帳號:guest(3.138.35.150)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳姵希
作者(外文):Chen, Pei-Shi
論文名稱(中文):反應式直流磁控濺鍍法製備抗沾黏高熵氮化膜之研究
論文名稱(外文):Study on Anti-sticking High-entropy Nitride Films Produced by DC Reactive Magnetron Sputtering
指導教授(中文):葉均蔚
指導教授(外文):Yeh, Jien-Wei
口試委員(中文):洪健龍
李勝隆
蔡哲瑋
曹春暉
口試委員(外文):Hong, Jian-Long
Lee, Sheng-Long
Tsai, Tse-Wei
Tsau, Chun-Huei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031542
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:206
中文關鍵詞:高熵氮化膜濺鍍抗沾黏
外文關鍵詞:High-entropy Nitride FilmsSputteringAnti-sticking
相關次數:
  • 推薦推薦:0
  • 點閱點閱:342
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
本研究利用真空電弧熔煉製備非等莫耳 Al-B-Cr-Si-Ti-Zr 高熵合金靶材,並以反應式直流磁控濺鍍法鍍製高熵氮化膜,藉由調整氮氣流率、基板溫度和基板偏壓來探討在不同製程參數下薄膜晶體結構、微結構和接觸角等之影響,並對薄膜進行大氣退火以及真空退火處理,分析高熵氮化膜之抗氧化性與熱穩定性,最後選擇綜合表現較佳的薄膜鍍覆於不沾鍋材料 304 不鏽鋼和塑膠成型模具材料 P20 模具鋼上進行薄膜之附著和沾黏評估。
實驗結果發現在不同氮氣流率下,薄膜的晶體結構皆為非晶結構,並當氮氣流率為 30% 時,由於氮含量已達飽和,薄膜內部形成穩定鍵結,因此接觸角達最大值,而在施加基板溫度後,薄膜的晶體結構亦皆為非晶結構,由其微結構觀察可知薄膜的柱狀結構已有相當程度的緻密,然而,當施加基板偏壓至 -150V 後,薄膜開始析出 FCC 奈米晶,柱狀結構消失,表面形貌變得相當均勻且平整,但接觸角以基板偏壓 -50V 和 -150V 對照晶體結構為非晶和析出奈米晶時達最大值。在抗氧化性方面,薄膜在 900℃ 大氣退火兩小時後,氧化層厚度約為 250 nm,顯示氧化情形並不嚴重,具有良好的抗氧化性。而薄膜在 800℃ 真空退火一小時後,非晶結構才轉為非晶 + FCC 奈米晶的混合結構,並且原有混合結構薄膜也無晶粒粗大的現象發生,因此薄膜亦具有良好的熱穩定性。此外,刮痕附著試驗也指出不論鍍覆於 304 不鏽鋼或 P20 模具鋼基板上皆以自身合金作為中間層的附著效果最佳。最後在沾黏試驗中,以烹飪試驗來比較 304 不鏽鋼鍍膜前後的抗沾能力,結果顯示鍍覆高熵氮化膜的鍋具材料擁有優越的抗沾效果,並且本研究亦以熱熔膠沾黏試驗來比較 P20 模具鋼鍍膜前後的脫膠能力,鍍覆高熵氮化膜的模具材料確實亦具有較佳的脫膠表現,因此綜合以上特性顯示高熵氮化膜在鍋具和模具的應用上極具商用潛力。
High-entropy nitride films (Al-B-Cr-Si-Ti-Zr)100-XNX were sputter-deposited on silicon wafers. By the systematic variation of nitrogen flow ratio (RN), substrate temperature (TS) and substrate bias (VS), microstructure, crystal structure, contact angle and oxidation resistance have been investigated. Furthermore, P20 mold steels and 304 stainless steels deposited with optimal films were studied to estimate their anti-sticking performance.
