帳號:guest(3.138.134.19)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳凱婷
作者(外文):Chen, Kai-Ting
論文名稱(中文):探討不同離子摻雜對於氧化鐵鋅之電化學性質影響
論文名稱(外文):Electrochemical Performance of ZnFe2O4 with Various Ions Doping
指導教授(中文):蔡哲正
指導教授(外文):Tsai, Cho-Jen
口試委員(中文):陳翰儀
林居南
口試委員(外文):Chen, Han-Yi
Lin, Jiu-Nan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:104031527
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:69
中文關鍵詞:鋰離子電池陽極材料複合金屬氧化物離子摻雜
外文關鍵詞:Li-ionbatteriesanodemixedmetaloxideiondoping
相關次數:
  • 推薦推薦:0
  • 點閱點閱:774
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以共沉澱法結合金屬有機骨架合成出多孔奈米柱狀ZnFe2O4。燒結溫度會影響多孔結構內部的顆粒大小,而顆粒大小影響嵌入式反應的可逆性。350°C燒結所生成的多孔結構內部顆粒大小介於10到20 nm,並在0.1 C定速率充放電50圈後貢獻1273 mAh/g的可逆電容量。
摻雜用離子依電化學活性及價數分為三組,並分別以Sn2+、Mg2+、Al3+為代表。除合金化反應外,Sn2+亦以部份不可逆的氧化還原反應儲存鋰離子,而微量摻雜Sn0.05Zn0.95Fe2O4以0.1 C定速率充放電60圈後1318 mAh/g的可逆電容量,與88.6 %的電容量保留率為最佳Sn2+摻雜量。由不參與電化學反應的Mg2+取代因合金化反應體積變化較大的Zn2+,能減緩因重複體積變化使SEI不斷增厚的現象,同時避免活物不必要的損耗而穩定電性表現,其中Mg0.9Zn0.1Fe2O4以1 C定速率充放電250圈後811 mAh/g的可逆電容量,與82.1 %的電容量保留率(capacity retention rate)為最佳Mg2+摻雜量。
Al3+未成功摻雜至ZnFe2O4中,而可能是由非晶相包覆於粉末表面,因此添加Al3+後Zn2+量減少,能貢獻的電容量隨之減少,不過高充放電速率與長圈數下微幅減弱因體積變化大所導致電性衰退的現象,其中鋁摻雜量0.1的例子以250圈後429 mAh/g的可逆電容量與41.7 %電容量保留率表現最為明顯。
ZnFe2O4 and MxZn1-xFe2O4 (M=Sn, Mg and Al) were synthesized by a facile and high-yield co-precipitation method followed by thermal treatment of the metal-organic frameworks (MOFs) in air to form mesoporous structure. Temperatures of thermal treatment affected the porous structure of the material and also influenced charge/discharge process of ZnFe2O4.
From the electrochemical performance, we have found that doping Sn which is electrochemically active would raise the voltage plateau corresponding to the reaction peaks of the doping elements, and Sn0.05Zn0.95Fe2O4 demonstrated the highest capacity of 1318 mAh/g after 50 cycles at 0.1 C. In contrast, doping Mg which is electrochemically inactive would inhibit volume change and stabilize structure during lithiation-delithiation. Mg0.9Zn0.1Fe2O4 showed an excellent reversible capacity of 811 mAh/g with a capacity retention rate of 82.1% after 250 cycles at 1 C, while the pristine ZnFe2O4 only remained 382 mAh/g with a capacity retention rate of 32%. Al3+ failed to dope into the structure, instead, probably formed an amorphous layer outside the ZnFe2O4 particles. Therefore, the sample with Al doping amount equal to 0.1 showed slightly slow decay in cycle performance with a capacity retention rate of 41.7% after 250 cycles at 1 C, owing to decreased Zn whose volume change is larger, rather than increased Al.
Abstract III
摘要 IV
誌謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 鋰離子電池產業概況 1
1.2 鋰離子電池原理 5
1.3 鋰離子電池組成 6
1.4 陽極材料 7
第二章 文獻回顧 9
2.1 尺寸奈米化 9
2.2 形貌改質 10
2.2.1 多孔結構 10
2.2.2 中空結構 12
2.3 離子取代與摻雜 14
第三章 實驗步驟 18
3.1 實驗藥品 18
3.2 多孔奈米柱狀氧化鐵鋅之製備 19
3.3 氧化鐵鋅摻雜亞錫離子/鎂離子/鋁離子之製備 20
3.4 陽極製備 20
3.5 電池組裝 21
3.6 材料分析 22
3.6.1 場發射掃式描電子顯微鏡 22
3.6.2 X光粉末繞射儀 22
3.6.3 熱重分析 22
3.6.4 循環伏安法 23
3.6.5 交流阻抗分析 23
3.6.6 電池循環壽命測試 23
3.6.7 X射線光電子能譜分析 23
第四章 結果與討論 24
4.1 共沉澱法製備ZnFe2O4之燒結溫度探討 24
4.1.1 表面形貌 25
4.1.2 電性結果 27
4.2 亞錫離子摻雜 31
4.2.1 形貌與晶格影響 31
4.2.2 電性表現影響 35
4.3 鎂離子摻雜 42
4.3.1 形貌與晶格影響 42
4.3.2 電性表現影響 46
4.4 鋁離子摻雜 54
4.4.1 形貌與晶格影響 54
4.4.2 電性表現影響 57
第五章 結論 61
第六章 參考文獻 63
1. Land & Ocean Temperature Percentiles Jan-Dec 2016. NOAA's National Centers for Environmental Information.
2. Arctic Sea Ice Extent. 2016, National Snow and Ice Data Center: Boulder CO.
3. Re-imagining the Electric Grid of Tomorrow. GE Reports Sub-Saharan Africa, 2015.
4. Yuvaraj, S., R.K. Selvan, and Y.S. Lee, An overview of AB2O4- and A2BO4-structured negative electrodes for advanced Li-ion batteries. RSC Advances, 2016. 6(26): p. 21448-21474.
5. Weppner, W. and R.A. Huggins, Determination of the Kinetic Parameters of Mixed‐Conducting Electrodes and Application to the System Li3Sb. Journal of The Electrochemical Society, 1977. 124(10): p. 1569-1578.
6. Shin, Y., H. Ding, and K.A. Persson, Revealing the Intrinsic Li Mobility in the Li2MnO3 Lithium-Excess Material. Chemistry of Materials, 2016. 28(7): p. 2081-2088.
7. Zhao, X., M. Cao, and C. Hu, Binder strategy towards improving the rate performance of nanosheet-assembled SnO2 hollow microspheres. RSC Advances, 2012. 2(31): p. 11737-11742.
8. Magasinski, A., et al., Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid. ACS Applied Materials & Interfaces, 2010. 2(11): p. 3004-3010.
9. Kovalenko, I., et al., A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries. Science, 2011. 334(6052): p. 75-79.
10. Jeong, Y.K., et al., Hyperbranched β-Cyclodextrin Polymer as an Effective Multidimensional Binder for Silicon Anodes in Lithium Rechargeable Batteries. Nano Letters, 2014. 14(2): p. 864-870.
11. Chou, S.-L., et al., Small things make a big difference: binder effects on the performance of Li and Na batteries. Physical Chemistry Chemical Physics, 2014. 16(38): p. 20347-20359.
12. Cai, Y. and C.-l. Fan, Influences of conductive additives on electrochemical performances of artificial graphite anode with different shapes for lithium ion batteries. Electrochimica Acta, 2011. 58: p. 481-487.
13. Utsunomiya, H., et al., Influence of conductive additives and surface fluorination on the charge/discharge behavior of lithium titanate (Li4/3Ti5/3O4). Journal of Power Sources, 2010. 195(19): p. 6805-6810.
14. Roy, P. and S.K. Srivastava, Nanostructured anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2015. 3(6): p. 2454-2484.
15. Zhang, Y., et al., Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure. Nano Letters, 2014. 14(12): p. 6889-6896.
16. Xu, W., et al., Lithium metal anodes for rechargeable batteries. Energy & Environmental Science, 2014. 7(2): p. 513-537.
17. Qian, J., et al., High rate and stable cycling of lithium metal anode. Nature Communications, 2015. 6: p. 6362.
18. Lee, H., et al., A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. Journal of Power Sources, 2015. 284: p. 103-108.
19. Mukai, K., Y. Kato, and H. Nakano, Understanding the Zero-Strain Lithium Insertion Scheme of Li[Li1/3Ti5/3]O4: Structural Changes at Atomic Scale Clarified by Raman Spectroscopy. The Journal of Physical Chemistry C, 2014. 118(6): p. 2992-2999.
20. Du, C., et al., A three volt lithium ion battery with LiCoPO4 and zero-strain Li4Ti5O12 as insertion material. Electrochimica Acta, 2014. 125: p. 58-64.
21. Choi, Z., D. Kramer, and R. Mönig, Correlation of stress and structural evolution in Li4Ti5O12-based electrodes for lithium ion batteries. Journal of Power Sources, 2013. 240: p. 245-251.
22. Xu, W., et al., Simply AlF3-treated Li4Ti5O12 composite anode materials for stable and ultrahigh power lithium-ion batteries. Journal of Power Sources, 2013. 236: p. 169-174.
23. Zhao, Y., et al., Recent Developments and Understanding of Novel Mixed Transition-Metal Oxides as Anodes in Lithium Ion Batteries. Advanced Energy Materials, 2016. 6(8): p. 1502175-n/a.
24. Zhang, Y., et al., Binary metal oxide: advanced energy storage materials in supercapacitors. Journal of Materials Chemistry A, 2015. 3(1): p. 43-59.
25. Mohamed, S.G., et al., Ternary Spinel MCo2O4 (M = Mn, Fe, Ni, and Zn) Porous Nanorods as Bifunctional Cathode Materials for Lithium–O2 Batteries. ACS Applied Materials & Interfaces, 2015. 7(22): p. 12038-12046.
26. Liu, Y., et al., Spinel LiMn2O4 nanoparticles dispersed on nitrogen-doped reduced graphene oxide nanosheets as an efficient electrocatalyst for aluminium-air battery. International Journal of Hydrogen Energy, 2015. 40(30): p. 9225-9234.
27. Ge, X., et al., Dual-Phase Spinel MnCo2O4 and Spinel MnCo2O4/Nanocarbon Hybrids for Electrocatalytic Oxygen Reduction and Evolution. ACS Applied Materials & Interfaces, 2014. 6(15): p. 12684-12691.
28. Yuan, C., et al., Mixed Transition-Metal Oxides: Design, Synthesis, and Energy-Related Applications. Angewandte Chemie International Edition, 2014. 53(6): p. 1488-1504.
29. Yu, S.-H., et al., Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes. Small, 2016. 12(16): p. 2146-2172.
30. Liu, J.P., et al., Nanoscale Magnetic Materials and Applications. 2009: Springer Science+Business Media. 719.
31. Jung, C.W. and P. Jacobs, Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: Ferumoxides, ferumoxtran, ferumoxsil. Magnetic Resonance Imaging, 1995. 13(5): p. 661-674.
32. Ikenaga, N.-o., et al., Preparation of zinc ferrite in the presence of carbon material and its application to hot-gas cleaning. Fuel, 2004. 83(6): p. 661-669.
33. Manthiram, A., et al., Nanostructured electrode materials for electrochemical energy storage and conversion. Energy & Environmental Science, 2008. 1(6): p. 621-638.
34. Lee, K.T. and J. Cho, Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Today, 2011. 6(1): p. 28-41.
35. Arico, A.S., et al., Nanostructured materials for advanced energy conversion and storage devices. Nat Mater, 2005. 4(5): p. 366-377.
36. Wang, G., et al., Constructing Hierarchically Hollow Core–Shell MnO2/C Hybrid Spheres for High-Performance Lithium Storage. Small, 2016. 12(29): p. 3914-3919.
37. Lu, W., et al., Tuning the structure and function of metal-organic frameworks via linker design. Chemical Society Reviews, 2014. 43(16): p. 5561-5593.
38. Furukawa, H., et al., The Chemistry and Applications of Metal-Organic Frameworks. Science, 2013. 341(6149).
39. Li, Q., et al., Synthesis of Porous NiO Nanorods as High-Performance Anode Materials for Lithium-Ion Batteries. Particle & Particle Systems Characterization, 2016. 33(10): p. 764-770.
40. Yang, S.J., et al., MOF-derived ZnO and ZnO@C composites with high photocatalytic activity and adsorption capacity. Journal of Hazardous Materials, 2011. 186(1): p. 376-382.
41. Pan, L., et al., MOF-derived C-doped ZnO prepared via a two-step calcination for efficient photocatalysis. Applied Catalysis B: Environmental, 2016. 189: p. 181-191.
42. Qu, F., H. Jiang, and M. Yang, Designed formation through a metal organic framework route of ZnO/ZnCo2O4 hollow core-shell nanocages with enhanced gas sensing properties. Nanoscale, 2016. 8(36): p. 16349-16356.
43. Koo, W.-T., et al., Heterogeneous Sensitization of Metal–Organic Framework Driven Metal@Metal Oxide Complex Catalysts on an Oxide Nanofiber Scaffold Toward Superior Gas Sensors. Journal of the American Chemical Society, 2016. 138(40): p. 13431-13437.
44. Chong, X., et al., Near-infrared absorption gas sensing with metal-organic framework on optical fibers. Sensors and Actuators B: Chemical, 2016. 232: p. 43-51.
45. Liao, C., et al., Electrochemical performance of metal-organic framework synthesized by a solvothermal method for supercapacitors. Russian Journal of Electrochemistry, 2013. 49(10): p. 983-986.
46. Meng, F., et al., Porous Co3O4 materials prepared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors. Journal of Materials Chemistry A, 2013. 1(24): p. 7235-7241.
47. Wu, R., et al., MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials. Journal of Materials Chemistry A, 2013. 1(37): p. 11126-11129.
48. Won, J.M., et al., Electrochemical properties of yolk-shell structured ZnFe2O4 powders prepared by a simple spray drying process as anode material for lithium-ion battery. Scientific Reports, 2014. 4: p. 5857.
49. Hong, Y.J. and Y.C. Kang, Formation of core-shell-structured Zn2SnO4-carbon microspheres with superior electrochemical properties by one-pot spray pyrolysis. Nanoscale, 2015. 7(2): p. 701-707.
50. Zhang, X., et al., Self-template synthesis of CoFe2O4 nanotubes for high-performance lithium storage. RSC Advances, 2015. 5(38): p. 29837-29841.
51. Yang, R., et al., Bubble assisted synthesis of Sn–Sb–Cu alloy hollow nanostructures and their improved lithium storage properties. Journal of Power Sources, 2010. 195(19): p. 6811-6816.
52. Stournara, M.E., Y. Qi, and V.B. Shenoy, From Ab Initio Calculations to Multiscale Design of Si/C Core–Shell Particles for Li-Ion Anodes. Nano Letters, 2014. 14(4): p. 2140-2149.
53. Hou, H., et al., Facile preparation of Sn hollow nanospheres anodes for lithium-ion batteries by galvanic replacement. Materials Letters, 2014. 128: p. 408-411.
54. Liu, J., et al., Anisotropic Co3O4 porous nanocapsules toward high-capacity Li-ion batteries. Journal of Materials Chemistry, 2010. 20(8): p. 1506-1510.
55. Chen, W., et al., Surface transfer doping of semiconductors. Progress in Surface Science, 2009. 84(9–10): p. 279-321.
56. Xiao, C.W., et al., Li4−xNaxTi5O12 with low operation potential as anode for lithium ion batteries. Journal of Power Sources, 2014. 248: p. 323-329.
57. Xia, L., et al., High potential performance of Cerium-doped LiNi0.5Co0.2Mn0.3O2 cathode material for Li-ion battery. Journal of Materials Science, 2015. 50(7): p. 2914-2920.
58. Xiong, Q., et al., Nitrogen-doped carbon shell on metal oxides core arrays as enhanced anode for lithium ion batteries. Journal of Alloys and Compounds, 2016. 688, Part B: p. 729-735.
59. Shao, D., et al., Nano-structured composite of Si/(S-doped-carbon nanowire network) as anode material for lithium-ion batteries. Journal of Power Sources, 2015. 297: p. 344-350.
60. Qi, C., et al., Aqueous slurry of S-doped carbon nanotubes as conductive additive for lithium ion batteries. Carbon, 2015. 92: p. 245-253.
61. Nie, L., et al., Sulfur-doped ZnFe2O4 nanoparticles with enhanced lithium storage capabilities. Journal of Materials Science, 2017. 52(7): p. 3566-3575.
62. Chu, Y.-Q. and Q.-Z. Qin, Fabrication and Characterization of Silver−V2O5 Composite Thin Films as Lithium-Ion Insertion Materials. Chemistry of Materials, 2002. 14(7): p. 3152-3157.
63. NuLi, Y.-N., Y.-Q. Chu, and Q.-Z. Qin, Nanocrystalline ZnFe2 O 4 and Ag-Doped ZnFe2 O 4 Films Used as New Anode Materials for Li-Ion Batteries. Journal of The Electrochemical Society, 2004. 151(7): p. A1077-A1083.
64. Hameed, A.S., et al., Lithium Storage Properties of Pristine and (Mg, Cu) Codoped ZnFe2O4 Nanoparticles. ACS Applied Materials & Interfaces, 2014. 6(13): p. 10744-10753.
65. Reddy, M.V., et al., Mixed Oxides, (Ni1–xZnx)Fe2O4 (x = 0, 0.25, 0.5, 0.75, 1): Molten Salt Synthesis, Characterization and Its Lithium-Storage Performance for Lithium Ion Batteries. The Journal of Physical Chemistry C, 2015. 119(9): p. 4709-4718.
66. Teh, P.F., et al., Electrospun Zn1–xMnxFe2O4 Nanofibers As Anodes for Lithium-Ion Batteries and the Impact of Mixed Transition Metallic Oxides on Battery Performance. ACS Applied Materials & Interfaces, 2013. 5(12): p. 5461-5467.
67. Wang, X., et al., Synthesis of intertwined Zn0.5Mn0.5Fe2O4@CNT composites as a superior anode material for Li-ion batteries. Journal of Materials Science, 2016. 51(12): p. 5843-5856.
68. Yao, L., et al., A facile bubble-assisted synthesis of porous Zn ferrite hollow microsphere and their excellent performance as an anode in lithium ion battery. Journal of Solid State Electrochemistry, 2013. 17(7): p. 2055-2060.
69. Mao, J., et al., Zn substitution NiFe2O4 nanoparticles with enhanced conductivity as high-performances electrodes for lithium ion batteries. Journal of Alloys and Compounds, 2016. 676: p. 265-274.
70. Sharma, Y., et al., Li-storage and cyclability of urea combustion derived ZnFe2O4 as anode for Li-ion batteries. Electrochimica Acta, 2008. 53(5): p. 2380-2385.
71. Pol, V.G., J.M. Calderon-Moreno, and M.M. Thackeray, Autogenic synthesis of SnO2 materials and their structural, electrochemical, and optical properties. Journal of Solid State Chemistry, 2012. 196: p. 21-28.
72. Li, N., et al., ZnO Anchored on Vertically Aligned Graphene: Binder-Free Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014. 6(23): p. 20590-20596.
73. Han, X., et al., Morphology control of SnO and application in lithium-ion batteries. CrystEngComm, 2014. 16(13): p. 2589-2592.
74. Di Cicco, A., et al., SEI Growth and Depth Profiling on ZFO Electrodes by Soft X-Ray Absorption Spectroscopy. Advanced Energy Materials, 2015. 5(18): p. n/a-n/a.
75. Hou, X., et al., Facile synthesis of ZnFe2O4 with inflorescence spicate architecture as anode materials for lithium-ion batteries with outstanding performance. New Journal of Chemistry, 2015. 39(3): p. 1943-1952.
76. Park, J.-W. and C.-M. Park, A Fundamental Understanding of Li Insertion/Extraction Behaviors in SnO and SnO2. Journal of The Electrochemical Society, 2015. 162(14): p. A2811-A2816.
77. Lian, P., et al., Enhanced cycling performance of Fe3O4–graphene nanocomposite as an anode material for lithium-ion batteries. Electrochimica Acta, 2010. 56(2): p. 834-840.
78. Shen, X., et al., Enhanced Electrochemical Performance of ZnO-Loaded/Porous Carbon Composite as Anode Materials for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2013. 5(8): p. 3118-3125.
79. Jiang, B., et al., In-Situ Crafting of ZnFe2O4 Nanoparticles Impregnated within Continuous Carbon Network as Advanced Anode Materials. ACS Nano, 2016. 10(2): p. 2728-2735.
80. Pan, Y., et al., MgFe2O4 nanoparticles as anode materials for lithium-ion batteries. Electrochimica Acta, 2013. 109: p. 89-94.
81. Hou, L., et al., Green Template-Free Synthesis of Hierarchical Shuttle-Shaped Mesoporous ZnFe2O4 Microrods with Enhanced Lithium Storage for Advanced Li-Ion Batteries. Chemistry – A European Journal, 2015. 21(37): p. 13012-13019.
82. Group, E.A., Analytical Resolution vs Detection Limit. 2013.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *