帳號:guest(18.218.8.152)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):游晏婷
作者(外文):You, Yan-Ting
論文名稱(中文):低溫電漿輔助硒化調控硒維度比例 及其多波段光感測應用
論文名稱(外文):Low Temperature Growth of Se microstructures by A Plasma-Assisted Selenization Process Toward Broadband Photodetectors
指導教授(中文):闕郁倫
沈昌宏
指導教授(外文):Chueh, Yu-Lun
Shen, Chang-Hong
口試委員(中文):李勝偉
何頌賢
洪緯璿
口試委員(外文):Lee, Sheng-Wei
Ho, Johnny-C.
Hung, Wei-Hsuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031536
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:58
中文關鍵詞:可撓式光電探測器電漿輔助沉積
外文關鍵詞:seleniumflexible photodetectorplasma assisted deposition
相關次數:
  • 推薦推薦:0
  • 點閱點閱:398
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
自1873年以來,科學家們發現硒(Se)是光電探測器的潛在候選者之一,由於其具有高光導率(〜8×104 S cm -1)、在壓電性、熱電性以及非線性光學響應等各個方面都有出色的表現。至今,大多數生產硒的途徑為溶液相合成法。溶液相合成法有著無法避免的缺點,像是污染問題以及會降低其電性表現。因此,開發一種簡單、省時又對環境友善的製程法是值得被探討的。
在本研究中,我們利用電漿輔助硒沉積法,製成硒元件。本方法提供簡單、快速又直接等優點。利用不同電漿瓦數輔助,可以將硒從薄膜結構到線/膜的異質結構,相關的機制探討亦會在本研究中探討。其線的態歸因於熱處理期間的表面起伏有關,高表面能區域扮演了成核點的腳色。此外,在硒和二氧化矽(SiO2)/矽(Si)的襯底之間插入銦(In)層通過機械互鎖和吸附理論強烈地增強了其在穿戴設備應用性。值得一提的是,我們實現在低溫製成硒光電探測器於PET基板上。其光電探測器具有從405nm到638nm的可見光檢測能力、極低暗電流(〜0.03nA)、高開/關比(〜700)以及快速響應時間(小於25ms)等表現能力,且具有極高的靈活性,良好的彎曲耐久性和高的電氣穩定性,從上述能力表現,證明我們製成的硒光電探測器非常適用於可佩戴的光電元件的相關應用。
Since 1873, scientists discovered that selenium (Se) is one of potential candidates as photodetector owing to its outstanding properties of various aspects such as high photoconductivity (~8x104 S cm-1), piezoelectricity, thermoelectricity and nonlinear optical responses. Solution phase synthesis become the efficient way to produce selenium. However, contamination issue should be taken into account, deteriorating the electric characteristic of Se. Therefore, a simple, time-saving and environmentally friendly synthesis process is required to be found.
In this work, a plasma-assisted selenization process has been proposed to simply, fast and directly grow Se thin film toward Se wire/film microstructures. The detailed formation mechanisms were investigated. The wire morphology was attributed to the generation of defects during heat treatment. Also, insertion of indium (In) layer between Se and SiO2/Si substrate strongly enhanced the mechanical strength for future wearable devices applications via mechanical interlocking and adsorption theory. The direct growth of Se microstructures on PET substrate using plasma assisted chemical vapor reaction instrument at low temperature were achieved. In addition, Se-based semiconductor photodetector exhibit visible detection from 405 nm to 638 nm, low dark current (~0.03nA), high on/off ratio (~700) and fast response time (smaller than 25ms), indicating a great potential to the wearable optoelectronic applications. Owing to the Se-based semiconductor photodetector display extreme flexibility, good bending endurance, high electrical stability and air stability on the PET substrate.
Abstract (English) I
Abstract (Chinese) II
Acknowledgements III
Table of content IV
List of Figures VI
List of Tables IX
Acronyms X
Chapter 1 Introduction - 1 -
1.1 Preface - 1 -
1.2 Motivations - 2 -
Chapter 2 Background and Literature Reviews - 3 -
2.1 Introduction to Selenium - 3 -
2.1.1 Structure of selenium - 3 -
2.1.2 Practical application based on Selenium - 5 -
2.2 Optoelectronic devices - 10 -
2.2.1 Structure of MSM photodetector - 11 -
2.2.2 Ohmic Contacts vs. Schottky Contacts - 12 -
2.2.3 Sensing Mechanisms : Photoconductive Effect - 14 -
2.2.4 Performance Parameters - 15 -
Chapter 3 Experimental and Analytical Instruments - 19 -
3.1 Fabrication processes - 19 -
3.1.1 Sputter - 19 -
3.1.2 Selenization furnace - 20 -
3.2 Analysis Instrument - 20 -
3.2.1 Field-emission scanning electron microscopy (SEM) - 20 -
3.2.2 Atomic Force Microscope (AFM) - 21 -
3.2.3 Raman spectrum analysis - 22 -
3.2.4 X-Ray Diffraction (XRD) - 23 -
3.2.5 Photoelectric Measurements system - 24 -
Chapter 4 Experimental Process - 25 -
4.1 Preparation of Se/In structures - 25 -
4.2 Device fabrication process - 26 -
4.3 Characterization - 27 -
Chapter 5 Results and Discussion - 28 -
5.1 Characterization of Se/In structure - 28 -
5.1.1 Raman spectrum analysis - 28 -
5.1.2 X-ray diffraction analysis - 28 -
5.2 Parameter Optimization - 30 -
5.2.1 Importance of Indium layer - 30 -
5.2.2 Influence of plasma power - 33 -
5.2.3 Growth mechanism - 35 -
5.2.4 Influence of substrate heating rate - 37 -
5.2.5 Influence of the time of the holding temperature - 38 -
5.3 Optoelectronic performance of the Se / In photodetector - 40 -
5.3.1 Optoelectronic performance optimization - 40 -
5.3.2 Optoelectronic properties of wearable device - 44 -
Chapter 6 Conclusions - 49 -
Chapter 7 Future work - 50 -
References - 51 -
1. W. Smith, Nature 7, 303-303 (1873).
2. A. Rogalski, Infrared Detectors, Second Edition. (CRC Press 2010).
3. F. W. Smith, H. Q. Le, V. Diadiuk, M. A. Hollis, A. R. Calawa, S. Gupta, M. Frankel, D. R. Dykaar, G. A. Mourou and T. Y. Hsiang, Applied Physics Letters 54 (10), 890-892 (1989).
4. W. C. Koscielniak, J. L. Pelouard and M. A. Littlejohn, Applied Physics Letters 54 (6), 567-569 (1989).
5. J. F. Holzman, F. E. Vermeulen and A. Y. Elezzabi, IEEE Journal of Quantum Electronics 36 (2), 130-136 (2000).
6. W. Mertz, Science 213 (4514), 1332-1338 (1981).
7. L.-B. Luo, X.-B. Yang, F.-X. Liang, J.-S. Jie, Q. Li, Z.-F. Zhu, C.-Y. Wu, Y.-Q. Yu and L. Wang, CrystEngComm 14 (6), 1942-1947 (2012).
8. H. Chen, D.-W. Shin, J.-G. Nam, K.-W. Kwon and J.-B. Yoo, Materials Research Bulletin 45 (6), 699-704 (2010).
9. L. Peng, M. Yurong, C. Weiwei, W. Zhenzhong, W. Jian, Q. Limin and C. Dongmin, Nanotechnology 18 (20), 205704 (2007).
10. Z.-M. Liao, C. Hou, L.-P. Liu and D.-P. Yu, Nanoscale Research Letters 5 (6), 926-929 (2010).
11. B. Cheng and E. T. Samulski, Chemical Communications (16), 2024-2025 (2003).
12. X. Li, Y. Li, S. Li, W. Zhou, H. Chu, W. Chen, I. L. Li and Z. Tang, Crystal Growth & Design 5 (3), 911-916 (2005).
13. Q. Lu, F. Gao and S. Komarneni, Chemistry of Materials 18 (1), 159-163 (2006).
14. B. Zhang, W. Dai, X. Ye, F. Zuo and Y. Xie, Angewandte Chemie International Edition 45 (16), 2571-2574 (2006).
15. J. H. Fendler, Chemical Reviews 87 (5), 877-899 (1987).
16. G. A. Ozin, Advanced Materials 4 (10), 612-649 (1992).
17. Q. Xie, Z. Dai, W. Huang, W. Zhang, D. Ma, X. Hu and Y. Qian, Crystal Growth & Design 6 (6), 1514-1517 (2006).
18. L. Luo, J. Jie, Z. Chen, X. Zhang, X. Fan, G. Yuan, Z. He, W. Zhang, W. Zhang and S. Lee, Journal of nanoscience and nanotechnology 9 (11), 6292-6298 (2009).
19. K. Hu, H. Chen, M. Jiang, F. Teng, L. Zheng and X. Fang, Advanced Functional Materials 26 (36), 6641-6648 (2016).
20. O. Gereben and L. Pusztai, Physical Review B 51 (9), 5768-5772 (1995).
21. G. Navarrete, H. Maŕquez, L. Cota, J. Siqueiros and R. Machorro, Appl. Opt. 29 (19), 2850-2852 (1990).
22. E. Lichtfouse, J. Schwarzbauer and D. Robert, CO2 Sequestration, Biofuels and Depollution. (Springer, 2015).
23. L. I. Berger, Semiconductor Materials. (CRC Press 1996).
24. A. v. Hippel, The Journal of Chemical Physics 16 (4), 372-380 (1948).
25. J. D. Joannopoulos, M. Schlüter and M. L. Cohen, Physical Review B 11 (6), 2186-2199 (1975).
26. V. Minaev, Journal of Optoelectronics and Advanced Materials 7 (4), 1717 (2005).
27. J. Lu, Y. Xie, F. Xu and L. Zhu, Journal of Materials Chemistry 12 (9), 2755-2761 (2002).
28. J. A. Reyes-Retana and A. A. Valladares, Computational Materials Science 47 (4), 934-939 (2010).
29. O. Foss and V. Janickis, Journal of the Chemical Society, Dalton Transactions (4), 624-627 (1980).
30. S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria and C. Capiglia, Journal of Power Sources 257, 421-443 (2014).
31. B. Xu, D. Qian, Z. Wang and Y. S. Meng, Materials Science and Engineering: R: Reports 73 (5), 51-65 (2012).
32. S. Karmakar, C. Chowdhury and A. Datta, The Journal of Physical Chemistry C 120 (27), 14522-14530 (2016).
33. Y. Yang, G. Zheng and Y. Cui, Chemical Society Reviews 42 (7), 3018-3032 (2013).
34. M.-K. Song, E. J. Cairns and Y. Zhang, Nanoscale 5 (6), 2186-2204 (2013).
35. S. Moon, Y. H. Jung, W. K. Jung, D. S. Jung, J. W. Choi and D. K. Kim, Advanced Materials 25 (45), 6547-6553 (2013).
36. J.-M. Tarascon and M. Armand, Nature 414 (6861), 359-367 (2001).
37. M. Armand and J.-M. Tarascon, Nature 451 (7179), 652-657 (2008).
38. A. Eftekhari, Sustainable Energy & Fuels 1 (1), 14-29 (2017).
39. C. Wu, L. Yuan, Z. Li, Z. Yi, R. Zeng, Y. Li and Y. Huang, (2015).
40. H.-C. Youn, J. H. Jeong, K. C. Roh and K.-B. Kim, Scientific reports 6, 30865 (2016).
41. J. Ding, H. Zhou, H. Zhang, T. Stephenson, Z. Li, D. Karpuzov and D. Mitlin, Energy & Environmental Science 10 (1), 153-165 (2017).
42. L. Liu, Y. Hou, X. Wu, S. Xiao, Z. Chang, Y. Yang and Y. Wu, Chemical communications 49 (98), 11515-11517 (2013).
43. S. Kasap, J. B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik and G. DeCrescenzo, Sensors 11 (5), 5112-5157 (2011).
44. Y. Izumi, O. Teranuma, T. Sato, K. Uehara, H. Okada, S. Tokuda and T. Sato, (2001).
45. P. Wug-Dong and T. Kenkichi, Japanese Journal of Applied Physics 55 (7), 071401 (2016).
46. S. Abbaszadeh, S. Ghaffari, S. Siddiquee, M. Z. Kabir and K. S. Karim, IEEE Transactions on Electron Devices 63 (2), 704-709 (2016).
47. A. Reznik, S. Baranovskii, O. Rubel, K. Jandieri and J. Rowlands, physica status solidi (c) 5 (3), 790-795 (2008).
48. Q. Lin, A. Armin, D. M. Lyons, P. L. Burn and P. Meredith, Advanced Materials 27 (12), 2060-2064 (2015).
49. L. Peng, L. Hu and X. Fang, Advanced Materials 25 (37), 5321-5328 (2013).
50. H. Zhu, C. Shan, B. Yao, B. Li, J. Zhang, D. Zhao, D. Shen and X. Fan, The Journal of Physical Chemistry C 112 (51), 20546-20548 (2008).
51. C.-H. Liu, Y.-C. Chang, T. B. Norris and Z. Zhong, Nat Nano 9 (4), 273-278 (2014).
52. Z. Zheng, T. Zhang, J. Yao, Y. Zhang, J. Xu and G. Yang, Nanotechnology 27 (22), 225501 (2016).
53. J. Yu, X. Chen, Y. Wang, H. Zhou, M. Xue, Y. Xu, Z. Li, C. Ye, J. Zhang and P. A. Van Aken, Journal of Materials Chemistry C 4 (30), 7302-7308 (2016).
54. A. K. Dutta and M. S. Islam, presented at the Proc. of SPIE Vol, 2005 (unpublished).
55. C.-y. Liu, H.-l. Pan, M. A. Fox and A. J. Bard, Science 261 (5123), 897-899 (1993).
56. A. Dreyhaupt, S. Winnerl, T. Dekorsy and M. Helm, Applied Physics Letters 86 (12), 121114 (2005).
57. K. K. Ng, Complete Guide to Semiconductor Devices, Second Edition, 438-445 (2002).
58. M. Liao, Y. Koide and J. Alvarez, Applied physics letters 90 (12), 123507 (2007).
59. B. Van Zeghbroeck, W. Patrick, J.-M. Halbout and P. Vettiger, IEEE electron device letters 9 (10), 527-529 (1988).
60. J. B. Soole and H. Schumacher, IEEE journal of quantum electronics 27 (3), 737-752 (1991).
61. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange and F. Evangelisti, Applied Physics Letters 72 (24), 3175-3177 (1998).
62. M. Kinch, Semiconductors and Semimetals 18, 313-378 (1981).
63. M. Yang, C. Yang, M. Kinch and J. Beck, Applied Physics Letters 54 (3), 265-267 (1989).
64. M. D. Wright, (Google Patents, 2007).
65. C. Tsai, K. H. Li, J. C. Campbell and A. Tasch, Applied physics letters 62 (22), 2818-2820 (1993).
66. G. Fiaccabrino, N. De Rooij and M. Koudelka-Hep, Analytica chimica acta 359 (3), 263-267 (1998).
67. M. Dentan and B. de Cremoux, Journal of Lightwave Technology 8 (8), 1137-1144 (1990).
68. K. Kato, A. Kozen, Y. Muramoto, Y. Itaya, T. Nagatsuma and M. Yaita, IEEE Photonics Technology Letters 6 (6), 719-721 (1994).
69. W. Moses and S. Derenzo, IEEE Transactions on Nuclear Science 41 (4), 1441-1445 (1994).
70. A. Abderrahmane, P. Ko, T. Thu, S. Ishizawa, T. Takamura and A. Sandhu, Nanotechnology 25 (36), 365202 (2014).
71. M. Mas‐Torrent, P. Hadley, N. Crivillers, J. Veciana and C. Rovira, ChemPhysChem 7 (1), 86-88 (2006).
72. H. Chang, Z. Sun, Q. Yuan, F. Ding, X. Tao, F. Yan and Z. Zheng, Advanced Materials 22 (43), 4872-4876 (2010).
73. R. W. Sandage and J. A. Connelly, presented at the Electron Devices Meeting, 1995. IEDM'95., International, 1995 (unpublished).
74. N. Chand, P. A. Houston and P. N. Robson, IEEE Transactions on Electron Devices 32 (3), 622-627 (1985).
75. N. Bar‐Chaim, C. Harder, J. Katz, S. Margalit, A. Yariv and I. Ury, Applied Physics Letters 40 (7), 556-557 (1982).
76. E. Monroy, F. Omnès and F. Calle, Semiconductor Science and Technology 18 (4), R33 (2003).
77. T. Sugeta, T. Urisu, S. Sakata and Y. Mizushima, Japanese Journal of Applied Physics 19 (S1), 459 (1980).
78. N. Vanhove, (2005).
79. B. Luther, S. Mohney, T. Jackson, M. Asif Khan, Q. Chen and J. Yang, Applied Physics Letters 70 (1), 57-59 (1997).
80. J. Carrano, T. Li, P. Grudowski, C. Eiting, R. Dupuis and J. Campbell, Journal of applied physics 83 (11), 6148-6160 (1998).
81. B. Luo, F. Ren, R. Fitch, J. Gillespie, T. Jenkins, J. Sewell, D. Via, A. Crespo, A. Baca and R. Briggs, Applied physics letters 82 (22), 3910-3912 (2003).
82. T. Blank and Y. A. Gol’Dberg, Semiconductors 41 (11), 1263-1292 (2007).
83. S. Li, J. Wu, Z. M. and Y. Jiang, Nanoscale Sensors. (Springer, 2013).
84. C. Jagadish and S. J. Pearton, Ch7 (2006).
85. Z. Fan, S. N. Mohammad, W. Kim, Ö. Aktas, A. E. Botchkarev and H. Morkoç, Applied Physics Letters 68 (12), 1672-1674 (1996).
86. H.-J. Chuang, B. Chamlagain, M. Koehler, M. M. Perera, J. Yan, D. Mandrus, D. Tománek and Z. Zhou, Nano letters 16 (3), 1896-1902 (2016).
87. D. A. Neaman, Semiconductor physics and devices. (Irwin Chicago, 1992).
88. E. H. Rhoderick, IEE Proceedings I-Solid-State and Electron Devices 129 (1), 1 (1982).
89. Y. Hu, J. Zhou, P. H. Yeh, Z. Li, T. Y. Wei and Z. L. Wang, Advanced Materials 22 (30), 3327-3332 (2010).
90. J. Zhou, Y. Gu, Y. Hu, W. Mai, P.-H. Yeh, G. Bao, A. K. Sood, D. L. Polla and Z. L. Wang, Applied Physics Letters 94 (19), 191103 (2009).
91. T.-Y. Wei, P.-H. Yeh, S.-Y. Lu and Z. L. Wang, Journal of the American Chemical Society 131 (48), 17690-17695 (2009).
92. P. H. Yeh, Z. Li and Z. L. Wang, Advanced Materials 21 (48), 4975-4978 (2009).
93. M. Razeghi and A. Rogalski, Journal of Applied Physics 79 (10), 7433-7473 (1996).
94. B. Sharma, Metal-semiconductor Schottky barrier junctions and their applications. (Springer Science & Business Media, 2013).
95. D. B. Estreich, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 2 (2), 106-111 (1983).
96. A. Yadav and U.A.Bakshi, Solid State Devices And Circuits. (Technical Publications, 2009).
97. L. Dou, Y. M. Yang, J. You, Z. Hong, W.-H. Chang, G. Li and Y. Yang, Nature communications 5, 5404 (2014).
98. R. H. Bube, Photoelectronic properties of semiconductors. (Cambridge University Press, 1992).
99. J. Watson, (Elsevier, 1992).
100. S. Swann, Physics in technology 19 (2), 67 (1988).
101. C. P. García, V. Sumbayev, D. Gilliland, I. M. Yasinska, B. F. Gibbs, D. Mehn, L. Calzolai and F. Rossi, Scientific Reports (Nature Publisher Group) 3, 1326 (2013).
102. W. Zhou and Z. L. Wang, Scanning microscopy for nanotechnology: techniques and applications. (Springer science & business media, 2007).
103. A. T. Woolley, C. L. Cheung, J. H. Hafner and C. M. Lieber, Chemistry & Biology 7 (11), R193-R204 (2000).
104. J. Hafner, C.-L. Cheung, A. Woolley and C. Lieber, Progress in biophysics and molecular biology 77 (1), 73-110 (2001).
105. G. S. Bumbrah and R. M. Sharma, Egyptian Journal of Forensic Sciences 6 (3), 209-215 (2016).
106. J. E. Johnson, Journal of Applied Polymer Science 2 (5), 205-209 (1959).
107. B. Fultz and J. Howe, in Transmission Electron Microscopy and Diffractometry of Materials (Springer, 2013), pp. 1-57.
108. C.-T. Lee, H.-Y. Lin and C.-Y. Tseng, Scientific Reports (Nature Publisher Group) 5, 13705 (2015).
109. S. Chakiroy, T. Kundu, V. R. Rao and T. Thundat, IEEE Sensors Journal PP (99), 1-1 (2017).
110. W. H. Grover, (1999).
111. G. Lucovsky, A. Mooradian, W. Taylor, G. Wright and R. Keezer, Solid State Communications 5 (2), 113-117 (1967).
112. M. Chen and L. Gao, Chemical physics letters 417 (1), 132-136 (2006).
113. H. Zhang, M. Zuo, S. Tan, G. Li, S. Zhang and J. Hou, The Journal of Physical Chemistry B 109 (21), 10653-10657 (2005).
114. J. Kim, H. Schoeller, J. Cho and S. Park, Journal of electronic materials 37 (4), 483-489 (2008).
115. J. A. Bell, (Google Patents, 2009).
116. B. S. Shim, W. Chen, C. Doty, C. Xu and N. A. Kotov, Nano letters 8 (12), 4151-4157 (2008).
117. M. Björkman, (2012).
118. C.-D. Lien, (Google Patents, 1998).
119. A. Stanojevic, P. Angerer and B. Oberwinkler, presented at the IOP Conference Series: Materials Science and Engineering, 2016 (unpublished).
120. J. Bellina Jr and H. Farnsworth, Journal of Vacuum Science and Technology 9 (2), 616-619 (1972).
121. Y. Wang, Y. Kang, W. Zhao, S. Yan, P. Zhai and X. Tang, Journal of applied physics 83 (3), 1341-1344 (1998).
122. J. O'Connor, B. Sexton and R. S. Smart, Surface analysis methods in materials science. (Springer Science & Business Media, 2013).
123. A. Redinger and T. Michely, 2009.
124. K. Nichols, D. L. Black, S. Blake and F. Baker, (1998).
125. R. Powell and A. Ulman, Ionized physical vapor deposition. (Academic Press, 1999).
126. Y. Ding, D. Northwood and A. Alpas, Surface and Coatings Technology 62 (1-3), 448-453 (1993).
127. B. Sartwell and A. Matthews, Surface & Coatings Technology: Papers Presented at the 20th International Conference on Metallurgical Coatings and Thin Films, San Diego, CA, USA, April 19–23, 1993. (Elsevier, 2016).
128. H. Andersen and H. Bay, Sputtering by particle bombardment I, 145-218 (1981).
129. J. Song and S. Lim, The Journal of Physical Chemistry C 111 (2), 596-600 (2007).
130. L.-W. Ji, S.-M. Peng, J.-S. Wu, W.-S. Shih, C.-Z. Wu and I.-T. Tang, Journal of Physics and Chemistry of Solids 70 (10), 1359-1362 (2009).
131. A. K. Sinha, A. K. Sasmal, S. K. Mehetor, M. Pradhan and T. Pal, Chemical Communications 50 (99), 15733-15736 (2014).
132. A. Mishchenko, 2016.
133. (Google Patents, 1948).
134. Y. Kojima, K. Kasuya, K. Nagato, T. Hamaguchi and M. Nakao, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 26 (6), 1942-1947 (2008).
135. A. M. Smith, M. G. Kast, B. A. Nail, S. Aloni and S. W. Boettcher, Journal of Materials Chemistry A 2 (17), 6121-6129 (2014).
136. M. K. Hatalis and D. W. Greve, IEEE Electron Device Letters 8 (8), 361-364 (1987).
137. P. H. L. Rasky, D. W. Greve, M. H. Kryder and S. Dutta, Journal of Applied Physics 57 (8), 4077-4079 (1985).
138. B. Petek, E. A. Giess and R. T. Hodgson, Journal of Applied Physics 52 (6), 4170-4175 (1981).
139. R. L. Craw, P. Byrnes, W. Johnson, H. Levinstein, J. Nielsen, R. Spiwak and R. Wolfe, IEEE Transactions on Magnetics 9 (3), 422-425 (1973).
140. M.-G. Kim, M. G. Kanatzidis, A. Facchetti and T. J. Marks, Nat Mater 10 (5), 382-388 (2011).
141. B. S. Meyerson, K. J. Uram and F. K. LeGoues, Applied Physics Letters 53 (25), 2555-2557 (1988).
142. C. K. Kwok and S. B. Desu, Journal of Materials Research 8 (2), 339-344 (2011).
143. H. Adachi, K. Hirochi, K. Setsune, M. Kitabatake and K. Wasa, Applied Physics Letters 51 (26), 2263-2265 (1987).
144. S. Kizir, A. Haider and N. Biyikli, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 34 (4), 041511 (2016).
145. Z. Ambrus, K. Mogyorósi, Á. Szalai, T. Alapi, K. Demeter, A. Dombi and P. Sipos, Applied Catalysis A: General 340 (2), 153-161 (2008).
146. J. B. Wachtman, 18th Annual Conference on Composites and Advanced Ceramic Materials - B. (2009).
147. K. N. Lyon, T. J. Marrow and S. B. Lyon, Journal of Materials Processing Technology 218, 32-37 (2015).
148. Q. Chen, S. Wang and L.-M. Peng, Nanotechnology 17 (4), 1087 (2006).
149. K. Kwak, K. Cho and S. Kim, Sensors 10 (10), 9118-9126 (2010).
150. N. Youngblood, C. Chen, S. J. Koester and M. Li, Nature Photonics (2015).
151. D. L. Olmsted, S. M. Foiles and E. A. Holm, Acta Materialia 57 (13), 3694-3703 (2009).
152. V. Randle, The role of the coincidence site lattice in grain boundary engineering. (Maney Pub, 1996).
153. W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving and M. Engelhardt, Journal of Applied Physics 97 (2), 023706 (2005).
154. H. Yan, H. Tang, S. Deng, G. Chen, X. Shao, T. Li, X. Li and H. Gong, presented at the Selected Proceedings of the Photoelectronic Technology Committee Conferences held August-October 2014, 2015 (unpublished).
155. Y. Zhou, J. Chen, Q. Xu, Z. Xu, C. Jin, J. Xu and L. He, presented at the Proc. SPIE, 2012 (unpublished).
156. C.-W. Hsu, Y.-F. Chen and Y.-K. Su, IEEE Journal of Quantum Electronics 50 (1), 35-41 (2014).
157. L. Sang, M. Liao and M. Sumiya, Sensors 13 (8), 10482-10518 (2013).
158. J.-K. Sheu, M.-L. Lee and W.-C. Lai, Applied Physics Letters 87 (4), 043501 (2005).
159. M. Python, E. Vallat-Sauvain, J. Bailat, D. Dominé, L. Fesquet, A. Shah and C. Ballif, Journal of Non-Crystalline Solids 354 (19), 2258-2262 (2008).
160. Z. Lou and G. Shen, Advanced science 3 (6) (2016).
161. Z. Liu, J. Xu, D. Chen and G. Shen, Chemical Society Reviews 44 (1), 161-192 (2015).
162. C. Y. Chang, Y. J. Cheng, S. H. Hung, J. S. Wu, W. S. Kao, C. H. Lee and C. S. Hsu, Advanced Materials 24 (4), 549-553 (2012).
163. J. Yoon, A. J. Baca, S.-I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang and T.-H. Kim, Nature materials 7 (11), 907-915 (2008).
164. K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan and J. Genzer, Nat Mater 4 (4), 293-297 (2005).
165. W. T. S. Huck, Nat Mater 4 (4), 271-272 (2005).
166. J. H. Jun, H. Seong, K. Cho, B.-M. Moon and S. Kim, Ceramics International 35 (7), 2797-2801 (2009).
167. H. Hsueh, S. Chang, W. Weng, C. Hsu, T. Hsueh, F. Hung, S. Wu and B. Dai, IEEE Transactions on Nanotechnology 11 (1), 127-133 (2012).
168. S.-B. Wang, C.-H. Hsiao, S.-J. Chang, Z. Jiao, S.-J. Young, S.-C. Hung and B.-R. Huang, IEEE transactions on nanotechnology 12 (2), 263-269 (2013).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *