mater. Interfaces 3, 658–661 (2011).
[49] Liu, P.; Liu, L.; Wei, Y.; Liu, K.; Chen, Z.; Jiang, K.; Li, Q.; Fan, S. Adv. Mater.21:p.3563–3566 (2009).
[50] Emily Pfautsch, Challenges in Commercializing Carbon Nanotube Composites, WISE Intern University of Missouri-Columbia (2007).
[51] Smith Hashemi, Foundation of Materials Science and Engineering, 4th edition.
[52] 歐亞書局, 第七章, 機械性質, http://blog.ncut.edu.tw/userfile/2819/CH07.pdf
[53] Richard A. Swalin, Thermodynamics of solids, 2nd Edition.
[54] “材料科學叢書二 材料分析 Materials Analysis”, 汪建民主編, 中國材料科學學會, 第二十章 (1998)
[55] 劉銘璋 林岱瑋 王漢松 張秋玲,台 灣大學化學系第七章, 熱分析, www.ch.ntu.edu.tw/~rsliu/solidchem/Report/Chapter7_report.pdf
[56] 中文百科在線, 玻璃纖維, http://www.zwbk.org/zh-tw/Lemma_Show/313444.aspx
[57] Arlon, Application Notes
[58] Thermal analysis application note ,W.J. Sichina. PerkinElmer instruments.
[59] DoITPoMS-TLP Library, The Glass Transition in Polymers , University of CAMBRIDGE. http://www.doitpoms.ac.uk/tlplib/glass-transition/measurement.php
[60] 翁銘孝. "奈米碳管-熱固性高分子複合材之電壓調控相轉變: 從剛性材料至阻尼材料." 清華大學材料科學工程學系學位論文:1-70 (2012).
[61] Kwag, Choongyong, and Chen-Shih Wang. "Laminated composites and methods of making the same." U.S. Patent No. 8,852,733. 7 Oct. (2014).
[62] Gojny, F. H., et al. "Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content." Composites science and technology 64.15: 2363-2371 (2004).
[63] Rajoria, Himanshu, and Nader Jalili. "Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites." Composites Science and Technology 65.14 (2005): 2079-2093.
[64] A. Allaouia, S. Baia, H.M. Chengb, J.B. Baia, Composites Science and Technology 62, 1993–1998 (2002).
[65] 林樹均, 葉均蔚, 劉增豐, 李勝隆 編著, “材料工程 實驗與原理”第八章 彎曲測試
[66] Huda, Masud S., et al. "Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly (lactic acid)(PLA) composites: a comparative study." Composites Science and Technology 66.11: 1813-1824 (2006).
[67] Song, Young Seok, and Jae Ryoun Youn. "Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites." Carbon 43.7 (2005): 1378-1385.
[68] Warrier, Ashish, et al. "The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix." Composites Part A: Applied Science and Manufacturing 41.4: 532-538 (2010).
[69] Theocaris, P. S., and G. C. Papanicolaou. "Variation of glass transition temperature with direction in unidirectional glass fiber-reinforced composites." Colloid & Polymer Science 258.9: 1044-1051 (1980).
[70] Zhu, Yue-Feng, et al. "Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field." Journal of Appl
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *