帳號:guest(18.227.105.78)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):管敏心
作者(外文):Guan, Minxin
論文名稱(中文):高熵氧化物系統的組成與性質
論文名稱(外文):Microstructure and Properties of Entropy-stabilized Oxide Systems
指導教授(中文):簡朝和
指導教授(外文):Jean, Jau-Ho
口試委員(中文):葉均蔚
林樹均
口試委員(外文):Yeh, Jien-Wei
Lin, Su-Jien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031531
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:45
中文關鍵詞:高熵氧化物氧化銅
外文關鍵詞:Entropy-stabilized-oxideEntropyCuO
相關次數:
  • 推薦推薦:0
  • 點閱點閱:41
  • 評分評分:*****
  • 下載下載:32
  • 收藏收藏:0
近年的研究顯示高熵材料不再僅限於金屬,高熵也可使多元陶瓷在高溫形成穩定的單一結構。先前研究提出的高熵氧化物為(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O,並證實此系統在高溫下是氯化鈉型結構的單一相,各元素分布均勻,且在不同溫度具單相與多相的可逆相變化。為了在有限的溫度區間觀察到較多現象,本研究採用化學法來製備高熵氧化物的粉末,成功將(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O的相轉換溫度降低。探討高熵氧化物方面,本研究嘗試減少(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O的成分,發現(Mg0.25Ni0.25Cu0.25Zn0.25)O也符合高熵材料的條件與特性,並觀察到兩種高熵氧化物在低溫的析出相皆為氧化銅。接著量測上述兩個高熵陶瓷在單相與多相結構時的介電性質、微結構、價態、電阻率、以及活化能,比較並探討之間的差異,找出這兩個高熵陶瓷系統可能的應用。
Entropy-stabilized oxide systems with four and five cations have been synthesized by the thermal decomposition of a metal–nitrate–citrate complex at 800-925 °C. A five-component oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O is found to exhibit a reversible transformation between a multi-phase and single-phase state at elevated temperatures. Experimental results show that the cations in the single-phase state with a rocksalt structure are distributed homogeneously. The phase transformation temperature is reduced for the powders synthesized by a wet chemical reaction route. Similar results are also observed in the four-component oxide (Mg0.25Ni0.25Cu0.25Zn0.25)O. Effects of chemical compositions and phase formation on physical properties of the above entropy-stabilized oxide systems are investigated.
第一章 前言-1
1.1 晶體結構與元素分佈-1
1.2 價數平衡機制-2
1.3 極高的介電常數-2
1.4 研究動機與內容-3
第二章 實驗步驟-4
2.1 原料-4
2.2 粉體合成-4
2.3 試片製備-4
2.4 X-ray繞射分析-5
2.5 微結構觀察-5
2.6 介電性質與阻抗分析-5
2.7 元素價態分析-6
2.8 熱重熱差分析-6
2.9 熱傳性質量測-6
第三章 結果與討論-7
3.1 物相分析-7
3.2 緻密程度觀測-7
3.3 熱擴散係數-8
3.4 介電常數-9
3.5 元素價態分析-9
3.5.1 銅離子-9
3.5.2 鎳離子-10
3.5.3 鈷離子-10
3.6 熱重熱差分析-10
3.7 低溫二次相分析-11
3.8 部分相圖-12
3.9 高溫單相微結構-12
3.10 低溫多相微結構-13
3.11 電阻率與介電損失-14
3.12 阻抗分析-15
第四章 結論-17
參考文獻-18
[1]J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, “Nanostructured High-entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes,” Advan. Eng. Mater., 6 [5], 299-303 (2004).
[2]B. Cantor, I. Chang, P. Knight, and A. Vincent, “Microstructural Development in Equiatomic Multicomponent Alloys,” Mater. Sci. Eng., 375, 213-18 (2004).
[3]B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, and R. O. Ritchie, “A Fracture-resistant High-entropy Alloy for Cryogenic Applications,” Science, 345, 1153-58 (2014).
[4]A. Gali, and E. George, “Tensile Properties of High- and Medium-entropy Alloys,” Intermetallics, 39, 74-78 (2013).
[5]C. M. Rost, E. Sachet, T. Borman, A. Moballegh, E. C. Dickey, D. Hou, J. L. Jones, S. Curtarolo, and J. P. Maria, “Entropy-stabilized Oxides,” Nat. Commun., 6, 8485 (2015).
[6]Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, and Z. P. Lu, “Microstructures and Properties of High-entropy Alloys,” Prog. in Mater. Sci., 61, 1-93 (2014).
[7]D. Bérardan, S. Franger, D. Dragoe, A. K. Meena, and N. Dragoe, “Colossal Dielectric Constant in High Entropy Oxides,” Phys. Status Solidi – R., 10 [4], 328-33 (2016).
[8]Zs. Rak, C. M. Rost, M. Lim, P. Sarker, C. Toher, S. Curtarolo, J. P. Maria, and D. W. Brenner, “Charge Compensation and Electrostatic Transferability in Three Entropy-stabilized Oxides: Results from Density Functional Theory Calculations,” J. Appl. Phys., 120 [9], 095105 (2016).
[9]R. Zuow, J. Rödel, R. Chen, and L. Li, “Sintering and Electrical Properties of Lead-Free Na0.5K0.5NbO3 Piezoelectric Ceramics,” J. Am. Ceram. Soc., 89 [6], 2010-15 (2006).
[10]H. T. Kim, S. H. Kim, S. Nahm, J. D. Byun, and Y. Kim, “Low-Temperature Sintering and Microwave Dielectric Properties of Zinc Metatitanate-Rutile Mixtures Using Boron,” J. Am. Ceram. Soc., 82 [11], 3043-48 (1999).
[11]M. L. Baesso, A. C. Bento, A. R. Duarte, A. M. Neto, L. C. M. Miranda, J. A. Sampaio, T. Catunda, S. Gama, and F. C. G. Gandra, “Nd2O3 Doped Low Silica Calcium Aluminosilicate Glasses: Thermomechanical Properties,” J. Appl. Phys., 85 [12], 8112-18 (1999).
[12]M. Yamasaki, S. Kagao, and Y. Kawamura, “Thermal Diffusivity and Conductivity of Zr55Al10Ni5Cu30 Bulk Metallic Glass,” Scrip. Mater., 53 [1], 63-67 (2005).
[13]R. W. Powell, C. Y. Ho, and P. E. Liley, Thermal Conductivity of Selected Materials, NSRDS-NBS, vol. 8, 1966
[14]E. R. G. Eckert, and R. M. Drake, Heat and Mass Transfer, McGraw-Hill Inc., 1959
[15]G. Yang, A. D. Migone, and K. W. Johnson, “Relationship between Thermal Diffusivity and Mean Free Path,” Am. J. Phys., 62, 370-72 (1994).
[16]S. Raghavan, H. Wang, W. D. Porter, R. B. Dinwiddie, and M. J. Mayo, “Thermal Properties of Zirconia Co-doped with Trivalent and Pentavalent Oxides,” Acta Mater., 49, 169-79 (2001).
[17]A. Murakawa, H. Ishii, and K. Kakimoto, “An Investigation of Thermal Conductivity of Silicon as a Function of Isotope Concentration by Molecular Dynamics,” J.Cryst. Growth, 267, 452-57 (2004).
[18]D. G. Cahill, and F. Watanabe, “Thermal Conductivity of Isotopically Pure and Ge-doped Si Epitaxial Layers from 300 to 550 K,” Phys. Rev. B, 70, 235322 (2004).
[19]D. T. Morelli, and J. P. Heremans, “Estimation of the Isotope Effect on the Lattice Thermal Conductivity of Group IV and Group III-V Semiconductors,” Phys. Rev. B, 66, 195304 (2002).
[20]Y. Wan, Y. Zhang, X. Wang, and Q. Wang, “Electrochemical Formation and Reduction of Copper Oxide Nanostructures in Alkaline Media,” Electrochem. Commun., 36, 99-102 (2013).
[21]C. K. Mavrokefalos, M. Hasan, J. F. Rohan, R. G. Compton, and J. S. Foord, “Electrochemically Deposited Cu2O Cubic Particles on Boron Doped Diamond Substrate as Efficient Photocathode for Solar Hydrogen Generation,” Appl. Surf. Sci., 408, 125-34 (2017).
[22]J. Keraudy, A. Ferrec, M. Richard-Plouet, J. Hamon, A. Goullet, and P. Y. Jouan, “Nitrogen Doping on NiO by Reactive Magnetron Sputtering: A New Pathway to Dynamically Tune the Optical and Electrical Properties,” Appl. Surf. Sci., 409, 77-84 (2017).
[23]Z. Gu, D. Bin, Y. Feng, K. Zhang, J. Wang, B. Yan, S. Li, Z. Xiong, C. Wang, Y. Shiraishi, and Y. Du, “Seed-mediated Synthesis of Cross-linked Pt-NiO Nanochains for Methanol Oxidation,” Appl. Surf. Sci., 411, 379-85 (2017).
[24]C. A. Chagas, E. F. de Souza, M. C. N. A. de Carvalho, R. L. Martins, and M. Schmal, “Cobalt Ferrite Nanoparticles for the Preferential Oxidation of CO,” Appl. catal. A, General., 519, 139-45 (2016).
[25]K. Park, D. A. Hakeem, and J. S. Cha, “Synthesis and Structural Properties of Thermoelectric Ca3−xAgxCo4O9+δ Powders,” Dalton Trans., 45, 6990 (2016).
[26]H. Singh, A. K. Sinha, M. N. Singh, P. Tiwari, D. M. Phase, and S. K. Deb, “Spectroscopic and Structural Studies of Isochronally Annealed Cobalt Oxide Nanoparticles,” J. phys. chem. solids., 75, 397-402 (2014).
[27]Y. K. Jeong, and G. M. Choi, “Nonstoichiometry and Electrical Conduction of CuO,” J. phys. chem. solids., 57, 81-84 (1996).
[28]F. M. Li, R. Waddingham, W. I. Milne, A. J. Flewitt, S. Speakman, J. Dutson, S. Wakeham, and M. Thwaites, “Low Temperature (<100 °C) Deposited P-type Cuprous Oxide Thin Films: Importance of Controlled Oxygen and Deposition Energy,” Thin Solid Films, 520 [4], 1278-84 (2011).
[29]N. Ponpandian, P. Balaya, and A. Narayanasamy, “Electrical Conductivity and Dielectric Behaviour of Nanocrystalline NiFe2O4 Spinel,” J. Phys.: Condens. Matter., 14 , 3221-37 (2002).
[30]C. W. Nan, Y. Shen, and J. Ma, “Physical Properties of Composites Near Percolation,” Annu. Rev. Mater. Res., 40, 131-51 (2010).
[31]G. W. Walter, “A Review of Impedance Plot Methods Used for Corrosion Performance Analysis of Painted Metals,” Corros. Sci., 26 [9], 681-703 (1986).
[32]R. Kumari, N. Ahlawat, A. Agarwal, S. Sanghi, M. Sindhu, and N. Ahlawat, “Rietveld Refinement, Impedance Spectroscopy and Magnetic Properties of Bi0.8Sr0.2FeO3 Substituted Na0.5Bi0.5TiO3 Ceramics,” J. Magn. Magn. Mater., 414, 1-9 (2016).
[33]J. Ashok, N. Purnachand, J. S. Kumar, M. S. Reddy, B. Suresh, M. P. F. Graça, and N. Veeraiah, “Studies on Dielectric Dispersion, Relaxation Kinetics and A.C. Conductivity of Na2O-CuO-SiO2 Glasses Mixed with Bi2O3-Influence of Redox Behavior of Copper Ions,” J. Alloy. Compd., 696, 1260-68 (2017).
[34]S. Presto, and M. Viviani, “Effect of CuO on Microstructure and Conductivity of Y-doped BaCeO3,” Solid State Ionics, 295, 111-16 (2016).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *