|
[1] W. Zuo, C. Xie, P. Xu, Y. Li, J. Liu, A Novel Phase-Transformation Activation Process toward Ni-Mn-O Nanoprism Arrays for 2.4 V Ultrahigh-Voltage Aqueous Supercapacitors, Advanced Materials 29(36) (2017). [2] D. Zhou, H. Lin, F. Zhang, H. Niu, L. Cui, Q. Wang, F. Qu, Freestanding MnO 2 nanoflakes/porous carbon nanofibers for high-performance flexible supercapacitor electrodes, Electrochimica Acta 161 (2015) 427-435. [3] J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei, Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes, Carbon 48(13) (2010) 3825-3833. [4] M. Tian, M. Du, L. Qu, K. Zhang, H. Li, S. Zhu, D. Liu, Conductive reduced graphene oxide/MnO2 carbonized cotton fabrics with enhanced electrochemical, -heating, and - mechanical properties, Journal of Power Sources 326 (2016) 428-437. [5] G. Wang, X. Sun, F. Lu, H. Sun, M. Yu, W. Jiang, C. Liu, J. Lian, Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors, Small 8(3) (2012) 452-459. [6] F. Liu, S. Song, D. Xue, H. Zhang, Folded structured graphene paper for high performance electrode materials, Advanced Materials 24(8) (2012) 1089-1094. [7] C.-L. Liu, K.-H. Chang, C.-C. Hu, W.-C. Wen, Microwave-assisted hydrothermal synthesis of Mn3O4/reduced graphene oxide composites for high power supercapacitors, Journal of Power Sources 217 (2012) 184-192. [8] G.C. Li, P.F. Liu, R. Liu, M. Liu, K. Tao, S.R. Zhu, M.K. Wu, F.Y. Yi, L. Han, MOF - derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors, Dalton Trans 45(34) (2016) 13311-13316. [9] G. Xin, Y. Wang, X. Liu, J. Zhang, Y. Wang, J. Huang, J. Zang, Preparation of self - supporting graphene on flexible graphite sheet and electrodeposition of polyaniline for supercapacitor, Electrochimica Acta 167 (2015) 254-261. [10] L. Ma, R. Liu, L. Liu, F. Wang, H. Niu, Y. Huang, Facile synthesis of Ni(OH)2/graphene/bacterial cellulose paper for large areal mass, mechanically tough and flexible supercapacitor electrodes, Journal of Power Sources 335 (2 016) 76-83. [11] D. Sheberla, J.C. Bachman, J.S. Elias, C.J. Sun, Y. Shao-Horn, M. Dinca, Conductive MOF electrodes for stable supercapacitors with high areal capacitance, Nat ure Material 16(2) (2017) 220-224. [12] W. Cai, T. Lai, W. Dai, J. Ye, A facile approach to fabricate flexible all-solid-state supercapacitors based on MnFe2O4/graphene hybrids, Journal of Power Sources 255 (2014) 170-178. [13] Z. Tang, C.-h. Tang, H. Gong, A High Energy Density Asymmetric Supercapacitor from Nano-architectured Ni(OH)2/Carbon Nanotube Electrodes, Advanced Functional Materials 22(6) (2012) 1272-1278. [14] K.V. Sankar, R.K. Selvan, The ternary MnFe 2O4/graphene/polyaniline hybrid composite as negative electrode for supercapacitors, Journal of Power Sources 275 (2015) 399 -407. [15] Y. Wang, H. Wei, J. Wang, J. Liu, J. Guo, X. Zhang, B.L. Weeks, T.D. Shen, S. Wei, Z. Guo, Electropolymerized polyaniline/manganese iron oxide hybrids with an enhanced color switching response and electrochemical energy storage, Journal of Material Chemistry A 3(41) (2015) 20778-20790. [16] P. Xiong, C. Hu, Y. Fan, W. Zhang, J. Zhu, X. Wang, Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance, Journal of Power Sources 266 (2014) 384-392. [17] Y. Liu, N. Zhang, C. Yu, L. Jiao, J. Chen, MnFe 2O4@C Nanofibers as High-Performance Anode for Sodium-Ion Batteries, Nano Letter 16(5) (2016) 3321-3328. [18] P.J. Derbyshire, H. Barr, F. Davis, S.P. Higson, Lactate in human sweat: a critical review of research to the present day, Journal Physiological Sciences 62(6) (2012) 429-440. [19] S.-L. Kuo, N.-L. Wu, Electrochemical characterization on MnFe 2O4/carbon black composite aqueous supercapacitors, Journal of Power Sources 162(2) (2006) 1437 -1443. [20] X. Cheng, X. Gui, Z. Lin, Y. Zheng, M. Liu, R. Zhan, Y. Zhu, Z. Tang, Three -dimensional α-Fe2O3/carbon nanotube sponges as flexible supercapacitor electrodes, Journal of Material69 Chemistry A 3(42) (2015) 20927-20934. [21] B.E. Conway, Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage, Journal of the Electrochemical Society 138(6) (1991) 1539 -1548. [22] B.K. Kim, S. Sy, A. Yu, J. Zhang, Electrochemical supercapacitors for energy storage and conversion, Handbook of Clean Energy Systems (2015). [23] V. Aravindan, J. Gnanaraj, Y.S. Lee, S. Madhavi, Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors, Chemical Reviews 114(23) (2014) 11619-11635. [24] S.-Y. Yang, K.-H. Chang, H.-W. Tien, Y.-F. Lee, S.-M. Li, Y.-S. Wang, J.-Y. Wang, C.- C.M. Ma, C.-C. Hu, Design and tailoring of a hierarchical graphene -carbon nanotube architecture for supercapacitors, Joural of Material Chemistry 21(7) (2011) 2374-2380. [25] Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, R.B. Kaner, Graphene-based materials for flexible supercapacitors, Chemical Society Reviews 44(11) (2015) 3639-3665. [26] B.K. Kim, S. Sy, A. Yu, J. Zhang, Electrochemical Supercapacitors for Energy Storage and Conversion, Handbook of Clean Energy Systems. (2015) 1-25. [27] E. Frackowiak, Carbon materials for supercapacitor application, Physical Chemistry Chemical Physics 9(15) (2007) 1774-1785. [28] B. Hsia, J. Marschewski, S. Wang, J.B. In, C. Carraro, D. Poulikakos, C.P. Grigoropoulos, R. Maboudian, Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes, Nanotechnology 25(5) (2014) 055401. [29] C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density, Nano Letters 10(12) (2010) 4863-4868. [30] C.C. Hu, K.H. Chang, A. Mingchamp Lin, Y.T. Wu, Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO 2 for Next Generation Supercapacitors, Nano Letters 6(12) (2006) 2690-2695. [31] X. Pan, G. Ren, M.N.F. Hoque, S. Bayne, K. Zhu, Z. Fan, Fast Supercapacitors Based on Graphene-Bridged V2O3/VOxCore-Shell Nanostructure Electrodes with a Power Density of 1 MW kg−1, Advanced Materials Interfaces 1(9) (2014) 1400398. [32] S. Nagamuthu, S. Vijayakumar, K.-S. Ryu, Synthesis of Ag Anchored Ag 3VO4Stacked Nanosheets: Toward a Negative Electrode Material for High-Performance Asymmetric Supercapacitor Devices, The Journal of Physical Chemistry C 120(34) (2016) 18963 -18970. [33] Y. Chen, K. Cai, C. Liu, H. Song, X. Yang, High‐Performance and Breathable Polypyrrole Coated Air‐Laid Paper for Flexible All‐Solid‐State Supercapacitors, Advanced Energy Materials 7(21) (2017). [34] A. Yu, V. Chabot, Z. Chen, J. Zhang, Electrochemical Supercapacitors for Energy Sto rage and Delivery, Crc Press (2013). [35] D.C. Grahame, The electrical double layer and the theory of electrocapillarity, Chemical Reviews 41(3) (1947) 441-501. [36] M.A.V. Devanathan, B.V.K.S.R.A. Tilak, The Structure of the Electrical Double Layer at the Metal-Solution Interface, Chemical Reviews 65(6) (1965) 635-684. [37] B.E. Conway, Electrochemical Supercapacitors, Plenum Press1999. [38] A. Burke, R&D considerations for the performance and application of electrochemical capacitors, Electrochimica Acta 53(3) (2007) 1083-1091. [39] H.A. Mosqueda, O. Crosnier, L. Athouël, Y. Dandeville, Y. Scudeller, P. Guillemet, D.M. Schleich, T. Brousse, Electrolytes for hybrid carbon–MnO 2 electrochemical capacitors, Electrochimica Acta 55(25) (2010) 7479-7483. [40] M. Morita, M. Goto, Y. Matsuda, Ethylene carbonate-based organic electrolytes for electric double layer capacitors, Journal of Applied Electrochemistry 22(10) (1992) 901 -908. [41] T. Morimoto, K. Hiratsuka, Y. Sanada, K. Kurihara, Electric double -layer capacitor using organic electrolyte, Mrs Proceedings 496(2) (1997) 239-247. [42] Q. Zhu, Y. Song, X. Zhu, X. Wang, Ionic liquid -based electrolytes for capacitor applications, Journal of Electroanalytical Chemistry 601(1) (2007) 229 -236. [43] T.Y. Kim, H.W. Lee, M. Stoller, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, K.S. Suh, High-Performance Supercapacitors Based on Poly(ionic liquid) -Modified Graphene Electrodes, Acs Nano 5(1) (2011) 436-442. [44] T. Zhai, X. Lu, Y. Ling, M. Yu, G. Wang, T. Liu, C. Liang, Y. Tong, Y. Li, A new benchmark capacitance for supercapacitor anodes by mixed -valence sulfur-doped V6O(13-x),70 Advanced Materials 26(33) (2014) 5869-5875. [45] C. Zhou, Y. Zhang, Y. Li, J. Liu, Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor, Nano Letters 13(5) (2013) 2078-2085. [46] Z. Gao, W. Yang, J. Wang, N. Song, X. Li, Flexible all -solid-state hierarchical NiCo2O 4 /porous graphene paper asymmetric supercapacitors with an exceptional combina tion of electrochemical properties, Nano Energy 13 (2015) 306-317. [47] J. Chang, M. Jin, F. Yao, T.H. Kim, V.T. Le, H. Yue, F. Gunes, B. Li, A. Ghosh, S. Xie, Asymmetric Supercapacitors Based on Graphene/MnO 2 Nanospheres and Graphene/MoO3 Nanosheets with High Energy Density, Advanced Functional Materials 23(40) (2013) 5074 - 5083. [48] M. Yu, Y. Lu, H. Zheng, X. Lu, New Insights into the Operating Voltage of Aqueous Supercapacitors, Chemistry - A European Journal (2017).24(15) [49] S.E. Chun, B. Evanko, X. Wang, D. Vonlanthen, X. Ji, G.D. Stucky, S.W. Boettcher, Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge, Nature Communications 6 (2015) 7818. [50] J.Y. Hwang, M. Li, M.F. El-Kady, R.B. Kaner, Next‐Generation Activated Carbon Supercapacitors: A Simple Step in Electrode Processing Leads to Remarkable Gains in Energy Density, Advanced Functional Materials 27(15) (2017) 1605745. [51] L.Q. Mai, A. Minhaskhan, X. Tian, K.M. Hercule, Y.L. Zhao, X. Lin, X. Xu, Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance, Nature Communications 4(1) (2013) 2923. [52] J. Deng, P. Ren, D. Deng, L. Yu, F. Yang, X. Bao, Highly active and durable nonprecious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction, Energy & Environmental Science 7(6) (2014) 1919-1923. [53] Y. Zheng, Y. Jiao, M. Jaroniec, S.Z. Qiao, Advancing the electrochemist ry of the hydrogen-evolution reaction through combining experiment and theory, Angewandte Chemie International Edition 54(1) (2015) 52-65. [54] N. Jabeen, A. Hussain, Q. Xia, S. Sun, J. Zhu, X. Hui, High‐Performance 2.6 V Aqueous Asymmetric Supercapacitors based on In Situ Formed Na0.5MnO2 Nanosheet Assembled Nanowall Arrays, Advanced Materials 29(32) (2017). [55] H.J. Chu, C.Y. Lee, N.H. Tai, Green preparation using black soybeans extract for graphene-based porous electrodes and their applications in supercapacitors, Journal of Power Sources 322 (2016) 31-39. [56] B.K. Kim, S. Sy, A. Yu, J. Zhang, Electrochemical Supercapacitors for Energy Storage and Conversion, John Wiley & Sons, Ltd 2014:1-25. [57] S. Ban, J. Zhang, L. Zhang, K. Tsay, D. Song, X. Zou, Charging and discharging electrochemical supercapacitors in the presence of both parallel leakage process and electrochemical decomposition of solvent, Electrochimica Acta 90(1) (2013) 542 -549. [58] J.W. Lee, A.S. Hall, J.D. Kim, T.E. Mallouk, A Facile and Template-Free Hydrothermal Synthesis of Mn3O4 Nanorods on Graphene Sheets for Supercapacitor Electrodes with Long Cycle Stability, Cheminform 43(24) (2012) 1158-1164. [59] T. Prasankumar, V.S.I. Aazem, P. Raghavan, K.P. Ananth, S. Biradar, R. Ilangovan, S. Jose, Microwave assisted synthesis of 3D network of Mn/Zn bimetallic oxide -high performance electrodes for supercapacitors, Journal of Alloys & Compounds 695 (2017) 2835-2843. [60] C. Xiong, T. Li, A. Dang, T. Zhao, H. Li, H. Lv, Two -step approach of fabrication of three-dimensional MnO2-graphene-carbon nanotube hybrid as a binder-free supercapacitor electrode, Journal of Power Sources 306 (2016) 602-610. [61] N. Yu, H. Yin, W. Zhang, Y. Liu, Z. Tang, M.-Q. Zhu, High-Performance Fiber-Shaped All-Solid-State Asymmetric Supercapacitors Based on Ultrathin MnO 2 Nanosheet/Carbon Fiber Cathodes for Wearable Electronics, Advanced Energy Materials 6(2) (2016) 1501458. [62] H. Yi, H. Wang, Y. Jing, T. Peng, Y. Wang, J. Guo, Q. He, Z. Guo, X. Wang, Advanced asymmetric supercapacitors based on CNT@Ni(OH) 2 core–shell composites and 3D graphene networks, Journal of Materials Chemistry A 3(38) (2015) 19545-19555. [63] B. Amutha, M. Sathish, A 2 V asymmetric supercapacitor based on reduced graphene oxide-carbon nanofiber-manganese carbonate nanocomposite and reduced graphene oxide in71 aqueous solution, Journal of Solid State Electrochemistry 19(8) (2015) 2311 -2320. [64] C.H. Wang, H.C. Hsu, J.H. Hu, High-energy asymmetric supercapacitor based on petalshaped MnO2 nanosheet and carbon nanotube-embedded polyacrylonitrile-based carbon nanofiber working at 2V in aqueous neutral electrolyte, Journal of Power Sources 249(1) (2014) 1-8. [65] H. Xu, X. Hu, H. Yang, Y. Sun, C. Hu, Y. Huang, Flexible Asymmetric Micro - Supercapacitors Based on Bi2O3 and MnO2 Nanoflowers: Larger Areal Mass Promises Higher Energy Density, Advanced Energy Materials 5(6) (2015) 1401882. |