|
1. Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669. 2. Mak, K.F., et al., Atomically Thin MoS2: A New Direct-Gap Semiconductor. Physical Review Letters, 2010. 105(13): p. 136805. 3. Wilson, J.A., F.J. Di Salvo, and S. Mahajan, Charge-Density Waves in Metallic, Layered, Transition-Metal Dichalcogenides. Physical Review Letters, 1974. 32(16): p. 882-885. 4. Salvatore, G.A., et al., Fabrication and Transfer of Flexible Few-Layers MoS2 Thin Film Transistors to Any Arbitrary Substrate. ACS Nano, 2013. 7(10): p. 8809-8815. 5. Podzorov, V., et al., High-mobility field-effect transistors based on transition metal dichalcogenides. Applied Physics Letters, 2004. 84(17): p. 3301-3303. 6. Chhowalla, M., et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem, 2013. 5(4): p. 263-275. 7. Kappera, R., et al., Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat Mater, 2014. 13(12): p. 1128-1134. 8. Zhao, W., et al., Origin of Indirect Optical Transitions in Few-Layer MoS2, WS2, and WSe2. Nano Letters, 2013. 13(11): p. 5627-5634. 9. Huang, W., et al., Theoretical study of thermoelectric properties of few-layer MoS2 and WSe2. Physical Chemistry Chemical Physics, 2014. 16(22): p. 10866-10874. 10. Chang, J., L.F. Register, and S.K. Banerjee, Ballistic performance comparison of monolayer transition metal dichalcogenide MX2 (M = Mo, W; X = S, Se, Te) metal-oxide-semiconductor field effect transistors. Journal of Applied Physics, 2014. 115(8): p. 084506. 11. Zeng, H., et al., Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Scientific Reports, 2013. 3: p. 1608. 12. RadisavljevicB, et al., Single-layer MoS2 transistors. Nat Nano, 2011. 6(3): p. 147-150. 13. Liu, J., et al., Ultrafast Self-Limited Growth of Strictly Monolayer WSe2 Crystals. Small, 2016. 12(41): p. 5741-5749. 14. Fang, H., et al., High-Performance Single Layered WSe2 p-FETs with Chemically Doped Contacts. Nano Letters, 2012. 12(7): p. 3788-3792. 15. Lopez-Sanchez, O., et al., Ultrasensitive photodetectors based on monolayer MoS2. Nat Nano, 2013. 8(7): p. 497-501. 16. Zhang, W., et al., High-Gain Phototransistors Based on a CVD MoS2 Monolayer. Advanced Materials, 2013. 25(25): p. 3456-3461. 17. Baugher, B.W.H., et al., Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat Nano, 2014. 9(4): p. 262-267. 18. Geim, A.K. and I.V. Grigorieva, Van der Waals heterostructures. Nature, 2013. 499(7459): p. 419-425. 19. Zhang, X.-Q., et al., Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers. Nano Letters, 2015. 15(1): p. 410-415. 20. Tan, C. and H. Zhang, Epitaxial Growth of Hetero-Nanostructures Based on Ultrathin Two-Dimensional Nanosheets. Journal of the American Chemical Society, 2015. 137(38): p. 12162-12174. 21. Huang, C., et al., Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat Mater, 2014. 13(12): p. 1096-1101. 22. Duan, X., et al., Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat Nano, 2014. 9(12): p. 1024-1030. 23. Tsai, M.-L., et al., High-efficiency omnidirectional photoresponses based on monolayer lateral p-n heterojunctions. Nanoscale Horizons, 2017. 2(1): p. 37-42. 24. Chen, J., et al., Chemical Vapor Deposition of Large-Sized Hexagonal WSe2 Crystals on Dielectric Substrates. Advanced Materials, 2015. 27(42): p. 6722-6727. 25. Agnihotri, O.P., H.K. Sehgal, and A.K. Garg, Laser excited Raman spectra of Gr. VI semiconducting compounds. Solid State Communications, 1973. 12(2): p. 135-138. 26. Huang, J., et al., Large-area synthesis of monolayer WSe2 on a SiO2/Si substrate and its device applications. Nanoscale, 2015. 7(9): p. 4193-4198. 27. Huang, J.-K., et al., Large-Area Synthesis of Highly Crystalline WSe2 Monolayers and Device Applications. ACS Nano, 2014. 8(1): p. 923-930. 28. Li, H., et al., Mechanical Exfoliation and Characterization of Single- and Few-Layer Nanosheets of WSe2, TaS2, and TaSe2. Small, 2013. 9(11): p. 1974-1981. 29. Lee, C., et al., Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano, 2010. 4(5): p. 2695-2700. 30. Li, H., et al., Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS2 and WSe2 Nanosheets. Accounts of Chemical Research, 2014. 47(4): p. 1067-1075. 31. Zhou, H., et al., Large Area Growth and Electrical Properties of p-Type WSe2 Atomic Layers. Nano Letters, 2015. 15(1): p. 709-713. 32. Kai, X., et al., Atomic-layer triangular WSe 2 sheets: synthesis and layer-dependent photoluminescence property. Nanotechnology, 2013. 24(46): p. 465705. 33. Wu, S., et al., Vapor–Solid Growth of High Optical Quality MoS2 Monolayers with Near-Unity Valley Polarization. ACS Nano, 2013. 7(3): p. 2768-2772. 34. Li, S., et al., Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Applied Materials Today, 2015. 1(1): p. 60-66. 35. Liu, B., et al., Chemical Vapor Deposition Growth of Monolayer WSe2 with Tunable Device Characteristics and Growth Mechanism Study. ACS Nano, 2015. 9(6): p. 6119-6127. 36. Sarah, M.E., et al., Controlling nucleation of monolayer WSe 2 during metal-organic chemical vapor deposition growth. 2D Materials, 2016. 3(2): p. 025015. 37. Lee, Y.-H., et al., Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Advanced Materials, 2012. 24(17): p. 2320-2325. 38. Ling, X., et al., Role of the Seeding Promoter in MoS2 Growth by Chemical Vapor Deposition. Nano Letters, 2014. 14(2): p. 464-472. 39. Lee, Y.-H., et al., Synthesis and Transfer of Single-Layer Transition Metal Disulfides on Diverse Surfaces. Nano Letters, 2013. 13(4): p. 1852-1857. 40. Chen, K., et al., Lateral Built-In Potential of Monolayer MoS2–WS2 In-Plane Heterostructures by a Shortcut Growth Strategy. Advanced Materials, 2015. 27(41): p. 6431-6437. 41. Chen, K., et al., Electronic Properties of MoS2–WS2 Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy. ACS Nano, 2015. 9(10): p. 9868-9876. 42. Gong, Y., et al., Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures. Nano Letters, 2015. 15(9): p. 6135-6141. 43. Heo, H., et al., Rotation-Misfit-Free Heteroepitaxial Stacking and Stitching Growth of Hexagonal Transition-Metal Dichalcogenide Monolayers by Nucleation Kinetics Controls. Advanced Materials, 2015. 27(25): p. 3803-3810. 44. Bogaert, K., et al., Diffusion-Mediated Synthesis of MoS2/WS2 Lateral Heterostructures. Nano Letters, 2016. 16(8): p. 5129-5134. 45. Li, M.-Y., et al., Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science, 2015. 349(6247): p. 524. 46. Mahjouri-Samani, M., et al., Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors. Nature Communications, 2015. 6: p. 7749. 47. Elías, A.L., et al., Controlled Synthesis and Transfer of Large-Area WS2 Sheets: From Single Layer to Few Layers. ACS Nano, 2013. 7(6): p. 5235-5242. 48. Zhang, W., et al., Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures. Scientific Reports, 2014. 4: p. 3826. 49. Lin, Y.-C., et al., Atomically Thin Heterostructures Based on Single-Layer Tungsten Diselenide and Graphene. Nano Letters, 2014. 14(12): p. 6936-6941. 50. Wang, S., X. Wang, and J.H. Warner, All Chemical Vapor Deposition Growth of MoS2:h-BN Vertical van der Waals Heterostructures. ACS Nano, 2015. 9(5): p. 5246-5254. 51. Gong, Y., et al., Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater, 2014. 13(12): p. 1135-1142. 52. Samad, L., et al., Layer-Controlled Chemical Vapor Deposition Growth of MoS2 Vertical Heterostructures via van der Waals Epitaxy. ACS Nano, 2016. 10(7): p. 7039-7046. 53. Chen, L., et al., Screw-Dislocation-Driven Growth of Two-Dimensional Few-Layer and Pyramid-like WSe2 by Sulfur-Assisted Chemical Vapor Deposition. ACS Nano, 2014. 8(11): p. 11543-11551. 54. Shaw, J.C., et al., Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Research, 2014. 7(4): p. 511-517. 55. Zhang, Y., et al., Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary. ACS Nano, 2013. 7(10): p. 8963-8971. 56. Chen, L., et al., Step-Edge-Guided Nucleation and Growth of Aligned WSe2 on Sapphire via a Layer-over-Layer Growth Mode. ACS Nano, 2015. 9(8): p. 8368-8375. 57. Cain, J.D., et al., Growth Mechanism of Transition Metal Dichalcogenide Monolayers: The Role of Self-Seeding Fullerene Nuclei. ACS Nano, 2016. 10(5): p. 5440-5445. 58. Li, B., et al., Solid–Vapor Reaction Growth of Transition-Metal Dichalcogenide Monolayers. Angewandte Chemie International Edition, 2016. 55(36): p. 10656-10661. 59. Cao, D., et al., Role of Chemical Potential in Flake Shape and Edge Properties of Monolayer MoS2. The Journal of Physical Chemistry C, 2015. 119(8): p. 4294-4301. 60. Bosi, M., Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review. RSC Advances, 2015. 5(92): p. 75500-75518. 61. Li, H., et al., Laterally Stitched Heterostructures of Transition Metal Dichalcogenide: Chemical Vapor Deposition Growth on Lithographically Patterned Area. ACS Nano, 2016. 10(11): p. 10516-10523. 62. Jones, A.M., et al., Optical generation of excitonic valley coherence in monolayer WSe2. Nat Nano, 2013. 8(9): p. 634-638. 63. You, Y., et al., Observation of biexcitons in monolayer WSe2. Nat Phys, 2015. 11(6): p. 477-481. 64. Wang, G., et al., Valley dynamics probed through charged and neutral exciton emission in monolayer ${\mathrm{WSe}}_{2}$. Physical Review B, 2014. 90(7): p. 075413. 65. Krivanek, O.L., et al., Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature, 2010. 464(7288): p. 571-574. 66. Levendorf, M.P., et al., Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature, 2012. 488(7413): p. 627-632. 67. Liu, Z., et al., In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat Nano, 2013. 8(2): p. 119-124. 68. Liu, L., et al., Heteroepitaxial Growth of Two-Dimensional Hexagonal Boron Nitride Templated by Graphene Edges. Science, 2014. 343(6167): p. 163-167. 69. Wu, J., et al., Layer Thinning and Etching of Mechanically Exfoliated MoS2 Nanosheets by Thermal Annealing in Air. Small, 2013. 9(19): p. 3314-3319. 70. Yamamoto, M., et al., Self-Limiting Layer-by-Layer Oxidation of Atomically Thin WSe2. Nano Letters, 2015. 15(3): p. 2067-2073. 71. Ionescu, R., et al., Oxygen etching of thick MoS2 films. Chemical Communications, 2014. 50(76): p. 11226-11229.
|