The results of GIAXRD indicate that the films of different nitrogen flow ratio and substrate temperature all exhibit an amorphous structure. Furthermore, with the increasing substrate bias, the films precipitate FCC nano-crystals and possess denser microstructure. The films of VS = -50V and -150V have the highest contact angle. Besides, the films display excellent oxidation resistance and thermal stability. After air annealing at 900C for 2h, the oxidation layer is only 250 nm. In adhesion test, the films with 100 nm self-interlayer present the best adhesion property. In sticking test, the 304 stainless steels with optimal films have better anti-sticking property in actual cooking test, and the P20 mold steels with optimal films also have better degumming ability. This research demonstrates that the (Al-B-Cr-Si-Ti-Zr)100-XNX nitride films have a potential for the application in the cooking ware and plastic molding industry.
致謝 I
摘要 IV
Abstract VI
目錄 VIII
圖目錄 XII
表目錄 XVIII
壹、前言 1
貳、文獻回顧 4
2.1 薄膜鍍製技術 4
2.1.1 濺鍍原理 4
2.1.2 反應式濺鍍 5
2.1.3 直流濺鍍 7
2.1.4 磁控濺鍍 8
2.1.5 薄膜沉積與附著機制 11
2.1.6 薄膜微結構 13
2.2 薄膜種類與發展 18
2.2.1 薄膜發展概況 18
2.2.2 薄膜分類與介紹 19
2.2.3 薄膜硬化機制 24
2.3 高熵合金的發展與沿革 26
2.3.1 高熵合金定義 26
2.3.2 高熵合金特點 27
2.3.3 高熵氮化膜沿革 30
參、實驗流程 33
3.1 實驗設計 33
3.2 靶材製作 35
3.3 薄膜準備 37
3.3.1 基板準備 37
3.3.2 薄膜鍍製 38
3.4 薄膜基本性質分析 45
3.4.1 成份分析 45
3.4.2 晶體結構分析 46
3.4.3 微結構分析 46
3.4.4 表面粗糙度分析 47
3.5 薄膜電性分析 49
3.5.1 電阻率分析 49
3.6 薄膜機械性質分析 51
3.6.1 殘留應力分析 51
3.6.2 硬度和楊氏模數分析 53
3.6.3 接觸角分析 55
3.6.4 刮痕試驗 56
3.6.5 熱熔膠沾黏試驗 57
3.7 薄膜抗氧化性與熱穩定性分析 61
3.7.1 抗氧化性 61
3.7.2 熱穩定性 61
肆、結果與討論 62
4.1 氮氣流率變量對薄膜之影響 62
4.1.1 鍍率分析 62
4.1.2 成份分析 64
4.1.3 晶體結構分析 66
4.1.4 表面形貌與截面形貌分析 68
4.1.5 殘留應力分析 73
4.1.6 硬度和楊氏模數分析 75
4.1.7 表面粗糙度分析 78
4.1.8 接觸角值分析 82
4.1.9 電阻率分析 86
4.2 基板溫度變量對薄膜之影響 87
4.2.1 鍍率分析 87
4.2.2 成份分析 89
4.2.3 晶體結構分析 90
4.2.4 表面形貌與截面形貌分析 92
4.2.5 殘留應力分析 95
4.2.6 硬度和楊氏模數分析 98
4.2.7 表面粗糙度分析 101
4.2.8 接觸角值分析 104
4.2.9 電阻率分析 107
4.3 基板偏壓變量對薄膜之影響 108
4.3.1 鍍率分析 108
4.3.2 成份分析 110
4.3.3 晶體結構分析 111
4.3.4 表面形貌與截面形貌分析 113
4.3.5 殘留應力分析 118
4.3.6 硬度和楊氏模數分析 120
4.3.7 表面粗糙度分析 123
4.3.8 接觸角值分析 127
4.3.9 電阻率分析 134
4.4 薄膜抗氧化性分析 136
4.4.1 基板溫度變量薄膜的抗氧化性分析 136
4.4.2 基板偏壓變量薄膜的抗氧化性分析 140
4.5 薄膜熱穩定性分析 148
4.5.1 基板溫度變量薄膜的熱穩定性分析 148
4.5.2 基板偏壓變量薄膜的熱穩定性分析 156
4.6 薄膜附著性試驗 168
4.7 薄膜沾黏試驗 178
4.7.1 實際模擬烹飪試驗 178
4.7.2 熱熔膠沾黏試驗 188
伍、結論 194
陸、研究貢獻 198
柒、未來研究方向 199
參考文獻 200
[1] J.-W. Yeh, "Recent progress in high-entropy alloys," Annales de Chimie-Science des Matériaux, 31 (2006) 633-648.
[2] Ming-Hung Tsai and Jien-Wei Yeh, "High-Entropy Alloys: A Critical Review," Materials Research Letters, 2 (2014) 107-123.
[3] J.-W. Yeh, S.-K. Chen, S.-J. Lin, et al., "Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes," Advanced Engineering Materials, 6 (2004) 299-303.
[4] Yu-Sen Yang, Wesley Huang, Ming-Shyan Huang, and Cheng-Fong Huang, "Anti-sticking Effects of Cr-N and Zr-DLC Films on Microinjection Molding for LGP Applications," Advanced Materials Research, 179-180 (2011) 339-344.
[5] Chen-Cheng Sun, Shih-Chin Lee, Wen-Chi Hwang, Jenn-Shyong Hwang, I-Tseng Tang and Yaw-Shyan Fu, "Surface Free Energy of Alloy Nitride Coatings Deposited Using Closed Field Unbalanced Magnetron Sputter Ion Plating," Materials Transactions, 47 (2006) 2533-2539.
[6] A.Thobor-Keck, F. Lapostolle, A. S. Dehlinger, D.Pilloud, J. F. Pierson, and C. Coddet, "Influence of silicon addition on the oxidation resistance of CrN coatings," Surface and Coatings Technology, 200 (2005) 264-268.
[7] C. Tritremmel, R. Daniel, M. Lechthaler, P. Polcik, and C. Mitterer, Thin Solid Films, 534 (2013) 403-409.
[8] B. Rother, H. Kappl, Surface and Coatings Technology, 96 (1997) 163-168.
[9] W. R. Grove, "On the Electro-Chemical Polarity of Gases," Philosophical Transactions of the Royal Society of London, 142 (1852) 87-101.
[10] D. Depla, S. Mahieu and J. E. Greene, "Chapter 5 - Sputter Deposition Processes," in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P. M. Martin, Ed, Boston: William Andrew Publishing, 2010, 253-296.
[11] Donald M. Mattox, "Chapter 7 - Physical Sputtering and Sputter Deposition (Sputtering)," in Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition), D. M. Mattox, Ed, Boston: William Andrew Publishing, 2010, 237-286.
[12] L. Liljeholm, "Reactive Sputter Deposition of Functional Thin Films," Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 945 (2012) 55.
[13] Donald M. Mattox, "Chapter 7 - Physical Sputtering and Sputter Deposition (Sputtering)," in Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition), D. M. Mattox, Ed, Boston: William Andrew Publishing, 2010, 237-286.
[14] Scott G. Walton and J. E. Greene, "Chapter 2 - Plasmas in Deposition Processes," in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P. M. Martin, Ed, Boston: William Andrew Publishing, 2010, 32-92.
[15] http://marriott.tistory.com/97
[16] P.J. Kelly and R.D. Arnell,"Magnetron sputtering: a review of recent developments and applications," Vacuum, 56 (2000) 159-172.
[17] J. E. Greene, "Chapter 12 - Thin Film Nucleation, Growth, and Microstructural Evolution: An Atomic Scale View," in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P. M. Martin, Ed, Boston: William Andrew Publishing, 2010, 554-620.
[18] Donald M. Mattox, "Chapter 10 - Atomistic Film Growth and Some Growth-Related Film Properties," in Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition), D. M. Mattox, Ed, Boston: William Andrew Publishing, 2010, 333-398.
[19] B.A. Movchan and A.V. Demchishin, "Study of the Structure and Properties of Thick Vacuum Condensates of Nickel, Titanium, Tungsten, Aluminum Oxide and Zirconium Oxide," The Physics of Metals and Metallography, 28 (1969) 83-90.
[20] John A. Thornton, "High Rate Thick Film Growth," Annyal Review of Materials Science, 7 (1977) 239-260.
[21] R. Messier, A. P. Giri and R. A.Roy, "Revised Structure Zone Model for Thin Film Physical Structure," Journal of Vacuum Science & Technology A, 2 (1984) 500-503.
[22] Bruno Trindade, Albano Cavaleiro and Maria Teresa Vieira, "The Influence of the Addition of a Third Element on the Structure and Mechanical Properties of Transition-Metal-Based Nanostructured Hard Films: Part II—Carbides," in Nanostructured Coatings, A. Cavaleiro and J. T. M. D. Hosson, Ed: Springer New York, 2006.
[23] J. Musil, "Hard and superhard nanocomposite coatings, "Surface and Coatings Technology, 125 (2000) 322-330.
[24] C. Engstro¨m, J. Birch, L. Hultman, et al., "Interdiffusion Studies of Single Crystal TiN/NbN Superlattice Thin Films," Journal of Vacuum Science & Technology A, 17 (1999) 2920-2927.
[25] J. Musil, "Hard Nanocomposite Coatings: Thermal Stability, Oxidation Resistance and Toughness," Surface & Coatings Technology, 207 (2012) 50-65.
[26] S. Veprek, R. F. Zhang, M. G. J. Veprek-Heijman, et al., "Superhard Nanocomposites: Origin of Hardness Enhancement, Properties and Applications," Surface & Coatings Technology, 204 (2010) 1898-1906.
[27] Ali Erdemir and Andrey A. Voevodin, "Chapter 14 - Nanocomposite Coatings for Severe Applications*," in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P. M. Martin, Ed, Boston: William Andrew Publishing, 2010, 679-715.
[28] Jianliang Lin, John J. Moore, Brajendra Mishra, et al., "The Structure and Mechanical and Tribological Properties of TiBCN Nanocomposite Coatings," Acta Materialia, 58 (2010) 1554-1564.
[29] J. Musil, "Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness," Surface and Coatings Technology, 207 (2012) 50-65.
[30] N. Hansen, "Hall–Petch relation and boundary strengthening," Scripta Materialia, 51 (2004) 801-806.
[31] K. Lu, "Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties," Materials Science and Engineering: R: Reports, 16 (1996) 161-221.
[32] P.-K. Huang, J.-W. Yeh, T.-T. Shun, et al., "Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating," Advanced Engineering Materials, 6 (2004) 74-78.
[33] Jien-Wei Yeh, "Alloy Design Strategies and Future Trends in High-Entropy Alloys," JOM, 65 (2013) 1759-1771.
[34] B. S. Murty, J. W. Yeh and S. Ranganathan, High-Entropy Alloys. London: Elsevier, 2014.
[35] K. Y. Tsai, M. H. Tsai and J. W. Yeh, "Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys," Acta Materialia, 61 (2013) 4887-4897.
[36] 張慧紋, "以反應式直流濺鍍法製備Al-Cr-Mo-Si-Ti高熵氮化物薄膜及其性質探討," Master's Thesis, Materials Science and Engineering, National Tsing Hua University, Taiwan, 2005.
[37] 賴思維, "以反應式直流濺鍍法製備AlBCrSiTi 高熵氮化物薄膜及其性質探討," Master's Thesis, Materials Science and Engineering, National Tsing Hua University, Taiwan, 2006.
[38] 黃炳剛, "AlCrNbSiTiV高熵合金及其氮化物濺鍍薄膜之研究," Doctoral Dissertation, Materials Science and Engineering, National Tsing Hua University, Taiwan, 2009.
[39] 沈宛叡, "AlCrNbSiTi高熵合金與其氮化物薄膜微結構、機械性質與高溫氧化行為之研究," Doctoral Dissertation, Materials Science and Engineering, National Tsing Hua University, Taiwan, 2014.
[40] 謝明曉, "(AlCrNbSiTi)薄膜田口法最佳化之研究," Master's Thesis, Materials Science and Engineering, National Tsing Hua University, Taiwan, 2011.
[41] 張境芳, "Al-Cr-Nb-Si-Ta 高熵氮化膜之開發研究," Master's Thesis, Materials Science and Engineering, National Tsing Hua University, Taiwan, 2013.
[42] 蔡佳凌, "反應式直流磁控濺鍍法製備 (Al,Cr,Nb,Si,B,C)100-xNx高熵薄膜之研究," Master's Thesis, Materials Science and Engineering, National Tsing Hua University, Taiwan, 2014.
[43] W. A. J. F. Shackelford, CRC Handbook of Material Science and Engineering, 3rd ed. University of California, Davis, 2001.
[44] H. O. Pierson, "Handbook of refractory carbides and nitrides," vol. Noyes Publications, ed. New Jersey, 1996.
[45] http://www.dualsignal.com.tw/30913255112866623556magnetron-sputtering.html.
[46] C. Mitterer, P. H. Mayrhofer, and J. Musil, "Thermal stability of PVD hard coatings," Vacuum, 71 (2003) 279-284.
[47] "Overview of Mechanical Testing Standards," Applications Bulletin, No. 18 (2002).
[48] C. Ducros and F. Sanchette, "Multilayered and Nanolayered Hard Nitride Thin Films Deposited by Cathodic Arc Evaporation. Part 2: Mechanical Properties and Cutting Performances," Surface and Coatings Technology, 201 (2006) 1045-1052.
[49] http://www.azom.com/article.aspx?ArticleID=4076.
[50] R. S. Mason and M. Pichilingi, Journal of Physics D-Applied Physics, 27 (1994) 2363-2371.
[51] G. L. Huffman, D. E. Fahnline, R. Messier, and L. J. Pilione, Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 7 (1989) 2252-2255.
[52] J. Ullmann, A. J. Kellock, and J. E. E. Baglin, "Reduction of intrinsic stress in cubic boron nitride films," Thin Solid Films, 341 (1999) 238-245.
[53] H. B. Nie, S. Y. Xu, S. J. Wang, L. P. You, Z. Yang, C. K. Ong, et al., "Structural and electrical properties of tantalum nitride thin films fabricated by using reactive radio-frequency magnetron sputtering," Applied Physics a-Materials Science & Processing, 73 (2001) 229-236.
[54] A. Bendavid, P. J. Martin, X. Wang, M. Wittling, and T. J. Kinder, "Deposition and Modification of Titanium Nitride by Ion-assisted are Deposition," Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 13 (1995) 1658-1664.
[55] A. Bubenzer, B. Dischler, G. Brandt, and P. Koidl, "rf‐plasma deposited amorphous hydrogenated hard carbon thin films: Preparation, properties, and applications," Journal of Applied Physics, 54 (1983) 4590-4595.
[56] D. M. Mattox, "Particle bombardment effects on thin‐film deposition: A review," Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 7 (1989) 1105-1114.
[57] J. Musil, V. Satava, P. Zeman, and R.Cerstvy, "ADVANCED HARD NANOCOMPOSITE COATINGS: UNIQUE PROPERTIES AND ROLE OF ENERGY," Surface and Coatings Technology, 203 (2009) 1502-1507.
[58] Che-Wei Tsai , Sih-Wei Lai , Keng-Hao Cheng , Ming-Hung Tsai , Andrew Davison , Chun-Huei Tsau , Jien-Wei Yeh, "Strong amorphization of high-entropy AlBCrSiTi nitride film," Thin Solid Films, 520 (2012) 2613-2618.
[59] 翁稚惠, "AlCrTaTiZr 氮化物薄膜附著力與抗磨耗能力之研究," Master's Thesis, Materials Science and Engineering, National Tsing Hua University, Taiwan, 2007.
(此全文限內部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *