|
1. Council, C.E. Battery storage safety: frequently asked questions Available from: https://www.solaraccreditation.com.au/consumers/solar-battery-storage-faqs.html. 2. 能源教育知識網. 儲能科技. Available from: http://www.enedu.org.tw/Technology/. 3. Tarascon, M.A.a.J.-M., Building better batteries. Nature 2008. 451. 4. Noorden, R.V., A Better Battery. Nature, 2014. 507. 5. Research, N. Report Examines Energy Storage Systems for Microgrids 2014; Available from: http://www.smartgridobserver.com/n2-4-14-1.htm. 6. Yu-Sheng Su, Y.F., Thomas Cochell and Arumugam Manthiram, A strategic approach to recharging lithium-sulphur batteries for long cycle life. Nature Communications, 2013. 7. Manthiram, Y.-S.S.a.A., A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer. Chemical Communications, 2012. 48: p. 8817–8819. 8. Xiulei Ji, K.T.L.a.L.F.N., A highly ordered nanostructured carbon-suflur cathode for lithium-sulphur batteries. Nature Materials, 2009. 8. 9. B. Zhang, X.Q., G. R. Lia and X. P. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy & Environmental Science, 2010. 10. Liwen Ji, M.R., Haimei Zheng, Liang Zhang, Yuanchang Li, Wenhui Duan, Jinghua Guo, Elton J. Cairns, and Yuegang Zhang, Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells. Journal of the American Chemical Society, 2011. 133: p. 18522–18525. 11. Zhiyu Wang, Y.D., Hongjiang Li, Zongbin Zhao, Hao Bin Wu, Ce Hao, Shaohong Liu, Jieshan Qiu and Xiong Wen (David) Lou, Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nature Communications, 2014. 12. Hongwei Chen, C.W., , Weiling Dong,, Wei Lu,, Zhaolong Du, and Liwei Chen, Monodispersed Sulfur Nanoparticles for Lithium-Sulfur Batteries with Theoretical Performance. Nano Letters, 2015. 15: p. 798-802. 13. co., L.S.C., KETJENBLACK Highly Electro-Conductive Carbon Black. 14. Shintaro Kurodaa, N.T., Mio Sakurabab, Yuichi Sato, Charge-discharge properties of a cathode prepared with ketjen black as the electro-conductive additive in lithium ion batteries. Journal of Power Source, 2003. 15. Céline Barchasz, F.M., Jean Dijon, Jean-Claude Leprêtre, Sébastien Patoux , Fannie Alloin, Novel positive electrode architecture for rechargeable lithium/sulfur batteries. Journal of Power Source, 2012. 211: p. 19-26. 16. Anna Jozwiuk, H.S., Jürgen Janek , Torsten Brezesinski, Fair performance comparison of different carbon blacks in lithium-sulfur batteries with practical mass loadings- Simple design competes with complex cathode architecture. Journal of Power Source, 2015. 296: p. 454-461. 17. Dongping Lv , J.Z., Qiuyan Li , Xi Xie , Seth Ferrara , Zimin Nie , Layla B. Mehdi , Nigel D. Browning , Ji-Guang Zhang , Gordon L. Graff , Jun Liu , and Jie Xiao, High Energy Density Lithium–Sulfur Batteries: Challenges of Thick Sulfur Cathodes. Adv. Energy Mater., 2015. 5. 18. Yiwen Ma, H.Z., Baoshan Wu, Meiri Wang, Xianfeng Li & Huamin Zhang, Lithium Sulfur Primary Battery with Super High Energy Density : Based on the Cauliflower-like Structured C/S Cathode. Sci. Rep., 2015. 5: p. 14949. 19. Hoon Kim, J.L., Hyungmin Ahn, Onnuri Kim & Moon Jeong Park, Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-suflur batteries. Nature Communications, 2015. 6. 20. Min-Sang Song, S.-C.H., Hyun-Seok Kim, Jin-Ho Kim, Ki-Tae Kim, Yong-Mook Kang, Hyo-Jun Ahn, S. X. Dou and Jai-Young Lee, Effects of Nanosized Adsorbing Material on Electrochemical Properties of Sulfur Cathodes for Li/S Secondary Batteries. Journal of The Electrochemical Society, 2004. 151: p. A791-A795. 21. Y.J. Choi, B.S.J., D.J. Lee, J.H. Jeong, K.W.Kim, H.J. Ahn, K.K. Cho and H.B. Gu, Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell. Physica Scripta, 2007. T129: p. 62-65. 22. Scott Evers, T.Y., and Linda F. Nazar, Understanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li-S Battery. The Journal of Physical Chemistry C, 2012. 116: p. 19653-19658. 23. Quan Pang, D.K., Marine Cuisinier & L.F. Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nature Communications, 2014. 5. 24. Xiao Liang, C.H., Quan Pang, Arnd Garsuch, Thomas Weiss & Linda F. Nazar, A highly efficient polysulfide mediator for lithium-sulfur batteries. Nature Communications, 2015. 6. 25. Connor J. Hart, M.C., Xiao Liang, Dipan Kundu, Arnd Garsuchb and Linda F. Nazar, Rational design of sulphur host materials for Li-S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss. Chem. Commun, 2015. 51. 26. Xinyong Tao, Y.C., Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nature Communications, 2016. 7. 27. Xiao Liang, A.G., and Linda F. Nazar, Sulfur Cathodes Based on Conductive MXene Nanosheets for High-Performance Lithium-Sulfur Batteries. Angew. Chem. Int. Ed., 2015. 54: p. 3907-3911. 28. Zhiming Cui , C.Z., Weidong Zhou , Arumugam Manthiram , and John B. Goodenough, Mesoporous Titanium Nitride-Enabled Highly Stable Lithium-Sulfur Batteries. Adv. Mater., 2016. 28: p. 6926-6931. 29. Quan Pang, D.K., and Linda F. Nazar, A Graphene-like Metallic Cathode Host For Long-life and High-loading Lithium-Sulfur Batteries. Mater. Horiz., 2015. 30. Tran, S.S.Z.a.D.T., Pyrite FeS2 as an efficient adsorbent of lithium polysulphide for improved lithium-sulphur batteries. Journal of Materials Chemistry A, 2016. 4. 31. Whittingham, M.S., PREPARATION OF STOICHIOMETRIC TITANIUM DISULFIDE, in United States Patent Office. 1975: United State. 32. Lewis H. Gaines, A., BATTERY HAVING AN ELECTRODE COMPRISING MIXTURES OF Al AND TiS2, in United States Patent Office. 1977: United State. 33. Rudolph R. Haering, J.A.R.S., Klaus Brandt, LITHIUM MOLYBDENUM DISULPHIDE BATTERY CATHODE, in United States Patent Office. 1979: United State. 34. Ogawa, S., Magnetic properties of 3d transition-metal dichalcogenides with the pyrite structure. Journal of Applied Physics, 1979. 50. 35. Qinghong Wang, L.J., Yan Han, Hongmei Du, Wenxiu Peng, Qingna Huan, Dawei Song, Yuchang Si, Yijing Wang, and Huatang Yuan, CoS2 Hollow Spheres: Fabrication and Their Application in Lithium-Ion Batteries. Journal of Physical Chemistry C, 2011. 115: p. 8300-8304. 36. Zhe Yuan, H.-J.P., Ting-Zheng Hou, Jia-Qi Huang, Cheng-Meng Chen, Dai-Wei Wang, Xin-Bing Cheng, Fei Wei and Qiang Zhang, Powering Lithium−Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts. Nano Letters, 2015. 16: p. 519-527. 37. B. MORRIS, V.J.a.A.W., PREPARATION AND MAGNETIC PROPERTIES OF COBALT DISULFIDE. J. Phys. Chem. Solids 1967. 28: p. 1565-1567. 38. Matthew S. Faber, R.D., Mark A. Lukowski, Nicholas S. Kaiser, Qi Ding, and Song Jin, High-Performance Electrocatalysis Using Metallic Cobalt Pyrite (CoS2) Micro- and Nanostructures. Journal of the American Chemical Society, 2014. 136: p. 10053-10061. 39. Nitesh Kumar, N.R., and Athinarayanan Sundaresan, Synthesis and Properties of Cobalt Sulfide Phases: CoS2 and Co9S8. Z. Anorg. Allg. Chem., 2014. 6: p. 1069-1074. 40. S.G. Lyapin, A.N.U., A.E. Petrova, A.P. Novikov, T.A. Lograsso, and S.M. Stishov, Raman studies of nearly half-metallic ferromagnet CoS2. Journal of Physics: Condensed Matte, 2014. 26.
|