帳號:guest(3.22.250.82)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪宜筠
作者(外文):Hung, Yi-Yun
論文名稱(中文):質子交換膜燃料電池高導電氮化鈦微孔結構觸媒載體之製備及其性能研究
論文名稱(外文):Fabrication of Mesoporous Titanium Nitride Structure as High-performance Catalyst Support for Proton Exchange Membrane Fuel Cell
指導教授(中文):彭宗平
指導教授(外文):Perng, Tsong-Pyng
口試委員(中文):葉君棣
王致傑
口試委員(外文):Yeh, Chuin-Tih
Wang, Chih-Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031535
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:125
中文關鍵詞:氮化鈦分散劑P-123CTABPMMAPEG溶膠-凝膠法相分離多孔結構鉑觸媒化學還原法硼氫化鈉質子交換膜燃料電池
外文關鍵詞:titanium nitridesol-gel methodphase separationsurfactantP-123CTABPMMAPEGmesoporous structurePlatinumchemical reduction methodsodium borohydrideproton exchange membrane fuel cell
相關次數:
  • 推薦推薦:0
  • 點閱點閱:161
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  近年來,質子交換膜燃料電池(PEMFC)技術有顯著的突破與進步,然而在商品化的過程中仍面臨不少挑戰,其中最大的課題為如何提高耐久度及降低成本,因為目前使用之傳統碳材載體在燃料電池反應的環境中易產生腐蝕,且使用貴金屬觸媒之價格高,商業化量產成本較高。氮化鈦(titanium nitride, TiN)為一過渡金屬氮化物的陶瓷材料,具有高電導率、優異的機械性質及高抗蝕性,並且和鉑之間具有強作用力等特性。本論文主要研究以溶膠-凝膠(sol-gel)伴隨相分離法製備氮化鈦多孔結構(TiN macro/mesoporous strucutre),作為觸媒之載體,取代傳統碳材載體,並以化學還原法成長鉑(Pt)觸媒於氮化鈦載體,期能減少貴金屬之使用量,同時提升使用效率。
  首先使用聚乙二醇(polyethylene glycol, PEG)、溴化十六烷基三甲銨(cetyltrimethylammonium bromide, CTAB)、聚甲基丙烯酸甲酯(poly(methyl methacrylate), PMMA)、及聚氧丙烯聚氧乙烯共聚物(pluronic P-123)作為分散劑,誘導產生相分離,以製備多孔氮化鈦結構。其次,針對P-123進一步研究,藉由調整P-123之用量來控制其表面積及孔洞大小,並經由800 o以上持溫兩小時之氮化處理,得到氮化鈦結構。在800 oC氮化處理後,比表面積可達185.9 (m2g-1),氮化鈦之比表面積也會隨P-123之用量提升而提升。並藉由調變氮化溫度來控制其結晶性,氮化鈦之結晶性會隨氮化溫度提升而增加,經由1000 oC氮化處理之氮化鈦導電度(298 Scm-1)為碳黑(5 Scm-1)之六十倍。再使用化學還原法,以四氯化鉑(PtCl4)作為白金前驅物,硼氫化鈉(NaBH4)作為還原劑,均勻鍍附奈米鉑顆粒於氮化鈦載體上,並透過溶液之pH值控制鉑顆粒大小,在pH值為11時,平均鉑奈米顆粒為三奈米,且均勻鍍附於氮化鈦載體;藉由調變氮化鈦載體之表面積來控制其鉑負載量(74.3-173.3μg cm-2),隨載體比表面積提升可增加鉑負載量。
藉由循環伏安法(cyclic voltammetry, CV)及氧氣還原反應(oxygen reduction
reaction, ORR)探討自製電極之電化學特性,透過調整P-123之用量來改變其電化學表現,從CV曲線中可計算出電化學活性表面積(ECSA),含有20 wt%之P-123的自製電極具有較高之ECSA(51.0 m2g-1),代表其鉑觸媒具有較高反應表面積;從ORR分析中,可得知電流密度隨鉑負載量增加而提升,因氮化鈦比表面積隨P-123用量提升,其鉑承載量亦增加。透過計算可得質量活性(mass activity),含50 wt% P-123之自製電極具有較高質量活性(192.1 Ag-1)。
  再於燃料電池測試平台量測自製電極之效率,先以Pt@TiN置於陽極而商用電極(E-Tek)置於陰極以求得自製電極於陽極之表現。藉由調控氮化溫度、鍍附奈米鉑之pH值及P-123之用量以觀察對電池效率之影響,透過研究結果可得當氮化溫度固定於1000 oC及pH值為11時,含20 wt% P-123之自製電極最大功率密度為490.0 mWcm-2,表現優於商用電極(Pmax: 395.5 mWcm-2)。再者,調整鉑承載量,透過計算可得含鉑承載量0.034 mgcm-2之自製電極具有比功率密度13388.2 Wg-1,為商用電極之十七倍高。其次,將E-Tek置於陽極且Pt@TiN置於陰極,以求得自製電極於陰極之表現,自製電極之功率密度低於商用電極。然而進一步探討比功率密度以觀察鉑使用效率,自製電極之比功率密度為商用電極之一至二倍高。為提高自製電極置於陰極之表現,乃添加碳黑以形成Pt@TiN-C,並將其置於陰極且商用電極置於陽極,電池效率大幅提升,可觀察出添加高孔隙容積之碳黑有助於陰極效率表現。若將自製電極Pt@TiN用於陽極及Pt@TiN-C用於陰極,其功率密度(Pmax: 566.3 mWcm-2)高於E-Tek商用電極,此可歸功於氮化鈦載體之電導率遠高於傳統碳材載體、高孔隙容積之觸媒載體以及鉑之高使用率。本研究測試結果顯示燃料電池效率受氮化鈦載體之比表面積、鉑觸媒承載量、鉑觸媒之接觸面積及鉑奈米顆粒大小所影響。
Proton exchange membrane fuel cell (PEMFC) technologies have advanced notably in recent years. However, the endurance and cost are big challenges for commercialization because of the degradation of traditional carbon support and the utilization of expensive novel metal catalysts. Titanium nitride (TiN) has been demonstrated as a promising catalyst support material with high electrical conductivity, good mechanical properties, good interaction with platinum (Pt), and high resistance to corrosion for application in PEMFC. In order to increase the catalyst utilization efficiency and specific power density, this work focuses on novel catalyst support fabrication and catalyst deposition.
First, a porous TiN was formed to obtain large surface area for high loading of Pt. It was fabricated by a sol-gel method, using titanium isopropoxide as a precursor, which was accompanied by polymerization-induced phase separation and followed by nitridation in NH3 at above 800 oC. Four kinds of surfactant including PEG, CTAB, PMMA, and P-123 were tested to form porous structure. P-123 was then selected as a surfactant to fabricate porous TiN with different surface areas and pore sizes by adjusting the P-123 content. A high surface area (~185.9 m2g-1) was obtained even after the heat treatment at 800 oC. As the amount of P-123 increased, the surface area increased. Also the effect of nitridation temperature on TiN support was studied. The degree of crystallinity of TiN increased as the nitridation temperature increased. The electrical conductivity of porous TiN nitridized at 1000 oC was measured to be 298 Scm-1, which is 60-fold higher than that of carbon black XC-72 (5 Scm-1). Furthermore, platinum (IV) chloride (PtCl4) was used as a precursor in the chemical reduction process to deposit Pt nanoparticles on TiN with sodium borohydride (NaBH4) as the reducing agent. Under pH value of 11, Pt nanoparticles were fabricated uniformly on the support and the average particle was 3 nm, as observed by TEM analysis. The Pt loading of Pt@TiN ranged from 74.3 to 173.3 μg cm-2 as depositing on various supports with different surface areas. The Pt loading increased with increasing the surface area.
The electrochemical behaviors of the homemade Pt@TiN nanostructure were investigated by cyclic voltammetry (CV) and oxygen reduction reaction (ORR) analyses. The nominal Pt loading was fixed at 20 wt%. From the CV curves, the electrochemical surface area (ECSA) value of Pt@TiN prepared with 20 wt% of P-123 was the highest (51.0 m2/g), indicating that this composite has the highest reactive surface of Pt. From the ORR analysis, the current density highly depends on the Pt loading. The current density also increased with increasing the percentage of P-123. Pt@TiN prepared with 50 wt% of P-123 had the highest mass activity, 192.1 A/g.
The performance of PEMFC using Pt@TiN electrode was evaluated by a single cell test station. When Pt@TiN was applied as the anode and commercial E-Tek was used as the cathode, the effects of nitridation temperature, pH value for the Pt reduction process, and amount of P-123 were studied. As the nitridation temperature was fixed at 1000 oC and pH value was 11, Pt@TiN prepared with 20 wt% of P-123 had higher maximum power density, 490.0 mw/cm2, than that of commercial E-Tek (395.5 mw/cm2) and other electrodes. It is in agreement with the CV analysis. Furthermore, the effect of different Pt loading was studied. The specific maximum power density of the anode with Pt loading of 0.034 mg/cm2 was 17-fold higher than that of E-Tek (791 mW/cm2). When Pt@TiN was applied as the cathode and E-Tek was used as the anode, the power densities of all homemade electrodes were all lower than that of commercial E-Tek. However, the specific maximum power densities of homemade electrodes were around two-fold higher than that of E-Tek, showing higher Pt utilization efficiency. In addition, the effect of adding carbon black XC-72 to form Pt@TiN-C composite used as the cathode was tried to improve the performance of fuel cell. When Pt@TiN-C applied as the cathode and E-Tek was used as the anode, the performance was enhanced significantly and better than that of electrodes without adding XC-72; When Pt@TiN was used as the anode and Pt@TiN-C was used as the cathode, the maximum power density, 566.3 mw/cm2, was higher than that of E-Tek due to higher electrical conductivity and porosity of the catalyst support and higher Pt utilization efficiency. To summarize, the efficiency of PEMFC was highly dependent on the surface area of TiN, the reactive surface area of Pt, Pt loading, and the particle size of Pt.
摘要 i
Abstract iii
誌謝 vi
Chapter I Introduction 1
1-1 Background of Research 1
1-2 The Development of Fuel Cells 2
1-3 Types of Fuel cells 2
1-4 Advantages and Applications of Fuel Cells 5
1-5 Motivation of Research 6
Chapter II Literature Review 11
2-1 Principle of PEMFC 11
2-2 Components of PEMFC 11
2-2-1 Proton exchange membrane 14
2-2-2 Catalyst layer 14
2-2-2-1 Catalyst support 20
A. Carbon catalyst support 20
B. Non-carbonaceous support 23
2-2-2-2 Catalyst 24
A. Materials 24
B. Particle size effect 24
C. Methods of depositing catalysts 33
2-2-3 Gas diffusion layer 37
2-2-4 Bipolar plates 38
2-3 Synthesis of porous structure aided with surfactants 42
Chapter III Experimental Procedures 51
3-1 Preparation of TiN macro/mesoporous structure 51
3-1-1 Preparation of TTIP solution 51
3-1-2 Fabrication of TiN macro/mesoporous structure by nitridation 51
3-2 Fabrication of Pt@TiN 53
3-2-1 Preparation of TiN macro/mesoporous structure 53
3-2-2 Deposition of Pt nanoparticles by chemical reduction method 54
3-3 Characterizations of the microstructures 55
3-4 Electrochemical characterization 57
3-5 Preparation of Membrane Electrode Assembly 58
3-6 Single Cell Performance of PEMFC 59
Chapter IV Results and Discussion 62
4-1 Morphologies of TiN Porous Structure Containing Different Surfactants 62
4-1-1 P-123 62
4-1-2 PEG 62
4-1-3 CTAB 62
4-1-4 PMMA 63
4-1-5 Comparison of the structures prepared with various surfactants 63
4-2 TiN Macro/mesoporous Structure 63
4-2-1 TGA analysis 63
4-2-2 Crystallinity 69
4-2-3 Morphologies 69
4-3 Pt@TiN Macro/mesoporous Structure 74
4-3-1 Crystallinity 74
4-3-2 Morphologies 82
4-3-3 Pt loading 87
4-4 Electrochemical Characterization of Pt@TiN Macro/mesoporous Structure 87
4-5 Performances of MEA 91
4-5-1 Pt@TiN as anode 91
4-5-1-1 Effect of nitridation temperature 92
4-5-1-2 Effect of Pt nanoparticle size 92
4-5-1-3 Effect of concentration of P-123 92
4-5-1-4 Effect of Pt loading amount 99
4-5-2 Pt@TiN as cathode 104
4-5-2-1 Effect of concentration of P-123 104
4-5-2-2 Effect of adding XC-72 110
4-5-3 Pt@TiN as anode and Pt@TiN-C as cathode 111
4-5-3-1 Comparison of commercial E-Tek and homemade electrode 111
Chapter V Conclusions 117
Chapter VI Suggested Future Work 119
References 120
1. N. Malyshkina and D. Niemeier, Environ. Sci. Technol., 44 (2010) 9134-9142.
2. D.G. Loffler, K. Taylor, and D. Mason, J. Power Sources, 117 (2003) 84-91.
3. http://tmblr.co/Z1L1En1MvL82V
4. N.H. Behling, Fuel cells : current technology challenges and future research needs, Elsevier, (2013).
5. P. Costamagna and S. Srinivasan, J. Power Sources, 102 (2001) 242-252.
6. http://sied.co.za/fuel-101-history/.
7. M. Winter and R.J. Brodd, What are batteries, fuel cells, and supercapacitors?, ACS Publications, (2004).
8. A. Kirubakaran, S. Jain, and R.K. Nema, Renew. Sust. Energ. Rev., 13 (2009) 2430-2440.
9. J. Larminie and A. Dicks, Fuel cell systems explained, John Wiley & Sons, (2000).
10. B. Holland, J. Zhu, and L. Jamet, University of Technology, Sydney, (2007).
11. S. Sharma and B.G. Pollet, J. Power Sources, 208 (2012) 96-119.
12. H. Shin, H.I. Kim, D.Y. Chung, J.M. Yoo, S. Weon, W. Choi, and Y.E. Sung, ACS Cataly., 6 (2016) 3914-3920.
13. K. Kajihara and K. Nakanishi, J. Mater. Res., 16 (2001) 58-66.
14. I.M. E Yokoyama, K. Shimamura, T. Ikawa, and K. Monobe, Colloid. Polym. Sci., 264 (1986) 595-601.
15. G.Q. Liu, Z.G. Jin, X.X. Liu, T. Wang, and Z.F. Liu, J. Sol-Gel Sci. Technol., 41 (2007) 49-55.
16. R. Takahashi, K. Nakanishi, and N. Soga, J. Sol-Gel Sci. Technol., 17 (2000) 7-18.
17. K. Nakanishi, T. Amatani, S. Yano, and T. Kodaira, Chem. Mater., 20 (2008) 1108-1115.
18. J.W. Kim, K. Taki, S. Nagamine, and M. Ohshima, Langmuir, 25 (2009) 5304-5312.
19. K. Nakanishi and N. Soga, J. Non-Cryst. Solids, 139 (1992) 1-13.
20. K. Nakanishi and N. Tanaka, Acc. Chem. Res., 40 (2007) 863-873.
21. J.R. Li, M. Pan, and H.L. Tang, Rsc. Adv., 4 (2014) 3944-3965.
22. L. Carrette, K.A. Friedrich, and U. Stimming, ChemPhysChem, 1 (2000) 162-193.
23. X. Li, L. Fields, and G. Way, Platin. Met. Rev., 50 (2006) 200-201.
24. J. Li, M. Pan, and H. Tang, RSC Adv., 4 (2014) 3944-3965.
25. B. Smitha, S. Sridhar, and A.A. Khan, J. Membr. Sci., 259 (2005) 10-26.
26. V. Mehta and J.S. Cooper, J. Power Sources, 114 (2003) 32-53.
27. M.A. Modestino, S.M.H. Hashemi, and S. Haussener, Energ. Environ. Sci., 9 (2016) 1533-1551.
28. R.H. Crabtree, Energy production and storage: inorganic chemical strategies for a warming world, John Wiley & Sons, (2010).
29. http://en.wikipedia.org/wiki/Butler%E2%80%93Volmer_equation.
30. T. Tada, Handbook of fuel cells, John Wiley & Sons, (2003).
31. N. Jha, A.L.M. Reddy, M.M. Shaijumon, N. Rajalakshmi, and S. Ramaprabhu, Int. J. Hydrogen Energy, 33 (2008) 427-433.
32. E. Antolini, Appl. Catal., B, 88 (2009) 1-24.
33. X. Wang, W. Li, Z. Chen, M. Waje, and Y. Yan, J. Power Sources, 158 (2006) 154-159.
34. W. Li, X. Wang, Z. Chen, M. Waje, and Y. Yan, Langmuir, 21 (2005) 9386-9389.
35. N. Rajalakshmi, H. Ryu, M. Shaijumon, and S. Ramaprabhu, J. Power Sources, 140 (2005) 250-257.
36. W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, and Q. Xin, J. Phys. Chem. B, 107 (2003) 6292-6299.
37. W. Yang, S. Yang, J. Guo, G. Sun, and Q. Xin, Carbon, 45 (2007) 397-401.
38. D. Sebastián, M. Lázaro, I. Suelves, R. Moliner, V. Baglio, A. Stassi, and A. Aricò, Int. J. Hydrogen Energy, 37 (2012) 6253-6260.
39. E. Wallnöfer, M. Perchthaler, V. Hacker, and G. Squadrito, J. Power Sources, 188 (2009) 192-198.
40. D. Sebastián, J. Calderón, J. González-Expósito, E. Pastor, M. Martínez-Huerta, I. Suelves, R. Moliner, and M. Lázaro, Int. J. Hydrogen Energy, 35 (2010) 9934-9942.
41. R.I. Jafri, N. Rajalakshmi, and S. Ramaprabhu, J. Mater. Chem., 20 (2010) 7114-7117.
42. B. Seger and P.V. Kamat, J. Phys. Chem. C, 113 (2009) 7990-7995.
43. P.V. Kamat, J. Phys. Chem. Lett., 1 (2009) 520-527.
44. J. Zang, Y. Wang, L. Bian, J. Zhang, F. Meng, Y. Zhao, R. Lu, X. Qu, and S. Ren, Carbon, 50 (2012) 3032-3038.
45. L. Bian, Y. Wang, J. Zang, F. Meng, and Y. Zhao, Int. J. Hydrogen Energy, 37 (2012) 1220-1225.
46. J. Ding, K.Y. Chan, J. Ren, and F.S. Xiao, Electrochim. Acta, 50 (2005) 3131-3141.
47. H. Chang, S.H. Joo, and C. Pak, J. Mater. Chem., 17 (2007) 3078-3088.
48. M. Terrones, A.R. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y.I. Vega-Cantú, F.J. Rodríguez-Macías, A.L. Elías, E. Munoz-Sandoval, A.G. Cano-Márquez, and J.C. Charlier, Nano Today, 5 (2010) 351-372.
49. S.Y. Huang, P. Ganesan, S. Park, and B.N. Popov, J. Am. Chem. Soc., 131 (2009) 13898-13899.
50. W. Liu, P. Xu, Y. Guo, Y. Lin, X. Yin, G. Tang, and M. He, Sci. Rep., 6 (2016.
51. B. Avasarala and P. Haldar, Electrochim. Acta., 55 (2010) 9024-9034.
52. J.H. Bang and K.S. Suslick, Adv. Mater., 21 (2009) 3186-3190.
53. J.M. Jaksic, N.M. Ristic, N.V. Krstajic, and M.M. Jaksic, Int. J. Hydrogen Energy, 23 (1998) 1121-1156.
54. J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, and H. Jonsson, J. Phys. Chem. B, 108 (2004) 17886-17892.
55. P. Ferreira, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, and H. Gasteiger, J. Electrochem. Soc., 152 (2005) A2256-A2271.
56. W. Schmittinger and A. Vahidi, J. Power Sources, 180 (2008) 1-14.
57. R. Borup, J. Meyers, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, and D. Wood, Chem. Rev., 107 (2007) 3904-3951.
58. S.S. Zhang, X.Z. Yuan, J.N.C. Hin, H.J. Wang, K.A. Friedrich, and M. Schulze, J. Power Sources, 194 (2009) 588-600.
59. K. Kinoshita, J. Electrochem. Soc., 137 (1990) 845-848.
60. M. Shao, A. Peles, and K. Shoemaker, Nano Lett., 11 (2011) 3714-3719.
61. K. Kinoshita, Electrochemical oxygen technology, John Wiley & Sons, (1992).
62. K. Miyazaki and H. Mori, Sci. Rep., 7 (2017) 45381.
63. J.H. Wee, K.Y. Lee, and S.H. Kim, J. Power Sources, 165 (2007) 667-677.
64. A. Esmaeilifar, S. Rowshanzamir, M. Eikani, and E. Ghazanfari, Energy, 35 (2010) 3941-3957.
65. J.H. Wee, J. Power Sources, 173 (2007) 644-645.
66. L. Xiong and A. Manthiram, Electrochim. Acta, 50 (2005) 3200-3204.
67. M.R. Khan and S.D. Lin, J. Power Sources, 162 (2006) 186-191.
68. S.S. Kim, Y.C. Nah, Y.Y. Noh, J. Jo, and D.Y. Kim, Electrochim. Acta, 51 (2006) 3814-3819.
69. S. Hirano, J. Kim, and S. Srinivasan, Electrochim. Acta, 42 (1997) 1587-1593.
70. M. Alvisi, G. Galtieri, L. Giorgi, R. Giorgi, E. Serra, and M. Signore, Surf. Coat. Technol., 200 (2005) 1325-1329.
71. H.T. Kim, J.K. Lee, and J. Kim, J. Power Sources, 180 (2008) 191-194.
72. Y. Xing, J. Phys. Chem. B, 108 (2004) 19255-19259.
73. M. Wang, K.D. Woo, and D.K. Kim, Energy Convers. Manage., 47 (2006) 3235-3240.
74. S. Li, G. Liu, H. Lian, M. Jia, G. Zhao, D. Jiang, and W. Zhang, Catal. Commun., 9 (2008) 1045-1049.
75. K.Y. Chan, J. Ding, J. Ren, S. Cheng, and K.Y. Tsang, J. Mater. Chem., 14 (2004) 505-516.
76. X. Wang, H. Zhang, J. Zhang, H. Xu, Z. Tian, J. Chen, H. Zhong, Y. Liang, and B. Yi, Electrochim. Acta, 51 (2006) 4909-4915.
77. E.K.B. M. V. Williams, L. J. Bonville, H. R. Kunz, and J. M. Fenton, ECS 202nd Meeting, Salt Lake City, UT, (2002).
78. A. Bazylak, Int. J. Hydrogen Energy, 34 (2009) 3845-3857.
79. A. Hermann, T. Chaudhuri, and P. Spagnol, Int. J. Hydrogen Energy, 30 (2005) 1297-1302.
80. H. Wang and J.A. Turner, Fuel Cells, 10 (2010) 510-519.
81. H. Wang, M.A. Sweikart, and J.A. Turner, J. Power Sources, 115 (2003) 243-251.
82. X. Li and I. Sabir, Int. J. Hydrogen Energy, 30 (2005) 359-371.
83. H. Yang and T. Zhao, Electrochim. Acta, 50 (2005) 3243-3252.
84. J.G. Yu, X.J. Zhao, and Q.N. Zhao, Thin Solid Films, 379 (2000) 7-14.
85. X. Guo, R. Wang, H. Yu, Y. Zhu, K. Nakanishi, K. Kanamori, and H. Yang, Dalton Trans., 44 (2015) 13592-13601.
86. H.A. Gasteiger, N.M. Markovic, and P.N. Ross Jr, The Journal of Physical Chemistry, 99 (1995) 8290-8301.
87. L.H. Slooff, J.M. Kroon, J. Loos, M.M. Koetse, and J. Sweelssen, Adv. Funct. Mater., 15 (2005) 689-694.
88. C. Roth, P. Bleith, C.A. Schwöbel, S. Kaserer, and J. Eichler, Energies, 7 (2014) 3642-3652.
89. N. Rajalakshmi, N. Lakshmi, and K. Dhathathreyan, Int. J. Hydrogen Energy, 33 (2008) 7521-7526.
90. A. Wolz, S. Zils, D. Ruch, N. Kotov, C. Roth, and M. Michel, Adv. Energy Mater., 2 (2012) 569-574.
91. B. Seger, A. Kongkanand, K. Vinodgopal, and P.V. Kamat, J. Electroanal. Chem., 621 (2008) 198-204.
92. Z.Z. Jiang, Z.B. Wang, Y.Y. Chu, D.M. Gu, and G.P. Yin, Energy Environ. Sci., 4 (2011) 728-735.
93. T. Maiyalagan and V.S. Saji, Electrocatalysts for Low Temperature Fuel Cells: Fundamentals and Recent Trends, John Wiley & Sons, (2017).
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *