帳號:guest(3.145.50.45)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王欣瑞
作者(外文):Wang, Hsin-Juei
論文名稱(中文):以冷凍鑄造法合成具多階層孔洞 之沸石材料應用於二氧化碳吸附
論文名稱(外文):Hierarchically Porous Structured Zeolite Materials Synthesized by Freeze Casting for CO2 Adsorption
指導教授(中文):陳柏宇
指導教授(外文):Chen, Po-Yu
口試委員(中文):陳翰儀
黃爾文
口試委員(外文):Chen, Han-Yi
Huang, E-Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031545
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:96
中文關鍵詞:沸石碳捕捉冷凍鑄造法多階層孔洞
外文關鍵詞:ZeoliteCarbon captureFreeze castingHierarchical stucture
相關次數:
  • 推薦推薦:0
  • 點閱點閱:430
  • 評分評分:*****
  • 下載下載:25
  • 收藏收藏:0
近年來由於溫室效應逐漸加劇,因此如何降低大氣中的二氧化碳濃度成為大眾所關心的議題,碳捕捉(Carbon capture)也逐漸成為熱門的研究議題。然而現今技術多半受限於分離效率不佳、再生能力低落等問題。沸石為一種天然的孔洞材料,其奈米等級的孔洞使其擁有極大的表面積,常被使用於過濾或催化劑,其中鈉沸石13X尤其具有較佳的二氧化碳吸附能力,本實驗採用鈉沸石13X為原料,並搭配冷凍鑄造法(Freeze Casting)合成單一方向性的孔洞材料,使氣體容易擴散進入內部以增進吸附效率。由於沸石粉末需要聯結劑(Binder)才能形成強度足夠的塊材,因此本實驗利用膨潤土以及聚乙烯醇做為聯結劑,利用燒結以及醚化的方法增進其機械性質。吸附結果顯示經冷凍鑄造法合成的孔洞材料不論在吸附量以及氣體擴散係數方面皆能與傳統的沸石球顆粒相匹敵。綜上所述,我們利用沸石的天然孔洞以及冷凍鑄造法,成功合成出多階層的孔洞材料,期待未來能應用於碳捕捉上。
Carbon capture has become a popular issue recently due to global warming. Adsorption of carbon dioxide from the atmosphere is also catching attention from public. However, technique to date still suffers from low gas separation efficiency and regeneration difficulties. Zeolite is natural microporous material that is often used as filter or catalyst. One of the members in the zeolite family called sodium 13X has ability to adsorb carbon dioxide from the atmosphere. Owing to this characteristic, it is chosen as the raw material in this study. Freeze casting method is utilized to synthesize hierarchical micro-sized channel and nano-sized pores through optimized cooling rate and water content. These unidirectional channels allow gas to flow to the interior of the scaffold and enhance adsorption efficiency. Furthermore, binders are necessary in order to provide enough mechanical strength. Bentonite/Poly Vinyl Alcohol are selected as inorganic/organic binder and sintering/etherification process are conducted to elevate compressive strength. The thermogravimetric analysis indicates that the total amount of adsorption is 3 mmol/g and the diffusivity is 10-15~10-16 m2/s. Both results are competitive to the zeolite pellet that is commonly seen. To summarize, hierarchical porous scaffold with unidirectional channels can be successfully synthesized by freeze casting. The total amount of adsorption and diffusivity are both comparable to the zeolite beads that are normally used.
致謝 i
中文摘要 ii
Abstract iii
Contents iv
List of Table vii
Figure Caption viii
Chapter 1. Introduction 1
1.1 Background 1
1.1.1 Carbon capture 1
1.1.2 Freeze casting 2
1.2 Motivation and Goals 3
Chapter 2. Literature review 5
2.1 CO2 Adsorption 5
2.2 Zeolite 13X 12
2.3 Freeze casting 14
2.3.1 Theory 14
2.3.2 Processing Principles 16
2.3.3 History and Recent Development on Freeze Casting 19
Chapter 3. Experimental Methods 46
3.1 Synthesis of Zeolite Scaffold 46
3.1.1 Preparation of Slurry 46
3.1.2 Controlled Solidification of the Slurry 46
3.1.3 Sublimation of the Solvent 47
3.1.4 Sintering of the Green Body 47
3.2 Synthesis of Zeolite/PVA Composite Scaffolds 48
3.4 Characterization and Measurement 49
3.4.1 Structural and Elemental Analysis 49
3.4.2 Compressive Mechanical Testing 49
3.4.3 TGA Analysis 50
3.4.4 BET Analysis 50
3.4.5 Mercury Intrusion 50
Chapter 4. Results and Discussions 55
4.1 Optimization of slurry preparation 55
4.2 Elemental Analysis and Structural Characterization 56
4.2.1 Crystallinity 56
4.2.2 Microstructural Characterization 57
4.3 Compressive Mechanical Properties 60
4.4 Adsorption Efficiency of Carbon Dioxide 62
4.4.1 Time Dependent Carbon Dioxide Adsorption 62
4.4.2 Carbon Dioxide Adsorption Isotherm 64
Chapter 5. Conclusions 87
Reference 89
1. Albo, J., P. Luis, and A. Irabien, Carbon dioxide capture from flue gases using a cross-flow membrane contactor and the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate. Industrial & Engineering Chemistry Research, 2010. 49(21): p. 11045-11051.
2. Oh, T.H., Carbon capture and storage potential in coal-fired plant in Malaysia—A review. Renewable and Sustainable Energy Reviews, 2010. 14(9): p. 2697-2709.
3. Yu, C.-H., A Review of CO2 Capture by Absorption and Adsorption. Aerosol and Air Quality Research, 2012.
4. Rochelle, G.T., Amine scrubbing for CO2 capture. Science, 2009. 325(5948): p. 1652-1654.
5. Deville, S., E. Saiz, and A.P. Tomsia, Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 2006. 27(32): p. 5480-5489.
6. Lasalle, A., et al., Ice‐Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 2012. 95(2): p. 799-804.
7. Szepes, A., et al., Freeze-casting technique in the development of solid drug delivery systems. Chemical Engineering and Processing: Process Intensification, 2007. 46(3): p. 230-238.
8. Frank, G., E. Christian, and K. Dietmar, A Novel Production Method for Porous Sound‐Absorbing Ceramic Material for High‐Temperature Applications. International Journal of Applied Ceramic Technology, 2011. 8(3): p. 646-652.
9. Cable, T.L., et al., Regenerative performance of the NASA symmetrical solid oxide fuel cell design. International Journal of Applied Ceramic Technology, 2011. 8(1): p. 1-12.
10. Lee, S.H., et al., Fabrication of Porous PZT–PZN Piezoelectric Ceramics With High Hydrostatic Figure of Merits Using Camphene‐Based Freeze Casting. Journal of the American Ceramic Society, 2007. 90(9): p. 2807-2813.
11. Rezaei, F. and P. Webley, Optimum structured adsorbents for gas separation processes. Chemical Engineering Science, 2009. 64(24): p. 5182-5191.
12. Rezaei, F. and P. Webley, Structured adsorbents in gas separation processes. Separation and Purification Technology, 2010. 70(3): p. 243-256.
13. Cavenati, S., C.A. Grande, and A.E. Rodrigues, Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures. Journal of Chemical & Engineering Data, 2004. 49(4): p. 1095-1101.
14. Plaza, M.G., et al., Post-combustion CO 2 capture with a commercial activated carbon: comparison of different regeneration strategies. Chemical Engineering Journal, 2010. 163(1): p. 41-47.
15. Saha, D. and S. Deng, Adsorption equilibrium and kinetics of CO 2, CH 4, N 2 O, and NH 3 on ordered mesoporous carbon. Journal of colloid and interface science, 2010. 345(2): p. 402-409.
16. Ryoo, R., S.H. Joo, and S. Jun, Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. The Journal of Physical Chemistry B, 1999. 103(37): p. 7743-7746.
17. Liang, C. and S. Dai, Synthesis of Mesoporous Carbon Materials via Enhanced Hydrogen-Bonding Interaction. Journal of the American Chemical Society, 2006. 128(16): p. 5316-5317.
18. Cinke, M., et al., CO 2 adsorption in single-walled carbon nanotubes. Chemical Physics Letters, 2003. 376(5): p. 761-766.
19. Hsu, S.-C., et al., Thermodynamics and regeneration studies of CO 2 adsorption on multiwalled carbon nanotubes. Chemical Engineering Science, 2010. 65(4): p. 1354-1361.
20. Su, F., et al., Capture of CO 2 from flue gas via multiwalled carbon nanotubes. Science of the total environment, 2009. 407(8): p. 3017-3023.
21. Ghosh, A., et al., Uptake of H2 and CO2 by graphene. The Journal of Physical Chemistry C, 2008. 112(40): p. 15704-15707.
22. Férey, G., Hybrid porous solids: past, present, future. Chemical Society Reviews, 2008. 37(1): p. 191-214.
23. Yaghi, O.M., et al., Reticular synthesis and the design of new materials. Nature, 2003. 423(6941): p. 705-714.
24. Millward, A.R. and O.M. Yaghi, Metal− organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. Journal of the American Chemical Society, 2005. 127(51): p. 17998-17999.
25. Himeno, S., T. Komatsu, and S. Fujita, High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons. Journal of Chemical & Engineering Data, 2005. 50(2): p. 369-376.
26. Sayari, A., Y. Belmabkhout, and R. Serna-Guerrero, Flue gas treatment via CO 2 adsorption. Chemical Engineering Journal, 2011. 171(3): p. 760-774.
27. Chew, T.-L., A.L. Ahmad, and S. Bhatia, Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO 2). Advances in Colloid and Interface Science, 2010. 153(1): p. 43-57.
28. Liu, X., et al., Adsorption of CO 2, CH 4 and N 2 on ordered mesoporous silica molecular sieve. Chemical physics letters, 2005. 415(4): p. 198-201.
29. Sun, Y., et al., Studies on ordered mesoporous materials for potential environmental and clean energy applications. Applied surface science, 2007. 253(13): p. 5650-5655.
30. Xu, X., et al., Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy & Fuels, 2002. 16(6): p. 1463-1469.
31. Xu, X., et al., Influence of moisture on CO2 separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41. Industrial & engineering chemistry research, 2005. 44(21): p. 8113-8119.
32. Ma, X., X. Wang, and C. Song, “Molecular basket” sorbents for separation of CO2 and H2S from various gas streams. Journal of the American Chemical Society, 2009. 131(16): p. 5777-5783.
33. Baerlocher, C., L.B. McCusker, and D.H. Olson, eds. Atlas of Zeolite Structure Types, 6th revised ed
2007, Elsevier: Amsterdem.
34. Goj, A., et al., Atomistic simulations of CO2 and N2 adsorption in silica zeolites: the impact of pore size and shape. The Journal of Physical Chemistry B, 2002. 106(33): p. 8367-8375.
35. Barrer, R. and R. Gibbons, Zeolitic carbon dioxide: energetics and equilibria in relation to exchangeable cations in faujasite. Transactions of the Faraday Society, 1965. 61: p. 948-961.
36. Walton, K.S., M.B. Abney, and M.D. LeVan, CO 2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Microporous and Mesoporous Materials, 2006. 91(1): p. 78-84.
37. Maurin, G., P. Llewellyn, and R. Bell, Adsorption mechanism of carbon dioxide in faujasites: grand canonical Monte Carlo simulations and microcalorimetry measurements. The Journal of Physical Chemistry B, 2005. 109(33): p. 16084-16091.
38. Pirngruber, G., et al., The role of the extra-framework cations in the adsorption of CO 2 on faujasite Y. Physical Chemistry Chemical Physics, 2010. 12(41): p. 13534-13546.
39. Brandani, F. and D.M. Ruthven, The effect of water on the adsorption of CO2 and C3H8 on type X zeolites. Industrial & engineering chemistry research, 2004. 43(26): p. 8339-8344.
40. Zukal, A., J. Pawlesa, and J. Čejka, Isosteric heats of adsorption of carbon dioxide on zeolite MCM-22 modified by alkali metal cations. Adsorption, 2009. 15(3): p. 264-270.
41. Hirotani, A., et al., Grand canonical Monte Carlo simulation of the adsorption of CO 2 on silicalite and NaZSM-5. Applied surface science, 1997. 120(1): p. 81-84.
42. Akten, E.D., R. Siriwardane, and D.S. Sholl, Monte Carlo simulation of single-and binary-component adsorption of CO2, N2, and H2 in zeolite Na-4A. Energy & Fuels, 2003. 17(4): p. 977-983.
43. Leyssale, J.-M., G.K. Papadopoulos, and D.N. Theodorou, Sorption thermodynamics of CO2, CH4, and their mixtures in the ITQ-1 zeolite as revealed by molecular simulations. The Journal of Physical Chemistry B, 2006. 110(45): p. 22742-22753.
44. Jadhav, P., et al., Monoethanol amine modified zeolite 13X for CO2 adsorption at different temperatures. Energy & Fuels, 2007. 21(6): p. 3555-3559.
45. Choi, S., J.H. Drese, and C.W. Jones, Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2009. 2(9): p. 796-854.
46. Ho, M.T., G.W. Allinson, and D.E. Wiley, Reducing the cost of CO2 capture from flue gases using pressure swing adsorption. Industrial & Engineering Chemistry Research, 2008. 47(14): p. 4883-4890.
47. Li, G., et al., Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X. Adsorption, 2008. 14(2-3): p. 415-422.
48. Merel, J., M. Clausse, and F. Meunier, Experimental investigation on CO2 post− combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites. Industrial & Engineering Chemistry Research, 2008. 47(1): p. 209-215.
49. Zhang, J., P.A. Webley, and P. Xiao, Effect of process parameters on power requirements of vacuum swing adsorption technology for CO 2 capture from flue gas. Energy Conversion and Management, 2008. 49(2): p. 346-356.
50. Olson, D.H., Reinvestigation of the crystal structure of the zeolite hydrated NaX. The Journal of Physical Chemistry, 1970. 74(14): p. 2758-2764.
51. Olson, D.H., The crystal structure of dehydrated NaX. Zeolites, 1995. 15(5): p. 439-443.
52. Rabo, J.A., Zeolite chemistry and catalysis. Vol. 171. 1976: Amer Chemical Society.
53. Zhu, L. and K. Seff, Reinvestigation of the crystal structure of dehydrated sodium zeolite X. The Journal of Physical Chemistry B, 1999. 103(44): p. 9512-9518.
54. Mortier, W.J. and R.A. Schoonheydt, Surface and solid state chemistry of zeolites. Progress in solid state chemistry, 1985. 16(1-2): p. 1-125.
55. Pearce, H., Zeolite molecular sieves—Structure, chemistry and use: by DA Breck, Wiley-Interscience, New York, 1974, XII+ 772 pp., price US $32.50. 1975, Elsevier.
56. Akhtar, F. and L. Bergström, Colloidal Processing and Thermal Treatment of Binderless Hierarchically Porous Zeolite 13X Monoliths for CO2 Capture. Journal of the American Ceramic Society, 2011. 94(1): p. 92-98.
57. Ojuva, A., et al., Laminated adsorbents with very rapid CO2 uptake by freeze-casting of zeolites. ACS Appl Mater Interfaces, 2013. 5(7): p. 2669-76.
58. Besser, B., et al., Hierarchical Porous Zeolite Structures for Pressure Swing Adsorption Applications. ACS Appl Mater Interfaces, 2016. 8(5): p. 3277-86.
59. Wegst, U.G., et al., Biomaterials by freeze casting. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2010. 368(1917): p. 2099-2121.
60. Zhang, H., et al., Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature materials, 2005. 4(10): p. 787-793.
61. Deville, S., Freeze-Casting of Porous Ceramics: A Review of Current Achievements and Issues. Advanced Engineering Materials, 2008. 10(3): p. 155-169.
62. Porter, M.M., J. McKittrick, and M.A. Meyers, Biomimetic Materials by Freeze Casting. Jom, 2013. 65(6): p. 720-727.
63. Deville, S., et al., Freezing as a Path to Build Complex Composites. Science, 2006. 311(5760): p. 515-518.
64. Deville, S., E. Saiz, and A.P. Tomsia, Ice-templated porous alumina structures. Acta Materialia, 2007. 55(6): p. 1965-1974.
65. Wegst, U.G., et al., Biomaterials by freeze casting. Philos Trans A Math Phys Eng Sci, 2010. 368(1917): p. 2099-2121.
66. Lottermoser, A., Über das Ausfrieren von Hydrosolen. Berichte der deutschen chemischen Gesellschaft, 1908. 41(3): p. 3976-3979.
67. Maxwell, W., R. Gurnick, and A. Francisco, Preliminary Investigation of the'freeze-casting'Method for Forming Refractory Powders. NACA Research Memorandum, Lewis Flight Propulsion Laboratory, 1954.
68. Fukasawa, T., et al., Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 2001. 36(10): p. 2523-2527.
69. Fukasawa, T., et al., Synthesis of Porous Silicon Nitride with Unidirectionally Aligned Channels Using Freeze-Drying Process. Journal of the American Ceramic Society, 2002. 85(9): p. 2151-2155.
70. Blindow, S., et al., Hydroxyapatite/SiO2 Composites via Freeze Casting for Bone Tissue Engineering. Advanced Engineering Materials, 2009. 11(11): p. 875-884.
71. Moon, J.-W., et al., Preparation of NiO–YSZ tubular support with radially aligned pore channels. Materials Letters, 2003. 57(8): p. 1428-1434.
72. Koh, Y.-H., J.-J. Sun, and H.-E. Kim, Freeze casting of porous Ni–YSZ cermets. Materials Letters, 2007. 61(6): p. 1283-1287.
73. Sofie, S.W., Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze-Tape-Casting Process. Journal of the American Ceramic Society, 2007. 90(7): p. 2024-2031.
74. Ren, L., Y.-P. Zeng, and D. Jiang, Fabrication of Gradient Pore TiO2 Sheets by a Novel Freeze-Tape-Casting Process. Journal of the American Ceramic Society, 2007. 90(9): p. 3001-3004.
75. Chino, Y. and D.C. Dunand, Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Materialia, 2008. 56(1): p. 105-113.
76. Yook, S.-W., et al., Porous titanium (Ti) scaffolds by freezing TiH2/camphene slurries. Materials Letters, 2008. 62(30): p. 4506-4508.
77. Yook, S.-W., H.-E. Kim, and Y.-H. Koh, Fabrication of porous titanium scaffolds with high compressive strength using camphene-based freeze casting. Materials Letters, 2009. 63(17): p. 1502-1504.
78. Driscoll, D., A.J. Weisenstein, and S.W. Sofie, Electrical and flexural anisotropy in freeze tape cast stainless steel porous substrates. Materials Letters, 2011. 65(23-24): p. 3433-3435.
79. Schoof, H., et al., Control of pore structure and size in freeze-dried collagen sponges. Journal of Biomedical Materials Research, 2001. 58(4): p. 352-357.
80. Kuberka, M., et al., Magnification of the pore size in biodegradable collagen sponges. The International Journal of Artificial Organs, 2002. 25(1): p. 67-73.
81. Zhang, Y., L. Hu, and J. Han, Preparation of a Dense/Porous BiLayered Ceramic by Applying an Electric Field During Freeze Casting. Journal of the American Ceramic Society, 2009. 92(8): p. 1874-1876.
82. Porter, M.M., et al., Magnetic freeze casting inspired by nature. Materials Science and Engineering: A, 2012. 556: p. 741-750.
83. Lee, P.-H., Synthesis of Hierarchically Porous Structured Bio-Inspired Composites by Diatomites and Freeze Casting, in Department of Materials Science and Engineering. 2015, National Tsing Hua University: Unpublished Results.
84. Ojuva, A., et al., Mechanical performance and CO2 uptake of ion-exchanged zeolite A structured by freeze-casting. Journal of the European Ceramic Society, 2015. 35(9): p. 2607-2618.
85. Frank, G., E. Christian, and K. Dietmar, A Novel Production Method for Porous Sound-Absorbing Ceramic Material for High-Temperature Applications. International Journal of Applied Ceramic Technology, 2011. 8(3): p. 646-652.
86. da Silva, L.L. and F. Galembeck, Morphology of latex and nanocomposite adsorbents prepared by freeze-casting. Journal of Materials Chemistry A, 2015. 3(14): p. 7263-7272.
87. Macario, A., et al., Synthesis of mesoporous materials for carbon dioxide sequestration. Microporous and mesoporous materials, 2005. 81(1): p. 139-147.
88. Dunne, J., et al., Calorimetric heats of adsorption and adsorption isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on silicalite. Langmuir, 1996. 12(24): p. 5888-5895.
89. Harlick, P. and F. Tezel, Adsorption of carbon dioxide, methane and nitrogen: pure and binary mixture adsorption for ZSM-5 with SiO 2/Al 2 O 3 ratio of 280. Separation and purification technology, 2003. 33(2): p. 199-210.
90. Ahmed, I.A.M., S.D. Young, and N.M.J. Crout, Time-dependent sorption of Cd2+ on CaX zeolite: Experimental observations and model predictions. Geochimica et Cosmochimica Acta, 2006. 70(19): p. 4850-4861.
91. Ko, D., R. Siriwardane, and L.T. Biegler, Optimization of a pressure-swing adsorption process using zeolite 13X for CO2 sequestration. Industrial & Engineering Chemistry Research, 2003. 42(2): p. 339-348.
92. Zhang, H., et al., Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature Materials, 2005. 4(10): p. 787-793.
93. Waschkies, T., R. Oberacker, and M.J. Hoffmann, Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 2011. 59(13): p. 5135-5145.
94. Laarz, E., et al., Colloidal processing of Al 2 O 3-based composites reinforced with TiN and TiC particulates, whiskers and nanoparticles. Journal of the European Ceramic Society, 2001. 21(8): p. 1027-1035.
95. Meyers, M.A., J. McKittrick, and P.-Y. Chen, Structural biological materials: critical mechanics-materials connections. science, 2013. 339(6121): p. 773-779.
96. Kärger, J., Determination of Diffusion Coefficients in Porous Media, in Handbook of Heterogeneous Catalysis. 2008, Wiley-VCH Verlag GmbH & Co. KGaA.
97. Silva, J.A.C., K. Schumann, and A.E. Rodrigues, Sorption and kinetics of CO2 and CH4 in binderless beads of 13X zeolite. Microporous and Mesoporous Materials, 2012. 158: p. 219-228.
98. Zhao, Z., et al., Adsorption of carbon dioxide on alkali-modified zeolite 13X adsorbents. International Journal of Greenhouse Gas Control, 2007. 1(3): p. 355-359.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 鱷魚骨板之啟發:防禦性生物複合材料之多尺度結構分析及機械性質研究
2. 烏賊骨板之結構與機械性質設計研究
3. 以化學氣相沉積法增強陶瓷支架之機械性質
4. 鮑魚珍珠層之仿生啟發: 以濺鍍與脈衝雷射蒸鍍複合技術合成氧化鋯/聚醯亞胺多層膜之微結構分析與機械性質研究
5. 兩種水棲昆蟲之吸附結構與機制研究:以石蛉幼蟲與網蚊幼蟲為啟發
6. 甲殼類外殼之仿生啟發:以濺鍍與脈衝雷射蒸鍍複合系統合成氧化鋯與氧化鈦/聚亞醯胺多層鍍膜之研究
7. 鯊魚牙齒之多尺度結構觀察與機械性質研究
8. 以扶桑及多孔植物為模板- 凝膠溶膠法合成TiO2及CaCO3 之研究
9. Inspirations from the Peristome of Nepenthes: Microstructural Characterization and Wettability Measurement of Multifunctional Surfaces Synthesized by Bio-replication and Surface Modification Techniques
10. Multi-scale Structural Characterization and Attachment Mechanisms of the Hillstream River Loach (Sinogastromyzon puliensis)
11. Multi-scale Structural Characterization and Mechanical Evaluation of Protective Bio-composites: Inspirations from Cobra Snake and Chinese Striped-neck Turtle Eggshells
12. 以冷凍鑄造法及矽藻土合成具多階層孔洞結構之仿生複合材料
13. 以冷凍鑄造及高分子聚合法合成多功能具多階層孔洞之矽藻土基複合材料
14. 以魚鱗為原料合成氫氧基磷灰石多孔材料應用於生醫領域及重金屬吸附功能之研究
15. 以冷凍鑄造法及矽藻土製備水下超疏油之多孔薄片應用於高效率油水分離
 
* *